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Abstract

In this paper we obtain a result about propagation of geometric properties for solutions of non-homogeneous

incompressible Euler system in any dimension N ≥ 2. In particular, we investigate conservation of striated

and conormal regularity, which is a natural way of generalising the 2-D structure of vortex patches. The

results we get are only local in time, even in the dimension N = 2: in contrast with the homogeneous

case, the global existence issue is still an open problem, because the vorticity is not preserved during the

time evolution. Moreover we will be able to give an explicit lower bound for the lifespan of the solution, in

terms of the norms of initial data only. In the case of physical dimension N = 2 or 3, we will investigate

also propagation of Hölder regularity in the interior of a bounded domain.

1 Introduction

In this paper we are interested in studying conservation of geometric properties for solutions of
the density-dependent incompressible Euler system

eq:ddeulereq:ddeuler (1)


∂tρ + u · ∇ρ = 0

ρ (∂tu + u · ∇u) + ∇Π = 0

div u = 0 ,

which describes the evolution of a non-homogeneous inviscid �uid with no body force acting on
it, an assumption we will make throughout all this paper to simplify the presentation. Here,
ρ(t, x) ∈ R+ represents the density of the �uid, u(t, x) ∈ RN its velocity �eld and Π(t, x) ∈ R
its pressure. The term ∇Π can be also seen as the Lagrangian multiplier associated to the
divergence-free constraint over the velocity.

We will always suppose that the variable x belongs to the whole space RN .

The problem of preserving geometric structures came out already in the homogeneous case,
for which ρ ≡ 1 and system (1) becomes

(E)

{
∂tu + u · ∇u + ∇Π = 0

div u = 0 ,
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in studying 2-dimensional vortex patches, that is to say the initial vorticity Ω0 is the characteristic
function of a bounded domainD0. As we will explain below, in the case of higher dimension N ≥ 3
this notion was generalized by the properties of striated and conormal regularity.

The vorticity of the �uid is de�ned as the skew-symmetric matrix

def:vortdef:vort (2) Ω := ∇u − t∇u

and in the homogenous case it satis�es the equation

∂tΩ + u · ∇Ω + Ω · ∇u + t∇u · Ω = 0 .

In dimension N = 2 it can be identi�ed with the scalar function ω = ∂1u
2 − ∂2u

1, while for
N = 3 with the vector-�eld ω = ∇ × u. Let us recall also that in the bidimensional case this
quantity is transported by the velocity �eld:

∂tω + u · ∇ω = 0 .

The notion of vortex patches was introduced in [24] and gained new interest after the survey
paper [22] of Majda. In the case N = 2 Yudovich's theorem ensures the existence of a unique
global solution of the homogeneous Euler system, which preserves the geometric structure: the
vorticity remains the characteristic function of the evolution (by the �ow associated to this solu-
tion) of the domain D0. Vortex patches in bounded domains of R2 were also studied by Depauw
(see [15]), while Dutrifoy in [16] focused on the case of domains in R3. Moreover, in [6] Chemin
proved that, if the initial domain has boundary ∂D0 of class C1+ε for some ε > 0, then this
regularity is preserved during the evolution for small times; in [7] he also showed a global-in-time
persistence issue. In [11] Danchin considered instead the case in which initial data of the Euler
system are vortex patches with singular boundary: he proved that if ∂D0 is regular apart from a
closed subset, then it remains regular for all times, apart from the closed subset transported by
the �ow associated to the solution.

In the case N ≥ 3 one can't expect to have global results anymore, nor to preserve the initial
vortex patch structure, because of the presence of the stretching term in the vorticity equation.
Nevertheless, it's possible to introduce the de�nition of striated regularity, which generalizes in a
quite natural way the previous one of vortex patch: it means that the vorticity is more regular
along some �xed directions, given by a nondegenerate family of vector-�elds (see de�nition 2.1
below). This notion was introduced �rst by Bony in [3] in studying hyperbolic equations, and
then adapted by Alinhac (see [1]) and Chemin (see [5]) for nonlinear partial di�erential equations.

