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Abstract

Two-dimensional almost-Riemannian structures are generalized Riemannian structures on
surfaces for which a local orthonormal frame is given by a Lie bracket generating pair of vector
fields that can become collinear. We consider the Carnot–Caratheodory distance canonically
associated with an almost-Riemannian structure and study the problem of Lipschitz equivalence
between two such distances on the same compact oriented surface. We analyse the generic case,
allowing in particular for the presence of tangency points, i.e., points where two generators of
the distribution and their Lie bracket are linearly dependent. The main result of the paper
provides a characterization of the Lipschitz equivalence class of an almost-Riemannian distance
in terms of a labelled graph associated with it.

1 Introduction

Consider a pair of smooth vector fields X and Y on a two-dimensional smooth manifold M . If
the pair (X,Y ) is Lie bracket generating, i.e., if span{X(q), Y (q), [X,Y ](q), [X, [X,Y ]](q), . . .} is
full-dimensional at every q ∈M , then the control system

q̇ = uX(q) + vY (q) , u2 + v2 ≤ 1 , q ∈M , (1)

is completely controllable and the minimum-time function defines a continuous distance d on M .
When X and Y are everywhere linear independent (the only possibility for this to happen is that
M is parallelizable), such distance is Riemannian and it corresponds to the metric for which (X,Y )
is an orthonormal frame. Our aim is to study the geometry obtained starting from a pair of vector
fields which may become collinear. Under generic hypotheses, the set Z (called singular locus)
of points of M at which X and Y are parallel is a one-dimensional embedded submanifold of M
(possibly disconnected).
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Metric structures that can be defined locally by a pair of vector fields (X,Y ) through (1) are
called almost-Riemannian structures.

Equivalently, an almost-Riemannian structure S can be defined as an Euclidean bundle E of
rank two over M (i.e. a vector bundle whose fibre is equipped with a smoothly-varying scalar
product 〈·, ·〉q) and a morphism of vector bundles f : E → TM such that the evaluation at q of the
Lie algebra generated by the submodule

∆ := {f ◦ σ | σ section of E} (2)

of the algebra of vector fields on M is equal to TqM for every q ∈M .
If E is orientable, we say that S is orientable. The singular locus Z is the set of points q of M

at which f(Eq) is one-dimensional. An almost-Riemannian structure is Riemannian if and only if
Z = ∅, i.e. f is an isomorphism of vector bundles.

The first example of genuinely almost-Riemannian structure is provided by the Grushin plane,
which is the almost-Riemannian structure on M = R2 with E = R2 × R2, f((x, y), (a, b)) =
((x, y), (a, bx)) and 〈·, ·〉 the canonical Euclidean structure on R2. The model was originally intro-
duced in the context of hypoelliptic operator theory [13, 15] (see also [4, 10]). Notice that the sin-
gular locus is indeed nonempty, being equal to the y-axis. Another example of almost-Riemannian
structure appeared in problems of control of quantum mechanical systems (see [8, 9]).

Almost-Riemannian structures present very interesting phenomena. For instance, even in the
case where the Gaussian curvature is everywhere negative (where it is defined, i.e., on M \ Z),
geodesics may have conjugate points. This happens for instance on the Grushin plane (see [2] and
also [6, 5] in the case of surfaces of revolution). The structure of the cut and conjugate loci is
described in [7] under generic assumptions.

In [1], we provided an extension of the Gauss–Bonnet theorem to almost-Riemannian structures,
linking the Euler number of the vector bundle E to a suitable principal part of the integral of the
curvature on M . For generalizations of the Gauss-Bonnet formula in related context see also [18].

The results in [1] have been obtained under a set of generic hypotheses called (H0). To introduce
it, let us define the flag of the submodule ∆ defined in (2) as the sequence of submodules ∆ =
∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆m ⊂ · · · defined through the recursive formula

∆k+1 = ∆k + [∆,∆k].

Under generic assumptions, the singular locus Z has the following properties: (i) Z is an embedded
one-dimensional submanifold of M ; (ii) the points q ∈ M at which ∆2(q) is one-dimensional are
isolated; (iii) ∆3(q) = TqM for every q ∈M . We say that S satisfies (H0) if properties (i),(ii),(iii)
hold true. If this is the case, a point q of M is called ordinary if ∆(q) = TqM , Grushin point if
∆(q) is one-dimensional and ∆2(q) = TqM , i.e. the distribution is transversal to Z, and tangency
point if ∆2(q) is one-dimensional, i.e. the distribution is tangent to Z. Local normal forms around
ordinary, Grushin and tangency points have been provided in [2]. When an ARS S = (E, f, 〈·, ·〉)
satisfying (H0) is oriented and the surface itself is oriented, M is split into two open sets M+,
M− such that Z = ∂M+ = ∂M−, f : E|M+ → TM+ is an orientation preserving isomorphism and
f : E|M− → TM− is an orientation reversing isomorphism. Moreover, in this case it is possible
to associate with each tangency point q an integer τq in the following way. Choosing on Z the
orientation induced by M+, τq = 1 if walking along the oriented curve Z in a neighborhood of
q the angle between the distribution and the tangent space to Z increases, τq = −1 if the angle
decreases.
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In this paper we provide a classification of orientable two-dimensional almost-Riemannian struc-
tures in terms of graphs. With an oriented almost-Riemannian structure, we associate a graph
whose vertices correspond to connected components of M \ Z and whose edges correspond to con-
nected components of Z. The edge corresponding to a connected component W of Z joins the
two vertices corresponding to the connected components of M \ Z adjacent to W . Every vertex
is labelled with its orientation (±1 if it a subset of M±) and its Euler characteristic. Every edge
is labelled with the ordered sequence of signs (modulo cyclic permutations) given by the contribu-
tions at the tangency points belonging to W . See Figure 1 for an example of almost-Riemannian
structure and its corresponding graph. We say that two labelled graphs are equivalent if they are
equal or they can be obtained by the same almost-Riemannian structure reversing the orientation
of the vector bundle.
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Figure 1: Example of ARS on a surface of genus 4 and corresponding labelled graph

The main result of the paper is the following.

