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Abstract. We address the Monge problem in metric spaces with a geodesic distance: (X, d) is a Polish
space and dN is a geodesic Borel distance which makes (X, dN ) a possibly branching geodesic space.
We show that under some assumptions on the transference plan we can reduce the transport problem
to transport problems along family of geodesics.

We introduce two assumptions on the transference plan π which imply that the conditional proba-
bilities of the first marginal on each family of geodesics are continuous and that each family of geodesics
is a hourglass-like set. We show that this regularity is sufficient for the construction of a transport map.

We apply these results to the Monge problem in Rd with smooth, convex and compact obstacle
obtaining the existence of an optimal map provided the first marginal is absolutely continuous w.r.t. the
d-dimensional Lebesgue measure.
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1. Introduction

This paper concerns the Monge minimization problem in metric spaces with geodesic structure: given
two Borel probability measure µ, ν ∈ P(X), where (X, d) is a Polish space, i.e. complete and separable
metric space, we study the minimization of the functional

I(T ) =

∫

dN (x, T (x))µ(dy)

where T varies over all Borel maps T : X → X such that T♯µ = ν and dN is a Borel distance that makes
(X, dN ) a possibly branching geodesic space.
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2 DISTANCE COST AND THE OBSTACLE PROBLEM

Before describing our investigation, we present a little bit of the existing literature referring to [15]
and [16] for a deeper insight into optimal transportation.

In the original formulation given by Monge in 1781 the problem was settled in Rn, with the cost given
by the Euclidean norm and the measures µ, ν were supposed to be absolutely continuous and supported
on two disjoint compact sets. The original problem remained unsolved for a long time. In 1978 Sudakov
[13] claimed to have a solution for any distance cost function induced by a norm: an essential ingredient
in the proof was that if µ ≪ Ld and Ld-a.e. Rd can be decomposed into convex sets of dimension k,
then then the conditional probabilities are absolutely continuous with respect to the Hk measure of the
correct dimension. But it turns out that when d > 2, 0 < k < d− 1 the property claimed by Sudakov is
not true. An example with d = 3, k = 1 can be found in [11].

The Euclidean case has been correctly solved only during the last decade. L. C. Evans and W. Gangbo
in [8] solved the problem under the assumptions that sptµ∩ spt ν = ∅, µ, ν ≪ Ld and their densities are
Lipschitz function with compact support. The first existence results for general absolutely continuous
measures µ, ν with compact support have been independently obtained by L. Caffarelli, M. Feldman and
R.J. McCann in [6] and by N. Trudinger and X.J. Wang in [14]. Afterwards M. Feldman and R.J. McCann
[9] extended the results to manifolds with geodesic cost. The case of a general norm as cost function onRd, including also the case with non strictly convex unitary ball, has been solved first in the particular
case of crystalline norm by L. Ambrosio, B. Kirchheim and A. Pratelli in [2], and then in fully generality
by T. Champion and L. De Pascale in [7]. The case with (X, dN ) non-branching geodesic space has been
studied by S. Bianchini and the author in [4].

1.1. Overview of the paper. We introduce the setting considered in this paper: (X, dN ) is a geodesic
space, not necessarily Polish. To assure that standard measure theory can be used, there exists a second
distance d on X which makes (X, d) Polish and dN is a Borel function on X × X with the metric
d × d. We do not require dN to be l.s.c., hence the existence of an optimal transference plan is not
guaranteed. We will consider a dN -cyclically monotone transference plan π ∈ Π(µ, ν) and we will show
that, under appropriate assumptions on the first marginal and on the plan π, there exists an admissible
map T : X → X that lowers the transference cost of π. Since dN is not smooth enough, it is worth notice
that we will not use the existence of optimal potentials (φ, ψ).

The strategy to cope with the Monge problem with branching distance cost is the one presented in [4]:

(1) reduce the problem, via Disintegration Theorem, to transportation problems in sets where, under
a regularity assumption on the first marginal and on π, we know how to produce an optimal map;

(2) show that the disintegration of the first marginal µ on each of this sets verifies this regularity
assumption;

(3) find a transport map on each sets and piece them together.

In the case dN non-branching, the natural set where we can reduce the problem is a single geodesic
and it do not depend on the choice of the dN -cyclically monotone transference plan considered. Indeed
the reduced problem becomes essentially one dimensional and the right regularity assumption is that the
first marginal has no atoms (is continuous).

If dN is a general geodesic distance this reduction can’t be done anymore and there is not another
reference set where the existence of Monge minimizer is known. The reduction set will be a concatenation
of more geodesics and to produce an optimal map we will need a regularity assumption also on the shape
of this set.

As in the non-branching case, the reduction sets come from the class of geodesics used by a dN -
monotone plan π. This class can be obtained from a dN -cyclical monotone set Γ on which π is concen-
trated: one can construct the set of transport rays R, the transport set Te, i.e. the set of geodesics used
by π, and from them construct

• the set T made of inner points of geodesics,
• the set a ∪ b := Te \ T of initial points a and end points b.

Since branching of geodesics is admitted, R is not a partition on T . To obtain an equivalence relation
we have to consider the set H of chain of transport rays: it is the set of couples (x, y) such that we can go
from x to y with a finite number of transport rays such that their common points are not final or initial
points.
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DISTANCE COST AND THE OBSTACLE PROBLEM 3

Hence H will provide the partition of the transport set T and each equivalence class, H(y) for y in
the quotient space, will be a reduction set.

Even if a partition is given, the reduction to transport problems on the equivalence classes is not
straightforward: a necessary and sufficient condition is that the disintegration of the measure µ w.r.t.
the partition H is strongly consistent. This is equivalent to the fact that there exists a µ-measurable
quotient map f : T → T of the equivalence relation induced by the partition.
Since this partition is closely related to the geodesics of dN , the strong consistency will follow from a
topological property of the geodesic as set in (X, d) and from a metric property of dN as a function:

(a) each set of geodesics H(y) restricted to a dN closed ball is d-closed;
(b) dN (x, ·) restricted to H(x) is bounded on d-bounded sets.

Observe that these conditions on H and dN are the direct generalization of the ones on geodesics in [4]
(continuity and local compactness) and they depend on the particular choice of the transference plan.

Under this assumption, it is possible to disintegrate µ restricted to T . Hence one can write

µ =

∫

µym(dy), m := f♯µ, µy(f
−1(y)) = 1,

i.e. the conditional probabilities µy are concentrated on the counterimages f−1(y) (which is an equivalence
class). Then we can obtain the reduced problems by disintegrating π w.r.t. the partition H × (X ×X),

π =

∫

πym(dy), ν =

∫

νym(dy) νy := (P2)♯πy,

and consider the problems on the sets H(y) with marginals µy, νy and cost dN .
At this level of generality we don’t know how to obtain a dN -monotone admissible map for the restricted

problem even if the marginal µy satisfies some regularity assumptions. Therefore we need to assume that
H(y) has a particular structure: H(y) is contained, up to set of µy-measure zero, in the uncountable
“increasing” family of disjoint measurable sets. Then if the quotient measure and the marginal measures
of µy are continuous, we prove the existence of an optimal map between µy and νy.

We can then study the problem of when the conditional probabilities µy are continuous. A natural
operation on sets can be considered: the translation along geodesics. If A is a subset of T , we denote by
At the set translated by t in the direction determined by π. It turns out that the fact that µ(a ∪ b) = 0
and the measures µy are continuous depends on how the function t 7→ µ(At) behaves.

Theorem 1.1 (Proposition 5.2 and Proposition 5.3). If for all A Borel such that µ(A) > 0 there exists a
sequence {tn} ⊂ R and C > 0 such that µ(Atn) ≥ Cµ(A) as tn → 0, then µ(a∪b) = 0 and the conditional
probabilities µy are continuous.

Once we have this result we can solve the Monge problem.

Theorem 1.2 (Proposition 6.2 and Theorem 6.1). Assume that the hypothesis of Theorem 1.1 are verified
and the plan π is concentrated on a set Γ satisfying the assumption on the shape of the sets H(y). Then
there exists an admissible dN -monotone map that lowers the transference cost of π.

It follows immediately that in the hypothesis of Theorem 1.2, if π is also optimal, the Monge mini-
mization problem admits a solution.

In the last part of the paper we show an application of Theorem 1.2. Consider X = Rd and a smooth
hyper-surface M connected that is the boundary of a convex and compact set. Take as cost function dM :
the minimum of the euclidean length among all Lipschitz curves that do not cross M . Hence we have a
Monge minimization problem with M as obstacle. We show that if µ is absolutely continuous w.r.t. Ld,
the Monge minimization problem with cost dM admits a solution.

1.2. Structure of the paper. The paper is organized as follows.
In Section 2, we recall the mathematical tools we use in this paper. In Section 2.1 the fundamental

results of projective set theory are listed. In Section 2.2 we recall the Disintegration Theorem. Next,
the basic results of selection principles are listed in Section 2.3, and in Section 2.4 we define the geodesic
structure (X, d, dN ) which is studied in this paper. Finally, Section 2.5 recalls some fundamental results
in optimal transportation.