In [17], Gamblin and Saint-Raymond proved that striated regularity is preserved during the
evolution in any dimension N ≥ 3, but, as already remarked, only locally in time (see also [23]).
They also obtained global results if initial data have other nice properties (e.g., if the initial
velocity is axisymmetric).

As Euler system is, in a certain sense, a limit case of the Navier-Stokes system as the viscosity of
the �uid goes to 0, it's interesting to study if there is also �convergence� of the geometric properties
of the solutions. Recently Danchin proved results on striated regularity for the solutions of the
Navier-Stokes system

(NSν)

{
∂tu + u · ∇u − ν∆u + ∇Π = 0

div u = 0 ,

in [10] for the 2-dimensional case, in [12] for the general one. Already in the former paper, he
had to dismiss the vortex patch structure �stricto sensu� due to the presence of the viscous term,
which comes out also in the vorticity equation and has a smoothing e�ect; however, he still got
global in time results. Moreover, in both his works he had to handle with spaces of type B1+ε

p,∞
(with p ∈ ]2,+∞[ and ε ∈ ]2/p, 1[ ) due to technical reasons which come out with a viscous �uid.
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Let us immediately clarify that these problems have been recently solved by Hmidi in [20] (see
also [2]), and this fact allows us to consider again the Hölder spaces framework. In the above
mentioned works Danchin proved also a priori estimates for solutions of (NSν) independent of the
viscosity ν, therefore preservation of the geometric structures in passing from solutions of (NSν)
to solutions of (E) in the limit ν → 0.

In this paper we will come back to the inviscid case and we will study the non-homogeneous
incompressible Euler system (1). We want to investigate if preservation of geometric properties of
initial data, such as striated and conormal regularity, still holds in this setting, as in the classical
(homogeneous) one. Let us note that in the 2-dimensional case the equation for the vorticity
reads

∂tω + u · ∇ω + ∇
(

1

ρ

)
∧∇Π = 0 ,

so it's not better than in higher dimension due to the presence of the density term, which doesn't
allow us to get conservation of Lebesgue norms. This is also the reason why it's not clear if
Yudovich's theorem still holds true for non-homogeneous �uids: having ω0 ∈ Lq ∩ L∞, combined
with suitable hypothesis on ρ0, doesn't give rise to a local solution.
So, we will immediately focus on the general case N ≥ 2. We will assume the initial velocity u0

and the initial vorticity Ω0 to be in some Lebesgue spaces, in order to assure the pressure term
to belong to L2, a requirement we could not bypass. As a matter of fact, ∇Π satis�es an elliptic
equation with low regularity coe�cient,

−div (a∇Π) = divF ,

and it can be solved independently of a only in the energy space L2. Moreover, we will suppose Ω0

to have regularity properties of geometric type. Obviously, we will require some natural but quite
general hypothesis also on the initial density ρ0 of the �uid: we suppose ρ0 to be bounded with
its gradient and that it satis�es geometric assumptions analogous to those for Ω0. Let us point
out that proving the velocity �eld to be Lipschitz, which was the key part in the homogeneous
case, works as in this setting: it relies on Biot-Savart law and it requires no further hypothesis
on the density term. Let us also remark that no smallness condition over the density are needed.
Of course, we will get only local in time results. Moreover, we will see that geometric structures
propagate also to the velocity �eld and to the pressure term.

Our paper is organized in the following way.
In the �rst part, we will recall basic facts about Euler system: some properties of the vorticity

and how to associate a �ow to the velocity �eld. In this section we will also give the de�nition of
the geometric properties we are studying and we will state the main results we got about striated
and conormal regularity.

Then, we will explain the mathematical tools, from Fourier Analysis, we need to prove our
claims: so, we will introduce the Littlewood-Paley decomposition and some techniques coming
from paradi�erential calculus. In particular, we will introduce the notion of paravector-�eld, as
de�ned in [12]: it will play a fundamental role in our analysis, because it is, in a certain sense,
the principal part of the derivation operator along a �xed vector-�eld. Moreover, we will also
quote some results about transport equations in Hölder spaces and about elliptic equations in
divergence form with low regularity coe�cients.