Theorem 1 Two oriented almost-Riemannian structures, defined on compact oriented surfaces
and satisfying (H0), are Lipschitz equivalent if and only if they have equivalent graphs.

In the statement above, two almost-Riemannian structures are said to be Lipschitz equivalent if
there exists a diffeomorphism between their base surfaces which is bi-Lipschitz with respect to the
two almost-Riemannian distances.

This theorem shows another interesting difference between Riemannian manifolds and almost-
Riemannian ones: in the Riemannian context, Lipschitz equivalence coincides with the equivalence
as differentiable manifolds; in the almost-Riemannian context, Lipschitz equivalence is a stronger
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condition. Notice, however, that in general Liptschitz equivalence does not imply isometry. Indeed,
the Lipschitz equivalence between two structures does not depend on the metric structure but only
on the submodule ∆. This is highlightened by the fact that the graph itself depends only on ∆.

The structure of the paper is the following. In section 2, we recall some basic notion of sub-
Riemannian geometry. Section 3 introduces the definitions of the number of revolution of a one-
dimensional distribution along a closed oriented curve and of the graph associated with an almost-
Riemannian structure. In section 4 we demonstrate Theorem 1. Section 4.1 provides the proof of
the fact that having equivalent graphs is a necessary condition for Lipschitz equivalent structures.
Finally, in section 4.2 we show this condition to be sufficient.

2 Preliminaries

This section is devoted to recall some basic definitions in the framework of sub-Riemannian geom-
etry following [1, 2], see also [4, 17].

Let M be a n-dimensional manifold. Throughout the paper, unless specified, manifolds are
smooth (i.e., C∞) and without boundary; vector fields and differential forms are smooth. Given a
vector bundle E over M , the C∞(M)-module of smooth sections of E is denoted by Γ(E). For the
particular case E = TM , the set of smooth vector fields on M is denoted by Vec(M).

Definition 2 A (n, k)-rank-varying distribution on a n-dimensional manifold M is a pair (E, f)
where E is a vector bundle of rank k over M and f : E → TM is a morphism of vector bundles,
i.e., (i) the diagram

E
f //

πE !!DD
DD

DD
DD

TM

π

��
M

commutes, where π : TM → M and πE : E → M denote the canonical projections and (ii) f is
linear on fibers. Moreover, we require the map σ 7→ f ◦ σ from Γ(E) to Vec(M) to be injective.

Given a (n, k)-rank-varying distribution, we denote by f∗ : Γ(E) → Vec(M) the morphism of
C∞(M)-modules that maps σ ∈ Γ(E) to f ◦ σ ∈ Vec(M). The following proposition shows that all
the information about a rank-varying distribution is carried by the submodule f∗(Γ(E)).

Proposition 3 Given two (n, k)-rank-varying distributions (Ei, fi), i = 1, 2, assume that they de-
fine the same submodule of Vec(M), i.e., (f1)∗(Γ(E1)) = (f2)∗(Γ(E2)) = ∆ ⊆ Vec(M). Then, there
exists an isomorphism of vector bundles h : E1 → E2 such that f2 ◦ h = f1.

Proof. Since (fi)∗ : Γ(Ei) → ∆, i = 1, 2, are isomorphisms of C∞(M)-modules, then (f2)
−1
∗ ◦(f1)∗ :

Γ(E1) → Γ(E2) is an isomorphism. A classical result given in [14, Proposition XIII p.78] states
that the map f 7→ f∗ is an isomorphism of C∞(M)-modules from the set of morphisms from E1

to E2 to the set of morphisms from Γ(E1) to Γ(E2). Applying this result, there exists a unique
isomorphism h : E1 → E2 such that h∗ = (f2)

−1
∗ ◦ (f1)∗. By construction, (f2)∗ ◦ h∗ = (f1)∗ and

applying again [14, Proposition XIII p.78] we get f2 ◦ h = f1. �

Let (E, f) be a (n, k)-rank-varying distribution, ∆ = f∗(Γ(E)) = {f ◦ σ | σ ∈ Γ(E)} be its
associated submodule and denote by ∆(q) the linear subspace {V (q) | V ∈ ∆} = f(Eq) ⊆ TqM .
Let Lie(∆) be the smallest Lie subalgebra of Vec(M) containing ∆ and, for every q ∈ M , let
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Lieq(∆) be the linear subspace of TqM whose elements are evaluation at q of elements belonging
to Lie(∆). We say that (E, f) satisfies the Lie bracket generating condition if Lieq(∆) = TqM for
every q ∈M .

A property (P ) defined for (n, k)-rank-varying distributions is said to be generic if for every
vector bundle E of rank k over M , (P ) holds for every f in an open and dense subset of the set
of morphisms of vector bundles from E to TM , endowed with the C∞-Whitney topology. E.g.,
the Lie bracket generating condition is a generic property among (n, k)-rank-varying distributions
satisfying k > 1.

We say that a (n, k)-rank-varying distribution (E, f) is orientable if E is orientable as a vector
bundle.

A rank-varying sub-Riemannian structure is defined by requiring that E is an Euclidean bundle.

