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In this note, we announce some results for geodesic lines in the metric

ds2 =
α(t, x) (dx2 + ε dt2)

ωr(t, x)
, ε = ±1, (1)

where α(t, x) > 0 and ω(t, x) are C∞-smooth functions, r > 0 is a real number. Suppose
that the equation ω(t, x) = 0 defines a smooth regular curve A on the (t, x)-plane, i.e., at all
points (t, x) ∈ A the condition ∇ω 6= 0 holds. In the case ε = −1 we also assume that the
curve A is not tangent to the radical of the form dx2 + ε dt2, i.e., at all points (t, x) ∈ A the
condition |ω′t| 6= |ω′x| holds. The aim of this paper is to study singularities of the geodesic
flow and geodesic lines which pass through the points of the curve A, in neighborhoods of
these points. All results are local, and by means of isothermal coordinates they can be
extended to the metrics of more general form ds2 = Q/ωr, where Q is an arbitrary smooth
non-degenerated metric (if Q is indefinite then we assume that the curve A = {ω = 0} is
not tangent to Rad Q).

The metric (1) is a natural generalization of the Klein metric used in the model of the
Lobachevsky plane (r = 2). It is also related to Clairaut–Liouville metric (r = 1) which has
some applications in optimal control theory. For instance, in [1] the authors deal with the
metric

ds2 = dx2 +
g(x2, t)

x2
dt2 =

x2 dx2 + g(x2, t) dt2

x2
, (2)

where g is a positive smooth function (t and x are standard angular coordinates on the sphere,
the curve A = {x = 0} is the equator). In the case g(x2, t) ≡ 1 it is well-known Grushin
metric [2, 3]. After the change of variables x̃ = x2 the metric (2) becomes ds2 = Q/(4x̃),
where Q = dx̃2 + 4g(x̃, t) dt2 is a positive definite quadratic form. By means of isothermal
coordinates the last metric becomes (1) with r = 1 and ε = +1.

Geodesic lines generated by the metric (1) are extremals of the Euler–Lagrange equation
with L2 = α(p2 + ε)/ωr, where p = dx/dt. After some transformations this yields the
equation

2εαω
dp

dt
= (µ1p− εµ0)(p

2 + ε), p =
dx

dt
, (3)

where µ1 = rαω′t−α′tω and µ0 = rαω′x−α′xω. In the (t, x, p)-space the equation (3) generates
the direction field

ṫ = 2εαω, ẋ = 2pεαω, ṗ = (µ1p− εµ0)(p
2 + ε). (4)

The projections of integral curves of the field (4) onto the (t, x)-plane along the p-axis are
geodesic lines. Direction field (4) has two key properties.

Firstly, for each point q = (t, x) ∈ A and each p such that (µ1p−εµ0)(p
2 +ε) 6= 0 the field

(4) has a unique integral curve that passes through the point (q, p). This integral curve is a
straight line in the (t, x, p)-space parallel to the p-axis, and its projection on the (t, x)-plane
is the point q, hence it does not correspond to geodesic. Thus geodesics that pass through
the point q ∈ A are projections of the integral curves of the field (4) that pass through the
singular points (q, p) of this field. This yields the equality (µ1p− εµ0)(p

2 + ε) = 0.
Secondly, singular points of the field (4) are given by two equations ω = 0 and (µ1p −

εµ0)(p
2 + ε) = 0 which define a curve W c

0 = {q ∈ A, p = εµ0/µ1} if ε = +1. In the
case ε = −1 the locus defined by these equations contains the curve W c

0 and two additional
curves W c

± = {q ∈ A, p = ±1}. The condition |ω′t| 6= |ω′x| implies that the curves W c
0 , W c

±
do not intersect in a neighborhood of A and form the central manifold of the field (W c =

2



W c
0 ∪W c

+∪W c
−). The spectrum of the linear part of the direction field (4) is defined uniquely

up to a scalar factor; it is equal to (2, r, 0) at the points of W c
0 and (1,−r, 0) at the points

of W c
±. The eigenvalue r or −r corresponds to the eigenvector proportional to ∂p.