This having been done, we will �nally be able to tackle the proof of our result about striated
regularity. First of all, we will state a priori estimates for suitable smooth solutions of the Euler
system (1). Then from them we will get, in a quite classical way, the existence of a solution
with the required properties: we will construct a sequence of regular solutions of system (1) with
approximated data, and, using a compactness argument, we will show the convergence of this
sequence to a �real� solution. Proving preservation of the geometric structure requires instead
strong convergence in rough spaces of type C−α (for some α > 0). Uniqueness of the solution
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will follow from a stability result for our equations. In the following section, we will also give an
estimate from below for the lifespan of the solution.

Finally, we will spend a few words about conormal regularity: proving its propagation from
the previous result is standard and can be done as in the homogenous setting. As a consequence,
inspired by what done in Huang's paper [21], in the physical case of space dimension N = 2 or 3
we can improve our result: we will also show that, if the initial data are Hölder continuous in the
interior of a suitably smooth bounded domain, the solution conserves this property during the
time evolution, i.e. it is still Hölder continuous in the interior of the domain transported by the
�ow.

2 Basic de�nitions and main results

Let (ρ, u,∇Π) be a solution of the density-dependent incompressible Euler system (1) over [0, T ]×
RN and let us denote the vorticity of the �uid by Ω. As in the homogeneous case, it will play a
fundamental role throughout all this paper, so let us spend a few words about it.

From the de�nition (2), it is obvious that, for all q ∈ [1,∞], if ∇u ∈ Lq, then also Ω ∈ Lq.
Conversely, if u is divergence-free then for all 1 ≤ i ≤ N we have ∆ui =

∑N
j=1 ∂jΩij , and so,

formally,

eq:BS-laweq:BS-law (3) ui = − (−∆)−1
N∑
j=1

∂jΩij .

This is the Biot-Savart law, and it says that a divergence free vector-�eld u is completely deter-
mined by its vorticity. From (3) we immediately get

eq:BS_gradeq:BS_grad (4) ∇ui = −∇ (−∆)−1
N∑
j=1

∂jΩij .

Now, as the symbol of the operator −∂i (−∆)−1 ∂j is σ(ξ) = ξiξj/|ξ|2, the classical Calderon-
Zygmund theorem ensures that1 for all q ∈ ]1,∞[ , if Ω ∈ Lq then ∇u ∈ Lq and

est:CZest:CZ (5) ‖∇u‖Lq ≤ C
q2

q − 1
‖Ω‖Lq .

In dimension N = 2 the vorticity equation is simpler than in the general case due to the
absence of the stretching term. Nevertheless, as remarked above, the exterior product involving
density and pressure terms makes it impossible to get conservation of Lebesgue norms, which
was the fundamental issue to get global existence. So, we immediately focus on the case N ≥ 2
whatever, in which the vorticity equation reads

eq:vorteq:vort (6) ∂tΩ + u · ∇Ω + Ω · ∇u + t∇u · Ω + ∇
(

1

ρ

)
∧∇Π = 0 ,

where, for two vector-�elds v and w, we have set v ∧ w to be the skew-symmetric matrix with
components

(v ∧ w)ij = vjwi − viwj .

Finally, recall that we can associate a �ow ψ to the velocity �eld u of the �uid: it is de�ned
by the relation

ψ(t, x) ≡ ψt(x) := x +

∫ t

0
u(τ, ψτ (x)) dτ

1This time the extreme values of q are not included.
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for all (t, x) ∈ [0, T ]× RN and it is, for all �xed t ∈ [0, T ], a di�eomorphism over RN .

Let us now introduce the geometric properties we are handling throughout this paper. The
�rst notion we are interested in is the striated regularity, that is to say initial data are more regular
along some given directions.

So, let us take a family X = (Xλ)1≤λ≤m of m vector-�elds with components and divergence
of class Cε for some �xed ε ∈ ]0, 1[. We also suppose this family to be non-degenerate, i.e.

I(X) := inf
x∈RN

sup
Λ∈ΛmN−1

∣∣∣∣N−1
∧ XΛ(x)

∣∣∣∣ 1
N−1

> 0 .