Definition 4 A (n, k)-rank-varying sub-Riemannian structure is a triple S = (E, f, 〈·, ·〉) where
(E, f) is a Lie bracket generating (n, k)-rank-varying distribution on a manifold M and 〈·, ·〉q is a
scalar product on Eq smoothly depending on q.

Several classical structures can be seen as particular cases of rank-varying sub-Riemannian
structures, e.g., Riemannian structures and classical (constant-rank) sub-Riemannian structures
(see [3, 17]). An (n, n)-rank-varying sub-Riemannian structure is called n-dimensional almost-
Riemannian structure. In this paper, we focus on 2-dimensional almost-Riemannian structures
(2-ARSs for short).

Let S = (E, f, 〈·, ·〉) be a (n, k)-rank-varying sub-Riemannian structure. The Euclidean struc-
ture on E and the injectivity of the morphism f∗ allow to define a symmetric positive definite
C∞(M)-bilinear form on the submodule ∆ by

G : ∆ × ∆ → C∞(M)

(V,W ) 7→ 〈σV , σW 〉,

where σV , σW are the unique sections of E such that f ◦ σV = V, f ◦ σW = W .
If σ1, . . . , σk is an orthonormal frame for 〈·, ·〉 on an open subset Ω of M , an orthonormal frame

for G on Ω is given by f ◦ σ1, . . . , f ◦σk. Orthonormal frames are systems of local generators of ∆.
For every q ∈M and every v ∈ ∆(q) define

Gq(v) = inf{〈u, u〉q | u ∈ Eq, f(u) = v}.

In this paper, a curve γ : [0, T ] → M absolutely continuous with respect to the differential
structure is said to be admissible for S if there exists a measurable essentially bounded function

[0, T ] ∋ t 7→ u(t) ∈ Eγ(t)

called control function, such that γ̇(t) = f(u(t)) for almost every t ∈ [0, T ]. Given an admissible
curve γ : [0, T ] →M , the length of γ is

ℓ(γ) =

� T

0

√

Gγ(t)(γ̇(t)) dt.
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The Carnot-Caratheodory distance (or sub-Riemannian distance) on M associated with S is
defined as

d(q0, q1) = inf{ℓ(γ) | γ(0) = q0, γ(T ) = q1, γ admissible}.

The finiteness and the continuity of d(·, ·) with respect to the topology of M are guaranteed by the
Lie bracket generating assumption on the rank-varying sub-Riemannian structure (see [3]). The
Carnot-Caratheodory distance associated with S endows M with the structure of metric space
compatible with the topology of M as differential manifold.

We give now a characterization of admissible curves.

Proposition 5 Let (E, f, 〈·, ·〉) be a rank-varying sub-Riemannian structure on a manfold M . Let
γ : [0, T ] →M be an absolutely continuous curve. Then γ is admissible if and only if it is Lipschitz
continuous with respect to the sub-Riemannian distance.

Proof. First we prove that if the curve is admissible then it is Lipschitz with respect to d (d-
Lipschitz for short). This is a direct consequence of the definition of the sub-Riemannian distance.
Indeed, let

[0, T ] ∋ t 7→ u(t) ∈ Eγ(t)

be a control function for γ and let L > 0 be the essential supremum of
√

〈u, u〉. Then, for every
subinterval [t0, t1] ⊂ [0, T ] one has

d(γ(t0), γ(t1)) ≤
� t1

t0

√

Gγ(t)(γ̇(t))dt ≤
� t1

t0

√

〈u(t), u(t)〉dt ≤ L(t1 − t0).

Hence γ is d-Lipschitz.
Viceversa, assume that γ is d-Lipschitz with Lipschitz constant L. Since γ is absolutely contin-

uous, it is differentiable almost everywhere on [0, T ]. Thanks to the Ball-Box Theorem (see [4]), for
every t ∈ [0, T ] such that the tangent vector γ̇(t) exists, γ̇(t) belongs to the distribution ∆(γ(t)) (if
not, the curve would fail to be d-Lipschitz). Hence for almost every t ∈ [0, T ] there exists ut ∈ Eγ(t)
such that γ̇(t) = f(ut). Moreover, since the curve is d-Lipschitz, one has that Gγ(t)(γ̇(t)) ≤ L2

for almost every t ∈ [0, T ]. This can be seen computing lengths in privileged coordinates (see [4]
for the definition of this system of coordinates). Hence, we can assume that 〈ut, ut〉 ≤ L2 almost
everywhere. Finally, we apply Filippov Theorem (see [12, Theorem 3.1.1 p.36]) to the differential
inclusion

γ̇(t) ∈ {f(u) | πE(u) = γ(t) and 〈u, u〉 ≤ L2}.
that assures the existence of a measurable choice of the control function corresponding to γ. Thus
γ is admissible. �

Given a 2-ARS S, we define its singular locus as the set

Z = {q ∈M | ∆(q) ( TqM}.

Since ∆ is bracket generating, the subspace ∆(q) is nontrivial for every q and Z coincides with the
set of points q where ∆(q) is one-dimensional.

We say that S satisfies condition (H0) if the following properties hold: (i) Z is an embedded
one-dimensional submanifold of M ; (ii) the points q ∈ M at which ∆2(q) is one-dimensional are
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isolated; (iii) ∆3(q) = TqM for every q ∈ M , where ∆1 = ∆ and ∆k+1 = ∆k + [∆,∆k]. It is
not difficult to prove that property (H0) is generic among 2-ARSs (see [2]). This hypothesis was
essential to show Gauss–Bonnet type results for ARSs in [1, 2, 11]. The following theorem recalls
the local normal forms for ARSs satisfying hypothesis (H0).