Section 3 shows how using only the dN -cyclical monotonicity of a set Γ we can obtain a partial order
relation G ⊂ X × X as follows (Lemma 3.3 and Proposition 3.9): xGy iff there exists (w, z) ∈ Γ and
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4 DISTANCE COST AND THE OBSTACLE PROBLEM

a geodesic γ, passing trough w and z and with direction w → z, such that x, y belongs to γ and
γ−1(x) ≤ γ−1(y). This set G is analytic, and allows to define

• the transport rays set R (3.3),
• the transport sets Te, T (with and without and points) (3.4),
• the set of initial points a and final points b (3.7).

Even if this part of Section 3 contains the same results of the first part of Section 3 of [4], for being as
self contained as possible, we state this results and show their proofs again.

The main difference with the strictly convex case [4] is that here R is not an equivalence relation. To
obtain an equivalence relation H ⊂ X ×X we have to consider the set of couples (x, y) for x, y ∈ T such
that there is a continuous path from x to y, union of a finite number of transport rays never passing
through a ∪ b, Definition 3.8. In Proposition 3.9 we prove that H is an equivalence relation.

Section 4 proves that the compatibility conditions (a) and (b) between dN and d, imply that the
disintegration induced by H on T is strongly consistent (Proposition 4.4). Using this fact we can reduce
the analysis on H(y) for y in the quotient set.

In Section 5 we prove Theorem 1.1. We first introduce the operation A 7→ At, the translation along
geodesics (5.1), and show that t 7→ µ(At) is a A-measurable function if A is analytic (Lemma 5.1).
Next, we show that under the assumption

µ(A) > 0 =⇒ µ(Atn) ≥ Cµ(A)

for an infinitesimal sequence tn and C > 0, the set of initial points a is µ-negligible (Proposition 5.2) and
the conditional probabilities µy are continuous.

In Section 6 we prove Theorem 1.2. First in Theorem 6.1 we prove that gluing all the dN -cyclically
monotone maps defined on H(y) we obtain a measurable transference map T from µ to ν dN -cyclically
monotone. Then the assumption on the structure of Γ is stated (Assumption 2) and in Proposition 6.2 we
show that on the equivalence class H(y) satisfying Assumption 2 there exists a dN -cyclically monotone
transference map Ty from µy to νy, provided the quotient measure and the marginal probabilities of µy
induced by the partition given by Assumption 2 are continuous.

Section 7 gives an application of Theorem 1.2: X = Rd, M is a smooth hyper-surface, connected that
is the boundary of a convex and compact set. The distance dM is the minimum of the euclidean length
among all the Lipschitz curves that do not cross M (7.1). Hence M is to be intended as an obstacle
for euclidean geodesics. The geodesic space (X, dM ) fits into the setting of Theorem 1.2 (Lemma 7.1).
If µ ≪ Ld then the µ-measure of the set of initial points is zero and the marginal µy are continuous
(Lemma 7.2). Finally we show in Proposition 7.5 and Proposition 7.7 that any dM -cyclically monotone
set and µ satisfy the hypothesis of Proposition 6.2. It follows the existence of a solution for the Monge
minimization problem.

2. Preliminaries

In this section we recall some general facts about projective classes, the Disintegration Theorem for
measure, measurable selection principles, geodesic spaces and optimal transportation problems.

2.1. Borel, projective and universally measurable sets. The projective class Σ1
1(X) is the family of

subsets A of the Polish space X for which there exists Y Polish and B ∈ B(X×Y ) such that A = P1(B).
The coprojective class Π1

1(X) is the complement in X of the class Σ1
1(X). The class Σ1

1 is called the class
of analytic sets, and Π1

1 are the coanalytic sets.
The projective class Σ1

n+1(X) is the family of subsets A of the Polish space X for which there exists
Y Polish and B ∈ Π1

n(X × Y ) such that A = P1(B). The coprojective class Π1
n+1(X) is the complement

in X of the class Σ1
n+1.

If Σ1
n, Π1

n are the projective, coprojective pointclasses, then the following holds (Chapter 4 of [12]):

(1) Σ1
n, Π1

n are closed under countable unions, intersections (in particular they are monotone classes);
(2) Σ1

n is closed w.r.t. projections, Π1
n is closed w.r.t. coprojections;

(3) if A ∈ Σ1
n, then X \A ∈ Π1

n;
(4) the ambiguous class ∆1

n = Σ1
n ∩ Π1

n is a σ-algebra and Σ1
n ∪ Π1

n ⊂ ∆1
n+1.

We will denote by A the σ-algebra generated by Σ1
1: clearly B = ∆1

1 ⊂ A ⊂ ∆1
2.
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DISTANCE COST AND THE OBSTACLE PROBLEM 5

We recall that a subset of X Polish is universally measurable if it belongs to all completed σ-algebras
of all Borel measures on X : it can be proved that every set in A is universally measurable. We say that
f : X → R ∪ {±∞} is a Souslin function if f−1(t,+∞] ∈ Σ1

1.

Lemma 2.1. If f : X → Y is universally measurable, then f−1(U) is universally measurable if U is.

See [4] for the proof.

2.2. Disintegration of measures. We follow the approach of [3].
Given a measurable space (R,R) and a function r : R→ S, with S generic set, we can endow S with

the push forward σ-algebra S of R:

Q ∈ S ⇐⇒ r−1(Q) ∈ R,

which could be also defined as the biggest σ-algebra on S such that r is measurable. Moreover given a
measure space (R,R, ρ), the push forward measure η is then defined as η := (r♯ρ).

Consider a probability space (R,R, ρ) and its push forward measure space (S,S , η) induced by a map
r. From the above definition the map r is clearly measurable and inverse measure preserving.

Definition 2.2. A disintegration of ρ consistent with r is a map ρ : R × S → [0, 1] such that

(1) ρs(·) is a probability measure on (R,R), for all s ∈ S,
(2) ρ·(B) is η-measurable for all B ∈ R,

and satisfies for all B ∈ R, C ∈ S the consistency condition

ρ
(

B ∩ r−1(C)
)

=

∫

C

ρs(B)η(ds).

A disintegration is strongly consistent with r if for all s we have ρs(r
−1(s)) = 1.

We say that a σ-algebra A is essentially countably generated with respect to a measurem, if there exists
a countably generated σ-algebra Â such that for all A ∈ A there exists Â ∈ Â such that m(A △ Â) = 0.

We recall the following version of the theorem of disintegration of measure that can be found on [10],
Section 452.

Theorem 2.3 (Disintegration of measure). Assume that (R,R, ρ) is a countably generated probability
space, R = ∪s∈SRs a decomposition of R, r : R→ S the quotient map and (S,S , η) the quotient measure
space. Then S is essentially countably generated w.r.t. η and there exists a unique disintegration s→ ρs
in the following sense: if ρ1, ρ2 are two consistent disintegration then ρ1,s(·) = ρ2,s(·) for η−a.e. s.

If {Sn}n∈N is a family essentially generating S define the equivalence relation:

s ∼ s′ ⇐⇒ {s ∈ Sn ⇐⇒ s′ ∈ Sn, ∀n ∈ N}.
Denoting with p the quotient map associated to the above equivalence relation and with (L,L , λ) the
quotient measure space, the following properties hold:

• Rl := ∪s∈p−1(l)Rs = (p ◦ r)−1(l) is ρ-measurable and R = ∪l∈LRl;
• the disintegration ρ =

∫

L
ρlλ(dl) satisfies ρl(Rl) = 1, for λ-a.e. l. In particular there exists a

strongly consistent disintegration w.r.t. p ◦ r;
• the disintegration ρ =

∫

S
ρsη(ds) satisfies ρs = ρp(s), for η-a.e. s.

In particular we will use the following corollary.

Corollary 2.4. If (S,S ) = (X,B(X)) with X Polish space, then the disintegration is strongly consistent.

2.3. Selection principles. Given a multivalued function F : X → Y , X , Y metric spaces, the graph of
F is the set

(2.1) graph(F ) :=
{

(x, y) : y ∈ F (x)
}

.

The inverse image of a set S ⊂ Y is defined as:

(2.2) F−1(S) :=
{

x ∈ X : F (x) ∩ S 6= ∅
}

.

For F ⊂ X × Y , we denote also the sets

(2.3) Fx := F ∩ {x} × Y, F y := F ∩X × {y}.
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6 DISTANCE COST AND THE OBSTACLE PROBLEM

In particular, F (x) = P2(graph(F )x), F
−1(y) = P1(graph(F )y). We denote by F−1 the graph of the

inverse function

(2.4) F−1 :=
{

(x, y) : (y, x) ∈ F
}

.

We say that F is R-measurable if F−1(B) ∈ R for all B open. We say that F is strongly Borel mea-
surable if inverse images of closed sets are Borel. A multivalued function is called upper-semicontinuous
if the preimage of every closed set is closed: in particular u.s.c. maps are strongly Borel measurable.

In the following we will not distinguish between a multifunction and its graph. Note that the domain
of F (i.e. the set P1(F )) is in general a subset of X . The same convention will be used for functions, in
the sense that their domain may be a subset of X .

Given F ⊂ X × Y , a section u of F is a function from P1(F ) to Y such that graph(u) ⊂ F . We recall
the following selection principle, Theorem 5.5.2 of [12], page 198.

Theorem 2.5 (Von Neumann). Let X and Y be Polish spaces, A ⊂ X×Y analytic, and A the σ-algebra
generated by the analytic subsets of X. Then there is an A-measurable section u : P1(A) → Y of A.