Here Λ ∈ ΛmN−1 means that Λ = (λ1, . . . , λN−1), with each λi ∈ {1, . . . ,m} and λi < λj for i < j,

while the symbol
N−1
∧ XΛ stands for the element of RN such that

∀ Y ∈ RN ,
(
N−1
∧ XΛ

)
· Y = det

(
Xλ1 . . . XλN−1

, Y
)
.

For each vector-�eld of this family we put

‖̃Xλ‖Cε := ‖Xλ‖Cε + ‖divXλ‖Cε ,

while we will use the symbol ||| · ||| in considering the supremum over all indices λ ∈ Λm1 =
{1 . . .m}.

d:stri De�nition 2.1. Take a vector-�eld Y with components and divergence in Cε and �x a η ∈
[ε, 1 + ε]. A function f ∈ L∞ is said to be of class Cη along Y , and we write f ∈ CηY , if
div (f Y ) ∈ Cη−1

(
RN
)
.

If X = (Xλ)1≤λ≤m is a non-degenerate family of vector-�elds as above, we de�ne

CηX :=
⋂

1≤λ≤m
CηXλ and ‖f‖CηX :=

1

I(X)

(
‖f‖L∞ |̃||X|||Cε + |||div (f X) |||Cη−1

)
.

r:div Remark 2.2. Our aim is to investigate Hölder regularity of the derivation of f along the �xed
vector-�eld (say) Y , i.e. the quantity

∂Y f :=
N∑
i=1

Y i ∂if .

If f is only bounded, however, this expression has no meaning: this is why we decided to focus on
div (f Y ), as done in the literature about this topic (see also [12]). Lemma 4.5 below will clarify
the relation between these two quantities.

Now, let us take a vector-�eld X0 and de�ne its time evolution X(t):

def:Xdef:X (7) X(t, x) ≡ Xt(x) := ∂X0(x)ψt
(
ψ−1
t (x)

)
,

that is X(t) is the vector-�eld X0 transported by the �ow associated to u. From this de�nition,
it immediately follows that [X(t) , ∂t + u · ∇] = 0, i.e. X(t) satis�es the following system:

eq:Xeq:X (8)

{
(∂t + u · ∇)X = ∂Xu

X|t=0 = X0 .

We are now ready for stating our �rst result, on striated regularity.
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t:stri-N Theorem 2.3. Fix ε ∈ ]0, 1[ and take a non-degenerate family of vector-�elds X0 = (X0,λ)1≤λ≤m
over RN , whose components and divergence are in Cε.
Let the initial velocity �eld u0 ∈ Lp, with p ∈ ]2,+∞], and its vorticity Ω0 ∈ L∞ ∩ Lq, with
q ∈ [2,+∞[ such that 1/p + 1/q ≥ 1/2. Let us suppose Ω0 ∈ CεX0

.
Finally, let the initial density ρ0 ∈W 1,∞ be such that 0 < ρ∗ ≤ ρ0 ≤ ρ∗ and ∇ρ0 ∈ CεX0

.
Then there exist a time T > 0 and a unique solution (ρ, u,∇Π) of system (1), such that:

• ρ ∈ L∞([0, T ];W 1,∞) ∩ Cb([0, T ]× RN ), such that 0 < ρ∗ ≤ ρ ≤ ρ∗ at every time;

• u ∈ C([0, T ];Lp)∩L∞([0, T ]; C0,1), with ∂tu ∈ C([0, T ];L2) and vorticity Ω ∈ C([0, T ];Lq);

• ∇Π ∈ C([0, T ];L2), with ∇2Π ∈ L∞([0, T ];L∞).

Moreover, the family of vector-�elds transported by the �ow still remains, at every time, non-
degenerate and with components and divergence in Cε, and striated regularity is preserved: at
every time t ∈ [0, T ], one has that

• ∇ρ(t) and Ω(t) ∈ CεX(t) ,

• u(t) and ∇Π(t) ∈ C1+ε
X(t)

uniformly on [0, T ].

Another interesting notion, strictly related to the previous one, is that of conormal regularity.
First of all, we have to recall a de�nition (see also [12]).