Theorem 6 ([2]) Given a 2-ARS S satisfiyng (H0), for every point q ∈ M there exist a neigh-
borhood U of q, an orthonormal frame (X,Y ) for G on U and smooth coordinates defined on U
such that q = (0, 0) and (X,Y ) has one of the forms

(F1) X(x, y) = (1, 0), Y (x, y) = (0, eφ(x,y)),

(F2) X(x, y) = (1, 0), Y (x, y) = (0, xeφ(x,y)),

(F3) X(x, y) = (1, 0), Y (x, y) = (0, (y − x2ψ(x))eξ(x,y)),

where φ, ξ and ψ are smooth real-valued functions such that φ(0, y) = 0 and ψ(0) > 0.

Let S be a 2-ARS satisfying (H0). A point q ∈M is said to be an ordinary point if ∆(q) = TqM ,
hence, if S is locally described by (F1). We call q a Grushin point if ∆(q) is one-dimensional and
∆2(q) = TqM , i.e., if the local description (F2) applies. Finally, if ∆(q) = ∆2(q) has dimension
one and ∆3(q) = TqM then we say that q is a tangency point and S can be described near q by the
normal form (F3). We define

T = {q ∈ Z | q tangency point of S}.

Assume S and M to be oriented. Thanks to the hypothesis (H0), M \ Z splits into two open
sets M+ and M− such that f : E|M+ → TM+ is an orientation-preserving isomorphism and
f : E|M− → TM− is an orientation-reversing isomorphism.

3 Number of revolutions and graph of a 2-ARS

From now on M is a compact oriented surface and S = (E, f, 〈·, ·〉) is an oriented ARS on M
satisfying (H0).

Fix on Z the orientation induced by M+ and consider a connected component W of Z. Let
V ∈ Γ(TW ) be a never-vanishing vector field whose duality product with the fixed orientation on
W is positive. Since M is oriented, TM |W is isomorphic to the trivial bundle of rank 2 over W .
We choose an isomorphism t : TM |W →W ×R2 such that t is orientation-preserving and for every
q ∈ W , t ◦ V (q) = (q, (1, 0)). This trivialization induces an orientation-preserving isomorphism
between the projectivization of TM |W and W × S1. For the sake of readability, in what follows
we omit the isomorphism t and identify TM |W (respectively, its projectivization) with W × R2

(respectively, W × S1).
Since ∆|W is a subbundle of rank one of TM |W , ∆|W can be seen as a section of the pro-

jectivization of TM |W , i.e., a smooth map (still denoted by ∆) ∆ : W → W × S1 such that
π1 ◦ ∆ = IdW , where π1 : W × S1 → W denotes the projection on the first component. We define
τ(∆,W ), the number of revolutions of ∆ along W , to be the degree of the map π2 ◦ ∆ : W → S1,
where π2 : W × S1 → S1 is the projection on the second component. Notice that τ(∆,W ) changes
sign if we reverse the orientation of W .
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Let us show how to compute τ(∆,W ). By construction, π2 ◦ V : W → S1 is constant. Let
π2 ◦ V (q) ≡ θ0. Since ∆3(q) = TqM for every q ∈M , θ0 is a regular value of π2 ◦∆. By definition,

τ(∆,W ) =
∑

q|π2◦∆(q)=θ0

sign(dq(π2 ◦ ∆)) =
∑

q∈W∩T

sign(dq(π2 ◦ ∆)), (3)

where dq denotes the differential at q of a smooth map and sign(dq(π2 ◦ ∆)) = 1, resp. −1, if
dq(π2 ◦ ∆) preserves, resp. reverses, the orientation. The equality in (3) follows from the fact that
a point q satisfies π2 ◦ ∆(q) = θ0 if and only if ∆(q) is tangent to W at q, i.e., q ∈ T .

Define the contribution at a tangency point q as τq = sign(dq(π2 ◦∆)) (see Figure 2). Moreover,
we define

τ(S) =
∑

W∈C(Z)

τ(∆,W ),

where C(Z) = {W |W connected component of Z}. Clearly, τ(S) =
∑

q∈T τq.

W
M+

M−
M−

W
M+

τq = −1 τq = 1

q
q

∆ ∆

Figure 2: Tangency points with opposite contributions

Let us associated with the 2-ARS S the graph G = (V(G), E(G)) where

• each vertex in V(G) represents a connected component of M \ Z;

• each edge in E(G) represents a connected component of Z;

• the edge corresponding to a connected component W connects the two vertices corresponding
to the connected components M1 and M2 of M \ Z such that W ⊂ ∂M1 ∩ ∂M2.

Thanks to the hypothesis (H0), every connected component of Z joints a connected component
of M+ and one of M−. Thus the graph G turns out to be bipartite, i.e., there exists a partition of
the set of vertices into two subsets V + and V − such that each edge of G joins a vertex of V + to a
vertex of V −. Conversely, it is not difficult to see that every finite bipartite graph can be obtained
from an oriented 2-ARS (satisfying (H0)) on a compact oriented surface.

Using the bipartite nature of G we introduce an orientation on G given by two functions α, ω :
E(G) → V(G) defined as follows. If e corresponds to W then α(e) = v and ω(e) = w, where v
and w correspond respectively to the connected components Mv ⊂ M− and Mw ⊂ M+ such that
W ⊆ ∂Mv ∩ ∂Mw.

We label each vertex v corresponding to a connected component M̂ of M \ Z with a pair
(sign(v), χ(v)) where sign(v) = ±1 if M̂ ⊂ M± and χ(v) is the Euler characteristic of M̂ . We

8



define for every e ∈ E(G) the number τ(e) =
∑

q∈W∩T τq, where W is the connected component of
Z corresponding to e.