A cross-section of the equivalence relation E is a set S ⊂ E such that the intersection of S with each
equivalence class is a singleton. We recall that a set A ⊂ X is saturated for the equivalence relation
E ⊂ X ×X if A = ∪x∈AE(x).

The next result is taken from [12], Theorem 5.2.1.

Theorem 2.6. Let Y be a Polish space, X a nonempty set, and L a σ-algebra of subset of X. Every
L-measurable, closed value multifunction F : X → Y admits an L-measurable section.

A standard corollary of the above selection principle is that if the disintegration is strongly consistent
in a Polish space, then up to a saturated set of negligible measure there exists a Borel cross-section.

In particular, we will use the following corollary.

Corollary 2.7. Let F ⊂ X × X be A-measurable, X Polish, such that Fx is closed and define the
equivalence relation x ∼ y ⇔ F (x) = F (y). Then there exists a A-section f : P1(F ) → X such that
(x, f(x)) ∈ F and f(x) = f(y) if x ∼ y.

Proof. For all open sets G ⊂ X , consider the sets F−1(G) = P1(F ∩ X × G) ∈ A, and let R be the
σ-algebra generated by F−1(G). Clearly R ⊂ A.

If x ∼ y, then

x ∈ F−1(G) ⇐⇒ y ∈ F−1(G),

so that each equivalence class is contained in an atom of R, and moreover by construction x 7→ F (x) is
R-measurable.

We thus conclude by using Theorem 2.6 that there exists an R-measurable section f : this measurability
condition implies that f is constant on atoms, in particular on equivalence classes. �

2.4. Metric setting. In this section we refer to [5].

Definition 2.8. A length structure on a topological space X is a class A of admissible paths, which is a
subset of all continuous paths in X, together with a map L : A → [0,+∞]: the map L is called length of
path. The class A satisfies the following assumptions:

closure under restrictions: if γ : [a, b] → X is admissible and a ≤ c ≤ d ≤ b, then γx[c,d] is also
admissible.

closure under concatenations of paths: if γ : [a, b] → X is such that its restrictions γ1, γ2 to
[a, c] and [c, b] are both admissible, then so is γ.

closure under admissible reparametrizations: for an admissible path γ : [a, b] → X and a for
ϕ : [c, d] → [a, b], ϕ ∈ B, with B class of admissible homeomorphisms that includes the linear
one, the composition γ(ϕ(t)) is also admissible.

The map L satisfies the following properties:

additivity: L(γx[a,b]) = L(γx[a,c]) + L(γx[c,b]) for any c ∈ [a, b].
continuity: L(γx[a,t]) is a continuous function of t.
invariance: The length is invariant under admissible reparametrizations.
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DISTANCE COST AND THE OBSTACLE PROBLEM 7

topology: Length structure agrees with the topology ofX in the following sense: for a neighborhood
Ux of a point x ∈ X , the length of paths connecting x with points of the complement of Ux is
separated from zero:

inf
{

L(γ) : γ(a) = x, γ(b) ∈ X \ Ux
}

> 0.

Given a length structure, we can define a distance

dN (x, y) = inf
{

L(γ) : γ : [a, b] → X, γ ∈ A, γ(a) = x, γ(b) = y
}

,

that makes (X, dN ) a metric space (allowing dN to be +∞). The metric dN is called intrinsic. It
follows from Proposition 2.5.9 of [5] that every admissible curve of finite length admits a constant speed
parametrization, i.e. γ defined on [0, 1] and L(γx[t, t′]) = v(t′ − t), with v velocity.

Definition 2.9. A length structure is said to be complete if for every two points x, y there exists an
admissible path joining them whose length L(γ) is equal to dN (x, y).

Observe that in the previous definition we do no require dN (x, y) < +∞.
Intrinsic metrics associated with complete length structure are said to be strictly intrinsic. The metric

space (X, dN ) with dN strictly intrinsic is called a geodesic space. A curve whose length equals the
distance between its end points is called geodesic.

From now on we assume the following:

(1) (X, d) Polish space;
(2) dN : X ×X → [0,+∞] is a Borel distance;
(3) (X, dN ) is a geodesic space;

Since we have two metric structures on X , we denote the quantities relating to dN with the subscript
N : for example

Br(x) =
{

y : d(x, y) < r
}

, Br,N (x) =
{

y : dN (x, y) < r
}

.

In particular we will use the notation

DN(x) =
{

y : dN (x, y) < +∞
}

,

(K, dH) for the compact sets of (X, d) with the Hausdorff distance dH and (KN , dH,N ) for the compact
sets of (X, dN ) with the Hausdorff distance dH,N . We recall that (K, dH) is Polish.

Lemma 2.10. If A is analytic in (X, d), then {x : dN (A, x) < ε} is analytic for all ε > 0.

Proof. Observe that
{

x : dN (A, x) < ε
}

= P1

(

X ×A ∩
{

(x, y) : dN (x, y) < ε
}

)

,

so that the conclusion follows from the invariance of the class Σ1
1 w.r.t. projections. �

In particular, A
dN , the closure of A w.r.t. dN , is analytic if A is analytic.

2.5. General facts about optimal transportation. Let (X,Ω, µ) and (Y,Σ, ν) be two probability
spaces and c : X × Y → R+ be a Ω × Σ measurable function. Consider the set of transference plans

Π(µ, ν) :=
{

π ∈ P(X × Y ) : (P1)♯π = µ, (P2)♯π = ν
}

,

where Pi(x1, x2) = xi, i = 1, 2. Define the functional

(2.5)
I : Π(µ, ν) −→ R+

π 7−→ I(π) :=

∫

X×Y

cπ.

The Monge-Kantorovich minimization problem is the minimization of I over all transference plans.
If we consider a map T : X → Y such that T♯µ = ν, the functional (2.5) becomes

I(T ) := I((Id × T )♯µ) =

∫

X

c(x, T (x))µ(dx).

The minimization problem over all T is called Monge minimization problem.

Preprint SISSA 44/2010/M (July 6, 2010)



8 DISTANCE COST AND THE OBSTACLE PROBLEM

The Kantorovich problem admits a (pre) dual formulation: before stating it, we introduce two defini-
tions.

Definition 2.11. A map ϕ : X → R∪{−∞} is said to be c-concave if it is not identically −∞ and there
exists ψ : Y → R ∪ {−∞}, ψ 6≡ −∞, such that

ϕ(x) = inf
y∈Y

{c(x, y) − ψ(y)} .

The c-transform of ϕ is the function

(2.6) ϕc(y) := inf
x∈X

{c(x, y) − ϕ(x)} .

The c-superdifferential ∂cϕ of ϕ is the subset of X × Y defined by

(2.7) (x, y) ∈ ∂cϕ ⇐⇒ c(x, y) − ϕ(x) ≤ c(z, y) − ϕ(z) ∀z ∈ X.

Definition 2.12. A set Γ ⊂ X × Y is said to be c-cyclically monotone if, for any n ∈ N and for any
family (x1, y1), . . . , (xn, yn) of points of Γ, the following inequality holds

n
∑

i=0

c(xi, yi) ≤
n

∑

i=0

c(xi+1, yi),

with xn+1 = x1. A transference plan is said to be c-cyclically monotone (or just c-monotone) if it is
concentrated on a c-cyclically monotone set.

Consider the set

(2.8) Φc :=
{

(ϕ, ψ) ∈ L1(µ) × L1(ν) : ϕ(x) + ψ(y) ≤ c(x, y)
}

.

Define for all (ϕ, ψ) ∈ Φc the functional

(2.9) J(ϕ, ψ) :=

∫

ϕµ+

∫

ψν.

The following is a well known result (see Theorem 5.10 of [16]).

Theorem 2.13 (Kantorovich Duality). Let X and Y be Polish spaces, let µ ∈ P(X) and ν ∈ P(Y ), and
let c : X × Y → R+ ∪ {+∞} be lower semicontinuous. Then the following holds:

(1) Kantorovich duality:

inf
π∈Π[µ,ν]

I(π) = sup
(ϕ,ψ)∈Φc

J(ϕ, ψ).

Moreover, the infimum on the left-hand side is attained and the right-hand side is also equal to

sup
(ϕ,ψ)∈Φc∩Cb

J(ϕ, ψ),

where Cb = Cb(X,R) × Cb(Y,R).
(2) If c is real valued and the optimal cost

C(µ, ν) := inf
π∈Π(µ,ν)

I(π)

is finite, then there is a measurable c-cyclically monotone set Γ ⊂ X×Y , closed if c is continuous,
such that for any π ∈ Π(µ, ν) the following statements are equivalent:
(a) π is optimal;
(b) π is c-cyclically monotone;
(c) π is concentrated on Γ;
(d) there exists a c-concave function ϕ such that π-a.s. ϕ(x) + ϕc(y) = c(x, y).

(3) If moreover

c(x, y) ≤ cX(x) + cY (y), cX µ-measurable, cY ν-measurable,

then there exist a couple of potentials and the optimal transference plan π is concentrated on the
set

{

(x, y) ∈ X × Y |ϕ(x) + ψ(y) = c(x, y)
}

.

Preprint SISSA 44/2010/M (July 6, 2010)



DISTANCE COST AND THE OBSTACLE PROBLEM 9

Finally if (cX , cY ) ∈ L1(µ) × L1(ν) then the supremum is attained

sup
Φc

J = J(ϕ,ϕc).