De�nition 2.4. Let Σ ⊂ RN be a compact hypersurface of class C1+ε. Let us denote by T εΣ
the set of all vector-�elds X with components and divergence in Cε, which are tangent to Σ, i.e.
∂XH |Σ ≡ 0 for all local equations H of Σ.

Given a η ∈ [ε, 1 + ε], we say that a function f ∈ L∞ belongs to the space CηΣ if

∀X ∈ T εΣ , div (f X) ∈ Cη−1 .

Similarly to what happens for striated regularity, also conormal structure propagates during
the time evolution.

t:conorm-N Theorem 2.5. Fix ε ∈ ]0, 1[ and take a compact hypersurface Σ0 ⊂ RN of class C1+ε.
Let us suppose the initial velocity �eld u0 ∈ Lp, with p ∈ ]2,+∞], and its vorticity Ω0 ∈ L∞ ∩Lq,
with q ∈ [2,+∞[ such that 1/p + 1/q ≥ 1/2. Moreover, let us suppose Ω0 ∈ CεΣ0

.
Finally, let the initial density ρ0 ∈W 1,∞ be such that 0 < ρ∗ ≤ ρ0 ≤ ρ∗ and ∇ρ0 ∈ CεΣ0

.
Then there exist a time T > 0 and a unique solution (ρ, u,∇Π) of system (1), which veri�es

the same properties of theorem 2.3.
Moreover, if we de�ne

Σ(t) := ψt (Σ0) ,

Σ(t) is, at every time t ∈ [0, T ], a hypersurface of class C1+ε of RN , and conormal regularity is
preserved: at every time t ∈ [0, T ], one has

• ∇ρ(t) and Ω(t) ∈ CεΣ(t) ,

• u(t) and ∇Π(t) ∈ C1+ε
Σ(t)

uniformly on [0, T ].
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3 Tools

In this section we will introduce the main tools used to prove our results; they are mostly based
on Fourier analysis techniques. Unless otherwise speci�ed, one can �nd the proof of all the results
quoted here in [2].

3.1 Littlewood-Paley decomposition and Besov spaces

Let us �rst de�ne the so called �Littlewood-Paley decomposition�, based on a non-homogeneous
dyadic partition of unity with respect to the Fourier variable. So, �x a smooth radial function
χ supported in (say) the ball B(0, 4

3), equal to 1 in a neighborhood of B(0, 3
4) and such that

r 7→ χ(r er) is nonincreasing over R+, and set ϕ (ξ) = χ (ξ/2)− χ (ξ) .

The dyadic blocks (∆j)j∈Z are de�ned by2

∆j := 0 if j ≤ −2, ∆−1 := χ(D) and ∆j := ϕ(2−jD) if j ≥ 0.

We also introduce the following low frequency cut-o�:

Sju := χ(2−jD) =
∑
k≤j−1

∆k for j ≥ 0.

The following classical properties will be used freely throughout the paper:

• for any u ∈ S ′, the equality u =
∑

j ∆ju holds true in S ′;

• for all u and v in S ′, the sequence (Sj−1u ∆jv)j∈N is spectrally supported in dyadic annuli.

One can now de�ne what a Besov space Bs
p,r is.

d:besov De�nition 3.1. Let u be a tempered distribution, s a real number, and 1 ≤ p, r ≤ ∞. We set

‖u‖Bsp,r :=

(∑
j

2rjs‖∆ju‖rLp
) 1
r

if r <∞ and ‖u‖Bsp,∞ := sup
j≥−1

(
2js‖∆ju‖Lp

)
.

We then de�ne the space Bs
p,r as the subset of distributions u ∈ S ′ such that ‖u‖Bsp,r is �nite.

From the above de�nition, it is easy to show that for all s ∈ R, the Besov space Bs
2,2 coincides

with the non-homogeneous Sobolev space Hs, while for all s ∈ R+\N, the space Bs
∞,∞ is actually

the Hölder space Cs.
If s ∈ N, instead, we set Cs∗ := Bs

∞,∞, to distinguish it from the space Cs of the di�erentiable
functions with continuous partial derivatives up to the order s. Moreover, the strict inclusion
Csb ↪→ Cs∗ holds, where Csb denotes the subset of Cs functions bounded with all their derivatives
up to the order s.