Finally, we define a label for each edge e corresponding to a connected component W of Z
containing tangency points. Let s ≥ 1 be the cardinality of the set W ∩ T . The label of e is
an equivalence class of s-uples with entries in {±1} defined as follows. Fix on W the orientation
induced by M+ and choose a point q ∈ W ∩ T . Let q1 = q and for every i = 1, . . . , s − 1 let qi+1

be the first element in W ∩ T that we meet after qi walking along W in the fixed orientation. We
associate with e the equivalence class of (τq1, τq2, . . . , τqs) in the set of s-uples with entries in {±1}
modulo cyclic permutations. In figure 3 an ARS on a surface of genus 4 and its labelled graph
(figure 3(a)) are portrayed. According to our definition of labels on edges, figures 3(a) and 3(b)
represent equal graphs associated with the same ARS. On the other hand, the graph in figure 3(c)
is not the graph associated to the ARS of figure 3. In figure 4 two steps in the construction of the
labelled graph associated with the ARS in figure 1 are shown.

Remark 7 Once an orientation on E is fixed the labelled graph associated with S is unique.
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Figure 3: Example of ARS on a surface of genus 4. Figures (a) and (b) illustrate equal labelled
graphs associated with the ARS. Figure (c) gives an example of labelled graph different from the
graph in figure (a)

We define an equivalence relation on the set of graphs associated with oriented ARS on M
satisfying hypothesis (H0).
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Definition 8 Let Si = (Ei, fi, 〈·, ·〉i), i = 1, 2, be two oriented almost-Riemannian structures on
a compact oriented surface M satisfying hypothesis (H0). Let Gi be the labelled graph associated
with Si and denote by αi, ωi : E(Gi) → V(Gi) the functions defined as above. We say that S1 and
S2 have equivalent graphs if , after possibly changing the orientation on E2, they have the same
labelled graph.

In other words, after possibly changing the orientation on E2 and still denoting by G2 the
associated graph, there exist bijections u : V(G1) → V(G2), k : E(G1) → E(G2) such that the diagram

V(G1) u
// V(G2)

E(G1)

α1

OO

k // E(G2)

α2

OO
(4)

commutes and u and k preserve labels.

Figure 5 illustrates the graph associated with the ARS obtained by reversing the orientation of the
ARS in figure 1.
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Figure 5: Equivalent graph to the one in figure 1
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4 Lipschitz equivalence

This section is devoted to the proof of Theorem 1 which is a generalization to ARSs of the well-
known fact that all Riemannian structures on a compact oriented surface are Lipschitz equivalent.

Let M1,M2 be two manifolds. For i = 1, 2, let Si = (Ei, fi, 〈·, ·〉i) be a sub-Riemannian structure
on Mi. Denote by di the Carnot–Caratheodory distance on Mi associated with Si.

Definition 9 We say that a diffeomorphism ϕ : M1 → M2 is a Lipschitz equivalence if it is
bi-Lipschitz as a map from (M1, d1) to (M2, d2).

Notice that in Theorem 1 we can assume M1 = M2 = M . Indeed, if two ARSs are Lipschitz
equivalent, then by definition there exists a diffeomorphism ϕ : M1 → M2. On the other hand, if
the associated graphs are equivalent, by [1, Theorem 1] it follows that E1 and E2 are isomorphic
vector bundles. Hence the underlying surfaces are diffeomorphic.

4.1 Necessity

Denote by M+
i , respectively M−

i , the set where fi is an orientation-preserving, respectively orienta-
tion-reversing, isomorphism of vector bundles, and by ∆i the submodule {fi ◦ σ | σ ∈ Γ(Ei)}. Let
Zi be the singular locus of Si and Ti the set of tangency points of Si. Finally, for every q ∈ Ti,
denote by τ iq the contribution at the tangency point defined in Section 3 with ∆ = ∆i.

In this section we assume ϕ : (M,d1) → (M,d2) to be a Lipschitz equivalence and we show that
S1 and S2 have equivalent graphs. As a consequence of the Ball-Box Theorem (see, for instance,
[4]) one can prove the following result.

Lemma 10 If p is an ordinary, Grushin or tangency point for S1, then ϕ(p) is an ordinary,
Grushin or tangency point for S2, respectively.

Thanks to Lemma 10, for every connected component M̂ of M \ Z1, ϕ(M̂ ) is a connected
component of M \ Z2 and for every connected component W of Z1 ∩ ∂M̂ , ϕ(W ) is a connected
component of Z2 ∩ ∂ϕ(M̂ ). Moreover, since ϕ|

M̂
is a diffeomorphism, it follows that χ(M̂) =

χ(ϕ(M̂ )). After possibly changing the orientation on E2, we may assume ϕ(M±
1 ) = M±

2 . We will
prove that, in this case, the labelled graphs are equal. Indeed, if v ∈ V(G1) corresponds to M̂ ,
define u(v) ∈ V(G2) as the vertex corresponding to ϕ(M̂ ). If e ∈ E(G1) corresponds to W define
k(e) ∈ E(G2) as the edge corresponding to ϕ(W ). Then χ(u(v)) = χ(v), sign(u(v)) = sign(v), and,
by construction, the diagram (4) commutes.

Let us compute the contribution at a tangency point q of an ARS (E, f, 〈·, ·〉) using the corre-
sponding normal form given in Theorem 6.