We recall also that if −c is Souslin, then every optimal transference plan π is concentrated on a
c-cyclically monotone set [3].

3. Optimal transportation in geodesic spaces

Let µ, ν ∈ P(X) and consider the transportation problem with cost c(x, y) = dN (x, y), and let π ∈
Π(µ, ν) be a dN -cyclically monotone transference plan with finite cost. By inner regularity, we can
assume that the optimal transference plan is concentrated on a σ-compact dN -cyclically monotone set
Γ ⊂ {dN(x, y) < +∞}.

Consider the set

Γ′ :=

{

(x, y) : ∃I ∈ N0, (wi, zi) ∈ Γ for i = 0, . . . , I, zI = y

wI+1 = w0 = x,

I
∑

i=0

dN (wi+1, zi) − dN (wi, zi) = 0

}

.(3.1)

In other words, we concatenate points (x, z), (w, y) ∈ Γ if they are initial and final point of a cycle with
total cost 0.

Lemma 3.1. The following holds:

(1) Γ ⊂ Γ′ ⊂ {dN (x, y) < +∞};
(2) if Γ is analytic, so is Γ′;
(3) if Γ is dN -cyclically monotone, so is Γ′.

Proof. For the first point, set I = 0 and (wn,0, zn,0) = (x, y) for the first inclusion. If dN (x, y) = +∞,
then (x, y) /∈ Γ and all finite set of points in Γ are bounded.

For the second point, observe that

Γ′ =
⋃

I∈N0

P1,2I+1(AI)

=
⋃

I∈N0

P1,2I+1

( I
∏

i=0

Γ ∩

{ I
∏

i=0

(wi, zi) :

I
∑

i=0

dN (wi+1, zi) − dN (wi, zi) = 0, wI+1 = w0

})

.

For each I ∈ N0, since dN is Borel, it follows that

{ I
∏

i=0

(wi, zi) :

I
∑

i=0

dN (wi+1, zi) − dN (wi, zi) = 0, wI+1 = w0

}

is Borel in
∏I
i=0(X ×X), so that for Γ analytic each set An,I is analytic. Hence P1,2I+1(AI) is analytic,

and since the class Σ1
1 is closed under countable unions and intersections it follows that Γ′ is analytic.

For the third point, observe that for all (xj , yj) ∈ Γ′, j = 0, . . . , J , there are (wj,i, zj,i) ∈ Γ, i = 0, . . . , Ij ,
such that

dN (xj , yj) +

Ij−1
∑

i=0

dN (wj,i+1, zj,i) −

Ij
∑

i=0

dN (wj,i, zj,i) = 0.

Hence we can write for xJ+1 = x0, wj,Ij+1 = wj+1,0, wJ+1,0 = w0,0

J
∑

j=0

dN (xj+1, yj) − dN (xj , yj) =

J
∑

j=0

Ij
∑

i=0

dN (wj,i+1, zj,i) − dN (wj,i, zj,i) ≥ 0,

using the dN -cyclical monotonicity of Γ. �
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Definition 3.2 (Transport rays). Define the set of oriented transport rays

(3.2) G :=
{

(x, y) : ∃(w, z) ∈ Γ′, dN (w, x) + dN (x, y) + dN (y, z) = dN (w, z)
}

.

For x ∈ X , the outgoing transport rays from x is the set G(x) and the incoming transport rays in x is
the set G−1(x). Define the set of transport rays as the set

(3.3) R := G ∪G−1.

The set G is the set of all couples of points on oriented geodesics with endpoints in Γ′. In R the couples
are non oriented.

Lemma 3.3. The following holds:

(1) G is dN -cyclically monotone;
(2) Γ′ ⊂ G ⊂ {dN(x, y) < +∞};
(3) the sets G, R := G ∪G−1 are analytic.

Proof. The second point follows by the definition: if (x, y) ∈ Γ′, just take (w, z) = (x, y) in the r.h.s. of
(3.2).

The third point is consequence of the fact that

G = P34

(

(

Γ′ ×X ×X
)

∩
{

(w, z, x, y) : dN (w, x) + dN (x, y) + dN (y, z) = dN (w, z)
})

,

and the result follows from the properties of analytic sets.
The first point follows from the following observation: if (xi, yi) ∈ γ[wi,zi], then from triangle inequality

dN (xi+1, yi) − dN (xi, yi) + dN (xi, yi−1) ≥ dN (xi+1, zi) − dN (zi, yi) − dN (xi, yi) + dN (xi, yi−1)

= dN (xi+1, zi) − dN (xi, zi) + dN (xi, yi−1)

≥ dN (xi+1, zi) − dN (xi, zi) + dN (wi, yi−1) − dN (wi, xi)

= dN (xi+1, zi) − dN (wi, zi) + dN (wi, yi−1).

Repeating the above inequality finitely many times one obtain
∑

i

dN (xi+1, yi) − dN (xi, yi) ≥
∑

i

dN (wi+1, zi) − dN (wi, zi) ≥ 0.

Hence the set G is dN -cyclically monotone. �

Definition 3.4. Define the transport sets

T := P1

(

G−1 \ {x = y}
)

∩ P1

(

G \ {x = y}
)

,(3.4a)

Te := P1

(

G−1 \ {x = y}
)

∪ P1

(

G \ {x = y}
)

.(3.4b)

Since G and G−1 are analytic sets, T , Te are analytic. The subscript e refers to the endpoints of the
geodesics: clearly we have

(3.5) Te = P1(R \ {x = y}).

The following lemma shows that we have only to study the Monge problem in Te.

Lemma 3.5. It holds π(Te × Te ∪ {x = y}) = 1.

Proof. If x ∈ P1(Γ \ {x = y}), then x ∈ G−1(y) \ {y}. Similarly, y ∈ P2(Γ \ {x = y}) implies that
y ∈ G(x) \ {x}. Hence Γ \ Te × Te ⊂ {x = y}. �

As a consequence, µ(Te) = ν(Te) and any maps T such that for νxTe
= T♯µxTe

can be extended to a
map T ′ such that ν = T♯µ with the same cost by setting

(3.6) T ′(x) =

{

T (x) x ∈ Te

x x /∈ Te
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Definition 3.6. Define the multivalued endpoint graphs by:

a :=
{

(x, y) ∈ G−1 : G−1(y) \ {y} = ∅
}

,(3.7a)

b :=
{

(x, y) ∈ G : G(y) \ {y} = ∅
}

.(3.7b)

We call P2(a) the set of initial points and P2(b) the set of final points.

Proposition 3.7. The following holds:

(1) the sets

a, b ⊂ X ×X, a(A), b(A) ⊂ X,

belong to the A-class if A analytic;
(2) a ∩ b ∩ Te ×X = ∅;
(3) a(T ) = a(Te), b(T ) = b(Te);
(4) Te = T ∪ a(T ) ∪ b(T ), T ∩ (a(T ) ∪ b(T )) = ∅.

Proof. Define

C :=
{

(x, y, z) ∈ Te × Te × Te : y ∈ G(x), z ∈ G(y)
}

= (G×X) ∩ (X ×G) ∩ Te × Te × Te,

that is clearly analytic. Then

b =
{

(x, y) ∈ G : y ∈ G(x), G(y) \ {y} = ∅} = G \ P12(C \X × {y = z}),

b(A) =
{

y : y ∈ G(x), G(y) \ {y} = ∅, x ∈ A} = P2(G ∩A×X) \ P2(C \X × {y = z}).

A similar computation holds for a:

a = G−1 \ P23(C \ {x = y} ×X), a(A) = P1(GS ∩X ×A) \ P1(C \ {x = y} ×X).

Hence a, b ∈ A(X ×X), a(A), b(A) ∈ A(X), being the intersection of an analytic set with a coanalytic
one. If x ∈ Te \ T , then it follows that G(x) = {x} or G−1(x) = {x} hence x ∈ a(x) ∪ b(x).

The other points follow easily. �

Definition 3.8 (Chain of transport rays). Define the set of chain of transport rays

H :=

{

(x, y) ∈ Te × Te : ∃I ∈ N0, zi ∈ T for 1 ≤ i ≤ I,

(zi, zi+1) ∈ R, 0 ≤ i ≤ I + 1, z0 = x, zI+1 = y

}

.(3.8)

Using similar techniques of Lemma 3.1 it can be shown that H is analytic.

Proposition 3.9. The set H ∩ T × T is an equivalence relation on T . The set G is a partial order
relation on Te.

Proof. Using the definition of H , one has in T :

(1) x ∈ T clearly implies that (x, x) ∈ H ;
(2) since R is symmetric, if y ∈ H(x) then x ∈ H(y);
(3) if y ∈ H(x), z ∈ H(y), x, y, z ∈ T . Glue the path from x to y to the one from y to z. Since

y ∈ T , z ∈ H(x).

The second part follows similarly:

(1) x ∈ Te implies that

∃(x, y) ∈
(

G \ {x = y}
)

∪
(

G−1 \ {x = y}
)

,

so that in both cases (x, x) ∈ G;
(2) (x, y), (y, z) ∈ G \ {x = y} implies by dN -cyclical monotonicity that (x, z) ∈ G.