Combining the results of [4, 5], we get smooth orbital normal forms for the germ of the
field (4) at the singular points. At any point (p, q) ∈ W c

0 , the germ (4) has the normal form

ξ̇ = rξ, η̇ = 2η, ζ̇ = 0, if max {r/2, 2/r} /∈ N, (5)

ξ̇ = nξ + ϕ(ζ)ηn, η̇ = η, ζ̇ = 0, if max {r/2, 2/r} = n ∈ N. (6)

If ϕ(0) 6= 0 then the coefficient ϕ(ζ) in the normal form (6) simplifies to 1. If ϕ(ζ) has
a finite order s at the origin, then ϕ(ζ) simplifies to ζs. In the case r = 1 the coefficient
ϕ(ζ) ≡ 0. In the case r = 2 the identity ϕ(ζ) ≡ 0 holds, in particular, if the function ω(t, x)
is linear and the restriction of α(t, x) to the line A is identically constant.

At any point (p, q) ∈ W c
± the germ (4) has the normal form

ξ̇ = ξ, η̇ = −rη, ζ̇ = 0, if r /∈ Q, (7)

ξ̇ = nξ, η̇ = −mηΦ(ρ, ζ), ζ̇ = ρΨ(ρ, ζ), if r ∈ Q, (8)

where ρ = ξmηn is the resonant monomial, r = m/n, m, n ∈ N, (m, n) = 1, and Φ(0, 0) = 1.
If Ψ(0, 0) 6= 0 then the coefficients Φ(ρ, ζ) and Ψ(ρ, ζ) in (8) simplify to 1. The condition
Ψ(0, 0) 6= 0 for generic metric (1) holds, in the case r = 1 it always holds true. However

both normal forms (7) and (8) are topologically equivalent to ξ̇ = ξ, η̇ = −η, ζ̇ = 0.
To get the portrait of geodesic lines passing through the point q ∈ A with tangent direction

p0 = εµ0/µ1 we need to consider the invariant leaf (ζ = c (const) in the normal form (5) or
(6)) that contains the given point (q, p0). The projection of the integral curves of (4) from
this leaf on the (t, x)-plane along the p-axis gives a pencil of geodesics γk, k ∈ R, with the
same 1-jet at the point q. The jets of higher orders depend on r and ϕ(c). If r < 2 then all
geodesics γk, except only one, have an infinite second derivative at the point q (in particular,
in the case r = 1 the geodesics are semi-cubic parabolas having a cusp at q). Consider the
case r = 2n, n ∈ N, and the corresponding normal form (6). If ϕ(c) 6= 0 then all geodesics
γk ∈ Cn and have the same n-jet and infinite derivative of the order n + 1 at q. If ϕ(c) = 0
then all geodesics γk ∈ C∞ and have the same n-jet and different (n + 1)-jets.1

In the case ε = +1 all geodesics passing through the point q = (t∗, x∗) ∈ A belong to the
pencil γk, k ∈ R. In the case ε = −1 apart from this pencil there are two more geodesics:
isotropic lines γ±: (x− x∗) = ±(t− t∗) with tangent directions p = ±1.2

1For example, the standard Klein metric (1) with r = 2, ε = +1 and α(t, x) = 1, ω(t, x) = t has the normal form (6) with
ϕ(ζ) ≡ 0. Geodesics in the Klein metric are the circles (x−x0)2 + t2 = R2 and the lines x = c. All these curves are C∞-smooth
near the absolute A = {t = 0}, and for the given point q ∈ A they have different 2-jets.

2The Pseudo-Klein metric (1) with r = 2, ε = −1 and α(t, x) = 1, ω(t, x) = t has the normal form (6) with ϕ(ζ) ≡ 0.
Geodesics in this metric are the hyperbolas (x − x0)2 − t2 = H and the lines x = c. For H < 0 the hyperbolas are timelike
(p2−1 > 0) and do not intersect A. For H > 0 the hyperbolas are spacelike (p2−1 < 0) and intersect A with tangent direction
p0 = εµ0/µ1 = 0 (also the lines x = c). At last, the value H = 0 gives the pairs of straight isotropic lines which intersect A with
tangent directions p = ±1. For the given point q = (t∗, x∗) ∈ A the pencil γk consists of the hyperbolas (x − x0)2 − t2 = k2

with various k 6= 0, where x0 = x∗ + k, and the line x = x∗. All these geodesics have different 2-jets at q.
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