Lemma 11 Let γ : [0, T ] → M be a smooth curve such that γ(0) = q ∈ T and γ̇(0) ∈ ∆(q) \
{0}. Assume moreover that γ is d-Lipschitz, where d is the almost-Riemannian distance, and that
γ((0, T )) is contained in one of the two connected components of M \ Z. Let (x, y) be a coordinate
system centered at q such that the form (F3) of Theorem 6 applies. Then γ((0, T )) ⊂ {(x, y) |
y − x2ψ(x) < 0}. Moreover, if {(x, y) | y − x2ψ(x) < 0} ⊆M+, resp. M−, then τq = 1, resp. −1.

Proof. Since γ(0) = (0, 0) and γ̇(0) ∈ span{(1, 0)}\{0}, there exist two smooth functions x(t), y(t)
such that γ(t) = (tx(t), t2y(t)) and x(0) 6= 0. Assume by contradiction that γ((0, T )) ⊂ {(x, y) |
y − x2ψ(x) > 0}, i.e., for t ∈ (0, T ), y(t) > ψ(tx(t))x(t)2. Since ψ(0) > 0, for t sufficiently small
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ψ(tx(t)) > 0 and y(t)1/3 > ψ(tx(t))1/3|x(t)|2/3. By the Ball-Box Theorem (see [4]) there exist c1, c2
positive constants such that, for t sufficiently small we have

c1(|tx(t)| + |t2y(t)|1/3) ≤ d(γ(t), (0, 0)) ≤ c2(|tx(t)| + |t2y(t)|1/3).

On the other hand, for t sufficiently small,

|tx(t)| + |t2y(t)|1/3 > t2/3|x(t)|2/3ψ(tx(t))1/3.

Hence, for t sufficiently small, d(γ(t), (0, 0)) > c3t
2/3, with c3 > 0. This implies that γ is not

Lipschitz with respect to the almost-Riemannian distance. Finally, a direct computation shows the
assertion concerning τq, see Figure 2. �

Next lemma, jointly with Lemma 10, guarantees that the two bijections u and k preserve labels.

Lemma 12 Let q ∈ T1. Then τ1
q = τ2

ϕ(q).

Proof. Apply Theorem 6 to S1 and find a neighborhood U of q and a coordinate system (x, y) on U
such that q = (0, 0) and Z1∩U = {(x, y) | y = x2ψ(x)}. Let σ, ρ ∈ Γ(E|U ) be the local orthonormal
frame such that f1 ◦σ = X and f1 ◦ρ = Y . Assume that U+

1 = M+
1 ∩U = {(x, y) | y−x2ψ(x) > 0}.

Fix T > 0 and consider the smooth curve γ : [0, T ] → U defined by γ(t) = (t, 0). Then γ
is admissible for S1 with control function u(t) = σ(t, 0). By definition, for T sufficiently small
γ((0, T )) lies in a single connected component of U \ Z1. Moreover, by Proposition 5, γ is a d1-
Lipschitz map with Lipschitz constant less or equal to 1. Hence, according to Lemma 11, τ1

q = −1.
Consider the curve γ̃ = ϕ ◦ γ : [0, T ] → ϕ(U). Since ϕ is Lipschitz, γ̃ is d2-Lipschitz as a

map from the interval [0, T ] to the metric space (ϕ(U), d2). Moreover, γ̃ is smooth and ˙̃γ(0) ∈
∆2(ϕ(q)) \ {0}, ϕ being a diffeomorphism mapping Z1 to Z2. Finally, since ϕ(M−

1 ) = M−
2 , then

γ̃((0, T )) ⊂ U−
2 = ϕ(U) ∩M−

2 . Thus, by Lemma 11, τ2
ϕ(q) = −1. Analogously, one can prove the

statement in the case U+
1 = {(x, y) | y − x2ψ(x) < 0} (for which τ1

q = τ2
q = 1). �

Lemma 12 implies that S1 and S2 have equal labelled graphs. This concludes the proof that
having equivalent graphs is a necessary condition for two ARSs being Lipschitz equivalent.

4.2 Sufficiency

In this section we prove that if S1 and S2 have equivalent graphs then there exists a Lipschitz
equivalence between (M,d1) and (M,d2). After possibly changing the orientation on E2, we assume
the associated labelled graphs to be equal, i.e., there exist two bijections u, k as in Definition 8
such that diagram (4) commutes.

The proof is in five steps. The first step consists in proving that we may assume E1 = E2. The
second step shows that we can restrict to the case Z1 = Z2 and T1 = T2. In the third step we prove
that we can assume that ∆1(q) = ∆2(q) at each point q ∈M . As fourth step, we demonstrate that
the submodules ∆1 and ∆2 coincide. In the fifth and final step we remark that we can assume
f1 = f2 and conclude. The Lipschitz equivalence between the two structures will be the composition
of the diffeomorphisms singled out in steps 1, 2, 3, 5.

By construction, the push-forward of S1 along a diffeomorphism ψ of M , denoted by ψ∗S1,
is Lipschitz equivalent to S1 and has the same labelled graph of S1. Notice, moreover, that the
singular locus of ψ∗S1 coincides with ψ(Z1) and the set of tangency points coincides with ψ(T1).
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Step 1. Having the same labelled graph implies

∑

v∈V(G1)

sign(v)χ(v) +
∑

e∈E(G1)

τ(e) =
∑

v∈V(G2)

sign(v)χ(v) +
∑

e∈E(G2)

τ(e).

By [1, Theorem 1], this is equivalent to say that the Euler numbers of E1 and E2 are equal. Since
E1 and E2 are oriented vector bundles of rank 2, with the same Euler number, over a compact
oriented surface, then they are isomorphic. Hence, we assume E1 = E2 = E.

Step 2. Using the bijections u, k and the classification of compact oriented surfaces with
boundary (see, for instance, [16]), one can prove the following lemma.