�

We finally show that we can assume that the µ-measure of final points and the ν-measure of the initial
points are 0.

Lemma 3.10. The sets G ∩ b(T ) ×X, G ∩X × a(T ) is a subset of the graph of the identity map.
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12 DISTANCE COST AND THE OBSTACLE PROBLEM

Proof. From the definition of b one has that

x ∈ b(T ) =⇒ G(x) \ {x} = ∅,

A similar computation holds for a. �

Hence we conclude that

π(b(T ) ×X) = π(G ∩ b(T ) ×X) = π({x = y})

and following (3.6) we can assume that

µ(b(T )) = ν(a(T )) = 0.

4. Partition of the transport set

To perform a disintegration we have to assume some regularity of the support Γ of the transport plan
π ∈ Π(µ, ν). From now on we will assume the following:

(1) for all x ∈ T and for all r > 0 the set H(x) ∩Br,N (x)
dN

is d-closed;
(2) for all x ∈ T there exists r > 0 such that dN (x, ·)

xH(x)∩Br(x) is bounded.

Let {xi}i∈N be a dense sequence in (X, d).

Lemma 4.1. The sets

Wijk :=
{

x ∈ T ∩ B̄2−j (xi) : dN (x, ·)
xH(x)∩B̄

2−j (xi) ≤ k
}

form a countable covering of T of class A.

Proof. We first prove the measurability. We consider separately the conditions defining Wijk .
Point 1. The set

Aij := T ∩ B̄2−j (xi)

is clearly analytic.
Point 2. The set

Dijk :=

{

(x, y) ∈ H : d(xi, y) ≤ 2−j, dN (x, y) > k

}

is again analytic. We finally can write

Wijk = Aij ∩ P1(Dijk)
c,

and the fact that A is a σ-algebra proves that Wijk ∈ A.
To show that it is a covering, notice that for all x ∈ T there exists r > 0 such that, on the set

H(x) ∩ B̄r(x), dN (x, ·) is bounded. Choose j and i such that 2−j−1 ≤ r and d(xi, x) ≤ 2−j−1, hence

B̄2−j (xi) ⊂ B̄r(x)

and therefore for some k̄ ∈ N we obtain that x ∈Wijk . �

Remark 4.2. Observe that B̄2−j (xi) ∩H(x) is closed for all x ∈Wijk .
Indeed take {yn}n∈N ⊂ B̄2−j (xi) ∩H(x) with d(yn, y) → 0 as n → +∞, then since x ∈ Wijk it holds

dN (x, yn) ≤ k. By Assumption (1) above, dN (x, y) ≤ k and y ∈ B̄2−j (xi) ∩H(x).

Lemma 4.3. There exist µ-negligible sets Nijk ⊂Wijk such that the family of sets

Tijk = H−1(Wijk \Nijk) ∩ T

is a countable covering of T \ ∪ijkNijk into saturated analytic sets.

Proof. First of all, since Wijk ∈ A, then there exists µ-negligible set Nijk ⊂Wijk such that Wijk \Nijk ∈
B(X). Hence {Wijk \ Nijk}i,j,k∈N is a countable covering of T \ ∪ijkNijk. It follows immediately that
{Tijk}i,j,k∈N satisfies the lemma. �
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From any analytic countable covering, we can find a countable partition into A-class saturated sets by
defining

(4.1) Zm := Timjmkm
\
m−1
⋃

m′=1

Tim′ jm′km′
,

where N ∋ m 7→ (im, jm, km) ∈ N3

is a bijective map. Since H is an equivalence relation on T , we use this partition to prove the strong
consistency.

On Zm, m > 0, we define the closed valued map

(4.2) Zm ∋ x 7→ F (x) := H(x) ∩ B̄2−jm (xim ).

Proposition 4.4. There exists a µ-measurable cross section f : T → T for the equivalence relation H.

Proof. First we show that F is A-measurable: for δ > 0,

F−1(Bδ(y)) =
{

x ∈ Zm : H(x) ∩Bδ(y) ∩ B̄2−jm (xim ) 6= ∅
}

= Zm ∩ P1

(

H ∩
(

X ×Bδ(y) ∩ B̄2−jm (xim)
)

)

.

Being the intersection of two A-class sets, F−1(Bδ(y)) is in A. In Remark 4.2 we have observed that F
is a closed-valued map, hence, from Lemma 5.1.4 of [12], graph(F ) is A-measurable.

By Corollary 2.7 there exists a A-class section fm : Zm → B̄2−jm (xim). The proposition follows by
setting fxZm

= fm on ∪mZm, and defining it arbitrarily on T \∪mZm: the latter being µ-negligible, f is
µ-measurable. �

Up to a µ-negligible saturated set TN , we can assume it to have σ-compact range: just let S ⊂ f(T )
be a σ-compact set where f♯µ is concentrated, and set

(4.3) TS := H−1(S) ∩ T , TN := T \ TS , µ(TN ) = 0.

Hence we have a measurable cross-section

S := S ∪ f(TN ) = (Borel) ∪ (f(µ-negligible)).

Hence Disintegration Theorem 2.3 yields

(4.4) µxT =

∫

S

µym(dy), m = f♯µxT , µy ∈ P(H(y))

and the disintegration is strongly consistent since the quotient map f : T → T is µ-measurable and
(T ,B(T )) is countably generated.

Observe that H induces an equivalence relation also on T ×X ∩ Γ where the equivalence classes are
H(y) ∩ T ×X and the quotient map is the f of Proposition 4.4. Hence

(4.5) πxT ×X∩Γ=

∫

S

πymπ(dy), mπ = f♯πxT ×X∩Γ, πy ∈ P(H(y) ∩ T ×X).

Observe that m = mπ.

5. Regularity of the disintegration

In this Section we consider the translation of Borel sets by the optimal geodesic flow, we introduce the
fundamental regularity assumption (Assumption 1) on the measure µ and we show that an immediate
consequence is that the set of initial points is negligible and consequently we obtain a disintegration of
µ on the whole space. A second consequence is that the disintegration of µ w.r.t. the H has continuous
conditions probabilities.
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5.1. Evolution of Borel sets. Let A ⊂ Te be an analytic set and define for t ∈ R the t-evolution At of
A by:

(5.1) At :=

{

P2

{

(x, y) ∈ G ∩A×X : dN (x, y) = t
}

t ≥ 0

P2

{

(x, y) ∈ G−1 ∩A×X : dN (x, y) = t
}

t < 0.

It is clear from the definition that if A is analytic, also At is analytic . We can show that t 7→ µ(At)
is measurable.

Lemma 5.1. Let A be analytic. The function t 7→ µ(At) is A-measurable for t ∈ R.

Proof. We divide the proof in three steps.
Step 1. Define the subset of X × R

Â :=
{

(x, t) : x ∈ At
}

.

Note that

Â = P13

{

(x, y, t) ∈ X ×X × R+ : (x, y) ∈ G ∩A×X, dN (x, y) = t

}

∪ P13

{

(x, y, t) ∈ X ×X × R− : (x, y) ∈ G−1 ∩A×X, dN (x, y) = −t

}

,

hence it is analytic. Clearly At = Â(t).
Step 2. Define the closed set in P(X × [0, 1])

Π(µ) :=
{

π ∈ P(X × [0, 1]) : (P1)♯(π) = µ
}

and let B ⊂ X × R× [0, 1] be a Borel set such that P12(B) = Â.
Consider the function R× Π(µ) ∋ (t, π) 7→ π(B(t)).

A slight modification of Lemma 4.12 in [3] shows that this function is Borel.
Step 3. Since supremum of Borel function are A-measurable, pag. 134 of [12], the proof is concluded

once we show that
µ(At) = µ(Â(t)) = sup

π∈Π(µ)

π(B(t)).

Since Â(t) × [0, 1] ⊃ B(t)

µ(Â(t)) = π(Â(t) × [0, 1]) ≥ π(B(t)).

On the other hand from Theorem 2.5, there exists an A-measurable section of the analytic set B(t), so

we have u : Â(t) → B(t). Clearly for πu = (I, u)♯(µ) it holds πu(B(t)) = µ(Â(t)).
�

The next assumption is the fundamental assumption of the paper.

Assumption 1 (Non-degeneracy assumption). For each analytic set A ⊂ Te such that µ(A) > 0 there
exists a sequence {tn}n∈N ⊂ R and a strictly positive constant C such that tn → 0 as n → +∞ and
µ(Atn) ≥ Cµ(A).

Clearly it is enough to verify Assumption 1 for A compact set. An immediate consequence of the
Assumption 1 is that the measure µ is concentrated on T .

Proposition 5.2. If µ satisfies Assumption 1 then

µ(Te \ T ) = 0.

Proof. Let A = Te \ T . Suppose by contradiction µ(A) > 0. By the inner regularity there exists Â ⊂ A

closed with µ(Â) > 0. By Assumption 1 there exist C > 0 and {tn}n∈N converging to 0 such that

µ(Âtn) ≥ Cµ(Â).

Define Âε :=
{

x : dN (Â, x) < ε
}

. Since Â ⊂ A, for all n ∈ N it holds Âtn ∩A = ∅. Moreover for tn ≤ ε

we have Âε ⊃ Âtn . So we have

µ(Â) = lim
ε→0

µ(Âε) ≥ µ(Â) + µ(Âtn) ≥ (1 + C)µ(Â),

that gives the contradiction. �
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Once we know that µ(T ) = 1, we can use the Disintegration Theorem 2.3 to write

(5.2) µ =

∫

S

µym(dy), m = f♯µ, µy ∈ P(H(y)).