Lemma 13 There exists a diffeomorphism ϕ̃ : M → M such that ϕ̃(M+
1 ) = M+

2 , ϕ̃(M−
1 ) = M−

2 ,
ϕ̃|Z1 : Z1 → Z2 is a diffeomorphism that maps T1 into T2, and, for every q ∈ T1 τ2

ϕ̃(q) = τ1
q .

Moreover, if v ∈ V(G1) corresponds to M̂ ⊂ M \ Z1, then ϕ̃(M̂) is the connected component of
M \ Z2 corresponding to u(v) ∈ V(G2); if e ∈ E(G1) corresponds to W ⊂ Z1, then ϕ̃(W ) is the
connected component of Z2 corresponding to k(e) ∈ E(G2).

The lemma implies that the singular locus of ϕ̃∗S1 coincides with Z2 and the set of tangency
points coincides with T2. For the sake of readability, in the following we rename ϕ̃∗S1 simply by
S1 and we will denote by Z the singular locus of the two structures, by T the set of their tangency
points, and by M± the set M±

i .
Step 3. Remark that the subspaces ∆1(q) and ∆2(q) coincide at every ordinary and tangency

point q. We are going to show that there exists a diffeomorphism of M that carries ∆1(q) into
∆2(q) at every point q of the manifold.

Lemma 14 Let W be a connected component of Z. There exist a tubular neighborhood W of W
and a diffeomorphism ϕW : W → ϕW (W) such that dqϕW (∆1(q)) = ∆2(ϕW (q)) for every q ∈ W,
ϕW |W = Id|W and ϕ(W ∩M±) ⊂M±.

Proof. The idea of the proof is first to consider a smooth section A of Hom(TM |W ;TM |W )
such that for every q ∈W , Aq : TqM → TqM is an isomorphism and Aq(∆

1(q)) = ∆2(q). Secondly,
we build a diffeomorphism ϕW of a tubular neighborhood of W such that dqϕW = Aq for every
point q ∈W .

Choose on a tubular neighborhood W of W a parameterization (θ, t) such that W = {(θ, t) |
t = 0}, M+ ∩W = {(θ, t) | t > 0} and ∂

∂θ

∣

∣

(θ,0) induces on W the same orientation as M+. We are
going to show the existence of two smooth functions a, b : W → R such that b is positive and for
every (θ, 0) ∈W ,

(

1 a(θ)
0 b(θ)

)

(∆1(θ, 0)) = ∆2(θ, 0). (5)

Then, for every q = (θ, 0) ∈W defining Aq : TqM → TqM by

A(θ,0) =

(

1 a(θ)
0 b(θ)

)

, (6)

we will get an isomorphism smoothly depending on the point q and carrying ∆1(q) into ∆2(q).
Let W ∩ T = {(θ1, 0), . . . , (θs, 0)}, with s ≥ 0. Using the chosen parametrization, there exist

two smooth functions β1, β2 : W \ {(θ1, 0), . . . , (θs, 0)} → R such that ∆i(θ, 0) = span{(βi(θ), 1)}.
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For every j = 1, . . . s, there exists a smooth function gij defined on a neighborhood of (θj , 0) in W

such that gij(θj) 6= 0, τ i(θj ,0)
= sign(gij(θj)) and

βi(θ) =
1

(θ − θj)gij(θ)
, θ ∼ θj.

Since the graphs associated with S1,S2 are equivalent, for every j = 1 . . . s we have τ1
(θj ,0)

= τ2
(θj ,0)

.

Hence
g2j (θj)

g1j (θj)
> 0 for every j. Let b : W → R be a positive smooth function such that for each

j ∈ {1, . . . s}, b(θj) =
g2j (θj)

g1j (θj)
. Define a : W → R by

a(θ) = b(θ)β2(θ) − β1(θ).

Clearly a is smooth on W \ {(θ1, 0), . . . , (θs, 0)}. Moreover, thanks to our choice of b, a is smooth
at θj, and, by construction, we have (5). The existence of a, b is established.

Define Aq as in (6). Let us extend the isomorphism Aq defined for q ∈ W to a tubular neigh-
borhood. Define ϕW : W → W by

ϕW (θ, t) = (a(θ)t+ θ, b(θ)t).

By construction, d(θ,0)ϕW is an isomorphism. Hence, reducing W if necessary, ϕW : W → ϕW (W)
turns out to be a diffeomorphism. Finally, by definition, ϕW (θ, 0) = (θ, 0) and, since b is positive,
ϕ(W ∩M±) ⊂M±. �

We apply Lemma 14 to every connected component W of Z. We reduce, if necessary, the
tubular neighborhood W of W in such a way that every pair of distinct connected component of
Z have disjoint corresponding tubular neighborhoods built as in Lemma 14. We claim that there
exists a diffeomorphism ϕ : M → M such that ϕ|W = ϕW for every connected component W of
Z. This is a direct consequence of the fact that the labels on vertices of G1 and G2 are equal and
of the classification of compact oriented surfaces with boundary (see [16]). By construction, the
push-forward of S1 along ϕ is Lipschitz equivalent to S1 and has the same labelled graph as S1. To
simplify notations, we denote ϕ∗S1 by S1. By Lemma 14, ∆1(q) = ∆2(q) at every point q.

Step 4. The next point is to prove that ∆1 and ∆2 coincide as C∞(M)-submodules.

Lemma 15 The submodules ∆1 and ∆2 associated with S1 and S2 coincide.

Proof. It is sufficient to show that for every p ∈ M there exist a neighborhood U of p such
that ∆1|U and ∆2|U are generated as C∞(M)-submodules by the same pair of vector fields.