The disintegration is strongly consistent since the quotient map f : T → T is µ-measurable and (T ,B(T ))
is countably generated.

The second consequence of Assumption 1 is that µy is continuous, i.e. µy({x}) = 0 for all x ∈ X .

Proposition 5.3. If µ satisfies Assumption 1 then the conditional probabilities µy are continuous for
m-a.e. y ∈ S.

Proof. From the regularity of the disintegration and the fact that m(S) = 1, we can assume that the
map y 7→ µy is weakly continuous on a compact set K ⊂ S of comeasure < ε. It is enough to prove the
proposition on K.

Step 1. From the continuity of K ∋ y 7→ µy ∈ P(X) w.r.t. the weak topology, it follows that the map

y 7→ A(y) :=
{

x ∈ H(y) : µy({x}) > 0
}

= ∪n
{

x ∈ H(y) : µy({x}) ≥ 2−n
}

is σ-closed: in fact, if (ym, xm) → (y, x) and µym
({xm}) ≥ 2−n, then µy({x}) ≥ 2−n by u.s.c. on compact

sets. Hence A is Borel.
Step 2. The claim is equivalent to µ(P2(A)) = 0. Suppose by contradiction µ(P2(A)) > 0. By Lusin

Theorem (Theorem 5.8.11 of [12]) A is the countable union of Borel graphs. Therefore we can take a

Borel selection of A just considering one of the Borel graphs, say Â. Clearly m(P1(Â)) > 0 and therefore

by (5.2) µ(P2(Â)) > 0. By Assumption 1 µ((P2(Â))tn) ≥ Cµ(P2(Â)) for some C > 0 and tn → 0. From

(P2(Â))tn ∩ (P2(Â))tm = ∅ we have a contradiction with the fact that the measure is finite. �

6. Solution to the Monge problem

Throughout the section we assume µ to satisfies Assumption 1. It follows from Disintegration Theorem
2.3, Proposition 5.2 and Proposition 5.3 that

µ =

∫

µym(dy), π =

∫

πym(dy), µy continuous, (P1)♯πy = µy,

where m = f♯µ and µy ∈ P(H(y)). We write moreover

ν =

∫

νym(dy) =

∫

(P2)♯πym(dy).

Note that πy ∈ Π(µy, νy) is dN -cyclically monotone (and since dNxH(y)×H(y) is finite, also optimal) for
m-a.e. y. If ν(T ) = 1, then the above formula is the disintegration of ν w.r.t. H .

Theorem 6.1. Let π ∈ Π(µ, ν) be dN -monotone such that for all y ∈ S there exists an optimal map Ty
from µy to νy. Then there exists a µ-measurable map T : X → X with the same transference cost of π.

Proof. The idea is to use Theorem 2.5. Recall S ⊂ T introduced in (4.3). Step 1. Let T ⊂ S×P(X2) be
the set: for y ∈ S, Ty is the family of optimal transference plans in Π(µ̃y , ν̃y) concentrated on a graph,

T =
{

(y, π) ∈ S × P(X2) : π ∈ Π(µy, νy) optimal, ∃T : X → X,π(graph(T )) = 1
}

.

where for optimal in Π(µy , νy) we mean
∫

dNπ = min
π∈Π(µy,νy)

∫

dNπ.

Note that, since π is a Borel measure, in the definition of T, T can be taken Borel. Moreover the y
section Ty = T ∩ {y} × P(X2) is not empty.

Step 2. Since the projection is a continuous map, then the set

Π̃ =
{

(y, π) : (P1)♯π = µy, (P2)♯π = νy

}

is a Borel subsets of S×P(X2): in fact it is the counter-image of the Borel set graph((µy , νy)) ⊂ S×P(X)2

w.r.t. the weakly continuous map (y, π) 7→ (y, (P1)♯π, (P2)♯π).
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16 DISTANCE COST AND THE OBSTACLE PROBLEM

Define the Borel function

S × P(X2) ∋ (y, π) 7→ f(y, π) :=

{

∫

dNπ π ∈ Π(µy , νy)

+∞ otherwise

It follows that y 7→ g(y) := infπ f(y, π) is an A-function: we can redefine it on a m-negligible set to make
it Borel, where m is the quotient measure of µ. Hence the set

Π̃opt =

{

(y, π) : π ∈ Π̃(µy, νy),

∫

dNπ ≤ g(y)

}

= Π̃ ∩
{

(y, π) :

∫

dNπ ≤ g(y)
}

is Borel.concentrated
Step 3. Now we show that the set of π ∈ P(X2) concentrated on a graph is analytic. By Borel

Isomorphism Theorem, see [12] page 99, it is enough to prove the same statement for π ∈ P([0, 1])2.
Consider the function

P([0, 1]2) × Cb([0, 1], [0, 1]) ∋ (π, φ) 7→ h(π, φ) := π(graph(φ)) ∈ [0, 1].

Since graph(φ) is compact, h is u.s.c.. Hence the set Bn = h−1([1 − 2−n, 1]) is closed, so that

T =
⋂

n

P1(B
n) =

{

π : ∀ε > 0 ∃φε, π(φε) > 1 − ε
}

is an analytic set. It is easy to prove that π ∈ T iff π is concentrated on a graph.
Step 4. It follows that

T = S × T ∩ Π̃opt

is analytic and by Theorem 2.5 there exists a m-measurable selection y 7→ πy ∈ Ty. It is fairly easy to
prove that

∫

πym(dy) is an optimal map concentrated on a graph. �

It follows from Theorem 6.1 that it is enough to solve for each y ∈ S the Monge minimization problem
with marginal µy and νy on the set H(y). In order to solve it, we introduce an assumption on the
geometry of the set H(y).

Assumption 2. For a given y ∈ S, H(y) satisfies Assumption 2 if there exist two families of disjoint
A-measurable sets {Kt}t∈[0,1] and {Qs}s∈[0,1] such that

• µy(H(y) \ ∪t∈[0,1]Kt) = νy(H(y) \ ∪s∈[0,1]Qs) = 0;
• the associated quotient maps ϕK and ϕQ are respectively µy-measurable and νy-measurable;
• for t ≤ s, Kt ×Qs is dN -cyclically monotone.

In the measurability condition of Assumption 2 the set [0, 1] is equipped with the Borel σ-algebra
B([0, 1]). If H(y) satisfies Assumption 2 we can disintegrate the marginal measures µy and νy respectively
w.r.t. the family {Kt} and {Qs}:

µy =

∫

µy,tmµy
(dt), νy =

∫

νy,tmνy
(dt)

where mµy
= ϕK ♯µy, mνy

= ϕQ♯νy and the disintegrations are strongly consistent.

Proposition 6.2. Suppose that H(y) satisfies Assumption 2 and that the following conditions hold true:

• mµy
is continuous;

• µy,t is continuous for mµy
-a.e. t ∈ [0, 1];

• mµy
([0, t]) ≥ mνy

([0, t]) for mµy
-a.e. t ∈ [0, 1].

Then there exists a dN -cyclically monotone µy-measurable map Ty such that Ty ♯µy = νy.

Proof. Step 1. Since mµy
is continuous and mµy

([0, t]) ≥ mνy
([0, t]), there exists an increasing map

ψ : [0, 1] → [0, 1] such that ψ♯mµy
= mνy

.
Moreover, since for mµy

-a.e. t ∈ [0, 1] µy,t is continuous, there exists a Borel map Tt : Kt → Qψ(t)

such that Tt ♯µy,t = νy,ψ(t) for mµy
-a.e. t ∈ [0, 1]. Since ψ(t) ≥ t the map Tt is dN -cyclically monotone,

hence optimal between µy,t and νy,t.
Step 2. Reasoning as in the proof of Theorem 6.1, one can prove the existence of a µy-measurable

map T : H(y) → H(y) that is the gluing of all the maps Tt constructed in Step 1.. Hence there exists
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DISTANCE COST AND THE OBSTACLE PROBLEM 17

a µy-measurable map T : H(y) → H(y) such that T♯µy,t = νy,ψ(t). It follows that T is dN -cyclically
monotone and

T♯µy =

∫

T♯µy,tmµy
(dt) =

∫

νy,ψ(t)mµy
(dt) =

∫

νy,t(ψ♯mµy
)(dt) = νy.

�

Corollary 6.3. Let π ∈ Π(µ, ν) be dN -monotone plan. Assume that for m-a.e. y ∈ S the set H(y)
satisfies Assumption 2 and for m-a.e. y ∈ S the hypothesis of Proposition 6.2 are verified. Then there
exists an admissible Borel map T with dN -cyclically monotone graph and same transference cost of π.

The hypothesis of Proposition 6.2 and Assumption 2 are justified by the last part of this Section that
is devoted to an example.

6.1. Example. We conclude this Section with the analysis of a particular case in which the set H(y)
satisfies Assumption 2. Fix the following notation: a continuous curve γ : [0, 1] → X is increasing if for
t, s ∈ [0, 1]

t ≤ s =⇒ (γ(t), γ(s)) ∈ G

Definition 6.4 (Hourglass sets). For z ∈ X define the hourglass set

K(z) :=
{

(x, y) ∈ X ×X : (x, z), (z, y) ∈ G
}

.

Assume that there exists an increasing curve γ such that

H(y) ×X ∩ Γ ⊂
⋃

t∈[0,1]

K(γ(t)) ∩ Γ,

then H(y) satisfies Assumption 2. Indeed first notice that K(z) is analytic, then define the family of sets

Kt := G−1(γ(t)) \
⋂

s<t

G−1(γ(s)), Qt := G(γ(t)) \
⋂

t<s

G(γ(s)).

Since γ is increasing, Kt and Qs are A-measurable and the quotient maps are A-measurable: let [a, b] ⊂
[0, 1]

ϕ−1
K ([a, b]) =

⋃

t∈[a,b]

Kt = G−1(γ(b)) \G−1(γ(a)) ∪Ka ∈ A

and the same calculation holds true for ϕQ. The dN -cyclical monotonicity follows directly from the
increasing property of γ.

Observe moreover that in this framework it is also verified that mµy
([0, t]) ≥ mνy

([0, t]).

7. An application

Throughout this section | · | will be the euclidean distance of Rd.
Let C ⊂ Rd be an open convex set such that M := ∂C is a smooth compact sub-manifold of Rd of

dimension d− 1. Hence Rd \M is disconnected with two open connected components, say A1 and C. Let
C1 := clA1.

Consider the following geodesic distance: dM : Rd × Rd → [0,+∞]

(7.1) dM (x, y) :=











inf{L(γ) : γ ∈ Lip([0, 1], C1), γ(0) = x, γ(1) = y}, x, y ∈ C1

d(x, y), x, y ∈ C

+∞, elsewhere

where L is the standard euclidean arc-length: L(γ) =
∫

|γ̇|. Hence M can be seen as an obstacle for
geodesics connecting points in C1.

Since any minimizing sequence has uniformly bounded Lipschitz constant, in (7.1) we can substitute
inf with min, hence dM is a geodesic distance.

We will show that the Monge minimization problem with marginals µ, ν ∈ P(Rd), µ ≪ Ld and
geodesic cost dM admits a solution. From now on µ ≪ Ld. Clearly we have to assume that µ and ν are
concentrated on the same connected component otherwise all transference plans have infinite transference
cost. Hence µ(C1) = ν(C1) = 1. Since Ld(M) = 0, it follows that µ(A1) = µ(C1) = 1. From now on all
the sets and structures introduced during the paper, will be referred to this Monge problem.
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18 DISTANCE COST AND THE OBSTACLE PROBLEM

The strategy to solve the Monge minimization problem is the one used in Section 6: build a dM -
monotone map on each equivalence class H(y) and then use Theorem 6.1.

Lemma 7.1. The distance dMxC1×C1
is a continuous map.

Proof. Step 1. Let {xn}n∈N, {yn}n∈N ∈ C1 such that |xn − x| → 0 |yn − y| → 0. Since the boundary of
C1 is a smooth manifold, for every n ∈ N there exist curves γ1,n, γ2,n ∈ Lip([0, 1], C1) such that

• γ1,n(0) = x, γ1,n(1) = xn;
• γ2,n(0) = y, γ2,n(1) = yn;
• L(γi,n) → 0 as n→ +∞, for i = 1, 2.

Consider γn ∈ Lip([0, 1], C1) such that γn(0) = xn, γn(1) = yn and L(γn) ≤ dM (xn, yn) + 2−n. Gluing
γ1,n and γ2,n to γn it follows

dM (x, y) ≤ dM (xn, yn) + 2−n + L(γ1,n) + L(γ2,n).

Hence dM is l.s.c..
Step 2. Taking a minimizing sequence of admissible curves for dM (x, y) and gluing them with γi,n as

in Step 1., it is fairly easy to prove that dM is u.s.c. and therefore continuous. �

As a corollary we have the existence of an optimal transference plan π. Hence from now on π will
be an optimal transference plan and all the structures defined during the paper starting from a generic
dN -monotone plan, are referred to it. Moreover there exists ϕ ∈ LipdM

(C1,R) such that Γ = Γ′ = G =
{(x, y) ∈ C1 × C1 : ϕ(x) − ϕ(y) = dM (x, y)}. Note that Γ is closed.

In the following Lemma we prove that the problem can be reduced to the equivalence classes H(y). We
use the following notation: the quotient map induced by H will be denoted by fy and the corresponding
quotient measure fy♯ µ by mH .

Lemma 7.2. The µ-measure of the set of initial points is zero, hence

µ =

∫

µymH(dy).

Moreover µy is continuous for mH-a.e. y.

Proof. Since µ≪ Ld, w.l.o.g. we can prove the statement for Ld restricted to any set of finite measure.
The property requested in Assumption 1 is straightforward for Ld w.r.t. the flow induced by a | · |-

cyclically monotone set, see for example [4]. Moreover it is clear that Assumption 1 prescribes just a
local regularity for the map t 7→ µ(At). Hence if we show that for subsets of A1 the evolution by a
dM -cyclically monotone set is locally induced by a | · |-monotone set, then the claim follows.

Let K ⊂ A1 compact set with Ld(K) > 0. Possibly intersecting K with Br(x) for some x ∈ A1 and
r > 0, we can assume that K ⊂ Bε(x) and B2ε(x) ∩M = ∅. Since dM ≥ d, Kt ⊂ B2ε(x) for all t ≤ ε.
Hence the set G ∩ K × Kε is d-cyclically monotone, therefore Assumption 1 holds for Ld restricted to
any set of finite d-dimensional Lebesgue measure. �

Hence we can assume w.l.o.g. that µ(G−1(M)) = ν(G(M)) = 1: if H(y) do not intersect the obstacle,
it is a straight line and the marginal µy is continuous. Since the existence of an optimal transport map on
a straight line with first marginal continuous is a standard fact in optimal transportation, the reduction
follows.

The next result shows that, due to smoothness and convexity of the obstacle, the sets H(y) have the
structure of Example 6.1.

Lemma 7.3. For all y ∈ S, H(y) has the geometry of Example 6.1: there exists an increasing curve
γy : [0, 1] → X such that

H(y) ×X ∩ Γ ⊂
⋃

t∈[0,1]

K(γy(t)) ∩ Γ.

Proof. Since due to convexity and smoothness of the obstacle, the geodesics of dM are smooth and
composed by a first straight line, a geodesic of the manifold and a final straight line, a branching structure
can appear only on the manifold M . If H(y) 6= R(y), consider the following sets:

Z :=
⋂

z∈H(y)∩M

G−1(z) ∩M, W :=
⋂

z∈H(y)∩M

G(z) ∩M.
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By dM -monotonicity, smoothness and convexity of M , for all z ∈ H(y) ∩ M the set G−1(z) ∩ M is
always contained in the same geodesic of M . Using the compactness of M , Z = {z} and W = {w} and
(z, w) ∈ G. Consider the unique increasing geodesic γy ∈ γ[z,w] such that γy = G(z) ∩G−1(w). Hence

H(y) ×X ∩ Γ ⊂
⋃

t∈[0,1]

K(γy(t)) ∩ Γ.

�

Recall the two family of sets introduced in Example 6.1

Ky,t := G−1(γy(t)) \
⋂

s<t

G−1(γy(s)), Qy,t := G(γy(t)) \
⋂

t<s

G(γy(s)).

It follows from Lemma 7.3 and Example 6.1 that

µy =

∫

µy,tmµy
(dt), νy =

∫

νy,tmνy
(dt).

with µy,t(Ky,t) = νy,t(Qy,t) = 1. Moreover using the increasing curve γy, we can assume that mµy
∈

P(M), indeed

(7.2) µy =

∫

[0,1]

µy,tmµy
(dt) =

∫

γy([0,1])

µy,γ−1

y (z)(γy ♯mµy
)(dz).

And the same calculation holds true for νy and mνy
. Therefore in the following

(7.3) µy =

∫

M

µy,zmµy
(dz), νy =

∫

M

νy,zmνy
(dz)

with µy,z(Ky,γ−1

y (z)) = νy,z(Qy,γ−1

y (z)) = 1 and mµy
(γy([0, 1])) = mνy

(γy([0, 1])) = 1.

Moreover w.l.o.g. we can assume that S = fy(Rd) ⊂M , in particular we can assume that for all y ∈ S
there exists t(y) ∈ [0, 1] such that y = γy(t(y)).

According to Proposition 6.2, to obtain the existence of an optimal map on H(y) it is enough to
prove that mµy

is continuous and µy,z is continuous for mµy
-a.e. z ∈ M . Recall that mµy

(γy([0, t])) ≥
mνy

(γy([0, t])) is a straightforward consequence of the increasing property of γy.

Remark 7.4. Consider the following A-measurable map:

G−1(M) \ (a(M) ∩M) ∋ w 7→ fM (w) := Argmin{d(z, w) : z ∈M ∩G(w)} ∈M.