If p is an ordinary point, then taking U = M \ Z, we have ∆1|U = ∆2|U = Vec(U).
Let p be a Grushin point and apply Theorem 6 to S1 to find a neighborhood U of p such that

∆1|U = spanC∞(M){F1, F2}, where F1(x, y) = (1, 0), F2(x, y) = (0, xeφ(x,y)).

Up to reducing U we assume the existence of a frame

G1(x, y) = (a1(x, y), a2(x, y)), G2(x, y) = (b1(x, y), b2(x, y))

such that ∆2|U = spanC∞(M){G1, G2}. Since ∆1(q) = ∆2(q) at every point q ∈ M , a2(0, y) ≡
0 and b2(0, y) ≡ 0. Since ∆2(0, y) is one-dimensional, let us assume a1(0, y) 6= 0 for every y.
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Moreover, after possibly further reducing U , ∆2|U = spanC∞(M){(1/a1)G1, G2 − (b1/a1)G1} hence
we may assume a1(x, y) ≡ 1 and b1(x, y) ≡ 0. The conditions a2(0, y) ≡ 0 and b2(0, y) ≡ 0
imply a2(x, y) = xa2(x, y) and b2(x, y) = xb2(x, y) respectively, with a2, b2 smooth functions. Since
[G1, G2]|(0,y) = (0, b2(0, y)), thanks to hypothesis (H0) on S2, we have b2(0, y) 6= 0. Hence, reducing
U if necessary,

∆2|U = spanC∞(M){G1 − (a2(x, y)/b2(x, y))G2, (e
φ(x,y)/b2(x, y))G2}

= spanC∞(M){F1, F2} = ∆1|U .

Finally, let p be a tangency point. Apply Theorem 6 to S1, i.e., choose a neighborhood U of p
and a system of coordinates (x, y) such that p = (0, 0),

∆1|U = spanC∞(M){F1, F2}, where F1(x, y) = (1, 0), F2(x, y) = (0, (y − x2ψ(x))eξ(x,y)),

and ψ, ξ are smooth functions such that ψ(0) > 0. Consider the change of coordinates

x̃ = x, ỹ = y − x2ψ(x).

Then
F1(x̃, ỹ) = (1, x̃a(x̃)), F2(x̃, ỹ) = (0, ỹeξ(x̃,ỹ+x̃

2ψ(x̃))),

where a(x̃) = −2ψ(x̃) − x̃ψ′(x̃). To simplify notations, in the following we rename x̃, ỹ by x, y
respectively and we still denote by ξ(x, y) the function ξ(x, y + x2ψ(x)). In the new coordinate
system we have p = (0, 0), Z∩U = {(x, y) | y = 0}, F1(x, y) = (1, xa(x)) and F2(x, y) = (0, yeξ(x,y)).
Reducing U , if necessary, let G1(x, y) = (a1(x, y), a2(x, y)), G2(x, y) = (b1(x, y), b2(x, y)) be a frame
for ∆2|U . Since ∆1(q) = ∆2(q) at every point, we have a2(0, 0) = b2(0, 0) = 0. Since ∆2(0, 0)
is one-dimensional, we may assume a1(0, 0) 6= 0. After possibly further reducing U , ∆2|U =
spanC∞(M){(1/a1)G1, G2 − (b1/a1)G1} and we can assume a1(x, y) ≡ 1 and b1(x, y) ≡ 0. Moreover,

by ∆1(x, 0) = ∆2(x, 0) we get a2(x, 0) = xa(x) and b2(x, 0) ≡ 0, whence a2(x, y) = xa(x)+ya2(x, y)
and b2(x, y) = yb2(x, y), with a2, b2 smooth functions. Computing the Lie brackets we get

[G1, G2]|(x,0) = (0, xab2)|(x,0), [G1, [G1, G2]]|(0,0) = (0, ab2))|(0,0).

Applying hypothesis (H0) to S2 we have b2(x, 0) 6= 0 for all x in a neighborhood of 0. Hence, up
to reducing U ,

∆2|U = spanC∞(M){G1 − (a2(x, y)/b2(x, y))G2, (e
ξ(x,y)/b2(x, y))G2}

= spanC∞(M){F1, F2} = ∆1|U .

�

Step 5. Thanks to Lemma 15 and Proposition 3 we can assume f1 = f2 = f . In other words,
we reduce to the case S1 = (E, f, 〈·, ·〉1) and S2 = (E, f, 〈·, ·〉2). By compactness of M , there exists
a constant k ≥ 1 such that

1

k
〈u, u〉2 ≤ 〈u, u〉1 ≤ k〈u, u〉2, ∀u ∈ E. (7)

For every q ∈M and v ∈ ∆(q) let Gi
q(v) = inf{〈u, u〉i | u ∈ Eq, f(u) = v} (see section 2). Clearly,

1

k
G2
q(v) ≤ G1

q(v) ≤ kG2
q(v), ∀ v ∈ f(Eq). (8)
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By (7), admissible curves for S1 and S2 coincide. Moreover, given an admissible curve γ : [0, T ] →
M , we can compare its length with respect to S1 and S2 using (8). Namely,

1√
k

� T

0

√

G2
γ(s)(γ̇(s))ds ≤

� T

0

√

G1
γ(s)(γ̇(s))ds ≤

√
k

� T

0

√

G2
γ(s)(γ̇(s))ds.

Since the Carnot-Caratheodory distance between two points is defined as the infimum of the lengths
of the admissible curves joining them, we get

1√
k
d2(p, q) ≤ d1(p, q) ≤

√
kd2(p, q), ∀ p, q ∈M.

This is equivalent to say that the identity map is a Lipschitz equivalence between S1 and S2. �
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