Consider the measure m := fM♯ µ ∈ P(M). Observing that fM (H(y)) = γy([0, 1]), it follows that the
support of m is partitioned by a dM -cyclically monotone equivalence relation:

m
(

⋃

y∈S

γy([0, 1])
)

= 1,
⋃

y∈S

γy([0, 1]) ×
⋃

y∈S

γy([0, 1]) ∩G is dM -cyclically monotone

Moreover fy is a quotient map also for this equivalence relation. Note that fy♯m = mH : consider I ⊂ S

(fy♯m)(I) = m
(

⋃

y∈I

γy([0, 1])
)

= µ
(

G−1(
⋃

y∈I

γy([0, 1]))
)

= µ
(

⋃

y∈I

H(y)
)

= (fy♯ µ)(I) = mH(I).

It follows that

m =

∫

S

(fM♯ µy)mH(dy)

and from (7.3) fM♯ µy = mµy
. Hence the final disintegration formula for m is the following one:

(7.4) m =

∫

S

mµy
mH(dy)

Proposition 7.5. The measure m is absolutely continuous w.r.t. the Hausdorff measure Hd−1 restricted
to M.

Preprint SISSA 44/2010/M (July 6, 2010)



20 DISTANCE COST AND THE OBSTACLE PROBLEM

Proof. Recall that ϕ ∈ LipdM
(Rd) is the potential associated to Γ and consider the following set

M2 := P1

(

{(x, y) ∈M ×M : |ϕ(x) − ϕ(y)| = dM (x, y)} \ {x = y}
)

.

Step 1. The function ϕ is a potential for any Monge minimization problem on M with cost the geodesic
distance, that coincides with dM , with first marginal m and as second marginal any probability measure
supported on M2. It follows from Proposition 15 of [9] that ∇ϕ is a Lipschitz function: for all x, y ∈M2

|∇ϕ(x) −∇ϕ(y)| ≤ LdM (x, y).

In [9] the Lipschitz constant L is uniform for x, y belonging to sets uniformly far from the starting and
ending points of the geodesics on M of the transport set. Since in our setting the geodesics on M do not
intersect, L is uniform on the whole M . Moreover note that if z = γy(t), then

∇ϕ(z) = −
γ̇y(t)

|γ̇y(t)|
.

Step 2. For t ≥ 0, define the following map

M2 ∋ x 7→ ψt(x) := x+ ∇ϕ(x)t.

Possibly restricting ψt to a subset of M of points coming from transport rays of uniformly positive length,
since t 7→ ψt(x) is a parametrization of the transport ray touching M in x, by dM -cyclical monotonicity
of Γ, we can assume that ψt is injective. Moreover ψt is bi-lipschitz, provided t is small enough: indeed

|x+ ∇ϕ(x)t − y −∇ϕ(y)t| ≥ |x− y|(1 − Lt).

It follows that

M2 × [−δ, δ] ∋ (x, s) 7→ ψ(x, s) := x+ ∇ϕ(x)(t + s)

is bi-Lipschitz and injective provided δ ≤ 1/L+t. Hence the Jacobian determinant of ϕ, Jdϕ, is uniformly
positive.

Step 3. Consider the following set

B := {x ∈ Rd : t− δ ≤ d(M,x) ≤ t+ δ} ∩G−1(M)

where d is the euclidean distance. Clearly B is the range of ψ and Ld(B) > 0. Since M is a smooth
manifold, we can pass to local charts: let Uα ⊂ Rd−1 be an open set and hα : Uα →M the corresponding
parametrization map. The map

Uα × [−δ, δ] ∋ (x, s) 7→ ψα(x, s) := ψ(hα(x), s)

is a bi-Lipschitz parametrization of the set Bα := B ∩G−1(hα(Uα)).
It follows directly from the Area Formula, see for example [1], that

LdxBα
= ψα ♯

(

Jdψα(Ld−1 × dt)xUα×[−δ,δ]

)

,

hence fM♯ LdxBα
≪ Hd−1

xM . Since B can be covered with a finite number of Bα and LdxBα
is equivalent

to m, the claim follows. �

Recall the following result. Let (M, g) be a n-dimensional compact Riemannian manifold, let dM be
the geodesic distance induced by g and η the volume measure. Then the disintegration of η w.r.t. any
dM -cyclically monotone set is strongly consistent and the conditional probabilities are continuous. This
result is proved in [4], Theorem 9.5, in the more general setting of metric measure space satisfying the
measure contraction property.

Corollary 7.6. For mH-a.s. y ∈ S, the quotient measure mµy
is continuous.

Proof. We have proved in Remark 7.4 that the measures mµy
are the conditional probabilities of the

disintegration of m w.r.t. the equivalence relation given by the membership to geodesics γy and mH

is the corresponding quotient measure. Hence the claim follows directly from Theorem 9.5 of [4] and
Proposition 7.5. �

Proposition 7.7. For mH-a.e. y ∈ S, the measures µy,z are continuous for mµy
-a.e. z ∈M .
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Proof. Recall that fM♯ µ = m.
Step 1. The measure µ can be disintegrated w.r.t. the partition given by the family of pre-images of

the A-measurable map fM : {(fM )−1(p)}p∈fM (Rd). Clearly fM is a possible quotient map, hence

(7.5) µ =

∫

µzm(dz),

The set G−1(M) \ a(M)×G−1(M) \ a(M)∩G is | · |-cyclically monotone and µ≪ Ld, hence it follows
that for m-a.e. z ∈ fM (Rd), µz is continuous.

Step 2. From Lemma 7.2 µ =
∫

µymH(dy), therefore

m = fM♯ µ =

∫

(fM♯ µy)mH(dy),

hence using (7.5) and the uniqueness of the disintegration

µ =

∫
(

∫

µz(f
M
♯ µy)(dz)

)

mH(dy), µy =

∫

µz(f
M
♯ µy)(dz),

where the last equality holds true for mH-a.e. y ∈ S. Hence for mH -a.e. y ∈ S the measures µy,z are
continuous for mµy

-a.e. z ∈M . �

Finally we can prove the existence of an optimal map for the Monge problem with obstacle.

Theorem 7.8. There exists a solution for the Monge minimization problem with cost dM and marginal
µ, ν with µ≪ Ld.

Proof. From Lemma 7.2 it follows that µ can be disintegrated w.r.t. the equivalence relation H . From
Theorem 6.1 it follows that to prove the claim it is enough to prove the existence of an optimal map on
each equivalence class H(y). Hence we restrict the analysis to the classes H(y) such that H(y) 6= R(y)
and for them we proved in Lemma 7.3 that Assumption 2 holds true. In Proposition 7.5, Corollary 7.6
and Proposition 7.7 we proved that for mH -a.e. y ∈ S the measures mµy

and µy,z verify the hypothesis
of Proposition 6.2. Therefore the claim follows. �
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Appendix A. Notation

Pi1...iI projection of x ∈ Πk=1,...,KXk into its (i1, . . . , iI) coordinates, keeping order
P(X) or P(X,Ω) probability measures on a measurable space (X,Ω)
M(X) or M(X,Ω) signed measures on a measurable space (X,Ω)
fxA the restriction of the function f to A
µxA the restriction of the measure µ to the σ-algebra A ∩ Σ
Ld Lebesgue measure on Rd
Hk k-dimensional Hausdorff measure
Π(µ1, . . . , µI) π ∈ P(ΠI

i=1Xi,⊗Ii=1Σi) with marginals (Pi)♯π = µi ∈ P(Xi)
I(π) cost functional (2.5)
c cost function : X × Y 7→ [0,+∞]
I transportation cost (2.5)
φc c-transform of a function φ (2.6)
∂cϕ d-subdifferential of ϕ (2.7)
Φc subset of L1(µ) × L1(ν) defined in (2.8)
J(φ, ψ) functional defined in (2.9)
Cb or Cb(X,R) continuous bounded functions on a topological space X
(X, d) Polish space
(X, dL) non-branching geodesic separable metric space
DN (x) the set {y : dN (x, y) < +∞}
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L(γ) length of the Lipschitz curve γ, Definition 2.8
Br(x) open ball of center x and radius r in (X, d)
Br,L(x) open ball of center x and radius r in (X, dL)
K(X) space of compact subsets of X
dH(A,B) Hausdorff distance of A, B w.r.t. the distance d
Ax, A

y x, y section of A ⊂ X × Y (2.3)
B, B(X) Borel σ-algebra of X Polish
Σ1

1, Σ1
1(X) the pointclass of analytic subsets of Polish space X , i.e. projection of Borel sets

Π1
1 the pointclass of coanalytic sets, i.e. complementary of Σ1

1

Σ1
n, Π1

n the pointclass of projections of Π1
n−1-sets, its complementary

∆1
n the ambiguous class Σ1

n ∩ Π1
n

A σ-algebra generated by Σ1
1

A-function f : X → R such that f−1((t,+∞]) belongs to A
h♯µ push forward of the measure µ through h, h♯µ(A) = µ(h−1(A))
graph(F ) graph of a multifunction F (2.1)
F−1 inverse image of multifunction F (2.2)
Fx, F

y sections of the multifunction F (2.3)
Lip1(X) Lipschitz functions with Lipschitz constant 1
Γ′ transport set (3.1)
G, G−1 outgoing, incoming transport ray, Definition 3.2
R set of transport rays (3.3)
T , Te transport sets (3.4)
a, b : Te → Te endpoint maps (3.7)
Zm,e, Zm partition of the transport set Γ (4.1), (4.2)
S cross-section of RxT ×T

At evolution of A ⊂ Zk,i,j along geodesics (5.1)
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