If s < 0, we de�ne the �negative Hölder space� Cs as the Besov space Bs
∞,∞.

Finally, let us also point out that for any k ∈ N and p ∈ [1,+∞], we have the following chain
of continuous embeddings:

Bk
p,1 ↪→W k,p ↪→ Bk

p,∞ ,

where W k,p denotes the set of Lp functions with derivatives up to order k in Lp.

Besov spaces have many nice properties which will be recalled throughout the paper whenever
they are needed. For the time being, let us just mention that if the condition

s > 1 +
N

p
or s = 1 +

N

p
and r = 1

holds true, then Bs
p,r is an algebra continuously embedded in the set C0,1 of bounded Lipschitz

functions, and that the gradient operator maps Bs
p,r in B

s−1
p,r .

2Throughout we agree that f(D) stands for the pseudo-di�erential operator u 7→ F−1(f Fu).
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The following result will be also needed.

p:CZ Proposition 3.2. Let F : RN → R be a smooth homogeneous function of degree m away from a
neighborhood of the origin.

Then for all (p, r) ∈ [1,∞]2 and all s ∈ R, the operator F (D) maps Bs
p,r in B

s−m
p,r .

The following fundamental lemma describes, by the so-called Bernstein's inequalities, the way
derivatives act on spectrally localized functions.

l:bern Lemma 3.3. Let 0 < r < R. A constant C exists so that, for any nonnegative integer k, any
couple (p, q) in [1,∞]2 with 1 ≤ p ≤ q and any function u ∈ Lp, we have, for all λ > 0,

Supp û ⊂ B(0, λR) =⇒ ‖∇ku‖Lq ≤ Ck+1λ
k+N

(
1
p
− 1
q

)
‖u‖Lp ;

Supp û ⊂ {ξ ∈ RN / rλ ≤ |ξ| ≤ Rλ} =⇒ C−k−1λk‖u‖Lp ≤ ‖∇ku‖Lp ≤ Ck+1λk‖u‖Lp .

As an immediate consequence of the �rst Bernstein inequality, one gets the following embed-
ding result.

c:embed Corollary 3.4. The space Bs1
p1,r1 is continuously embedded in the space Bs2

p2,r2 for all indices
satisfying 1 ≤ p1 ≤ p2 ≤ +∞ and

s2 < s1 −N
(

1

p1
− 1

p2

)
or s2 = s1 −N

(
1

p1
− 1

p2

)
and 1 ≤ r1 ≤ r2 ≤ +∞ .

As we are interested in the class of Hölder spaces, from now on we will focus on this particular
case.

3.2 Paradi�erential calculus

Let us now introduce Bony's decomposition of the product of two tempered distrubutions u and
v: we will de�ne the paraproduct operator and recall a few nonlinear estimates in Hölder spaces.
Constructing the paraproduct operator relies on the observation that, formally, the product u v,
may be decomposed into

eq:bonyeq:bony (9) u v = Tuv + Tvu + R(u, v) ,

with
Tuv :=

∑
j

Sj−1u∆jv and R(u, v) :=
∑
j

∑
|k−j|≤1

∆ju∆kv .

The above operator T is called �paraproduct�, whereas R is called �remainder�.

The paraproduct and remainder operators have many nice continuity properties. The following
ones will be of constant use in this paper.

p:op Proposition 3.5. For any s ∈ R and t > 0, the paraproduct operator T maps L∞×Cs in Cs and
C−t × Cs in Cs−t, and the following estimates hold:

‖Tuv‖Cs ≤ C ‖u‖L∞ ‖∇v‖Cs−1 and ‖Tuv‖Cs−t ≤ C ‖u‖C−t ‖∇v‖Cs−1 .

For any s1 and s2 in R such that s1 + s2 > 0, the remainder operator R maps Cs1 × Cs2 in
Cs1+s2 continuously.

Combining the above proposition with Bony's decomposition (9), we easily get the following
�tame estimate�:

8



c:op Corollary 3.6. Let u be a bounded function such that ∇u ∈ Cs−1 for some s > 0.
Then for any v ∈ Cs we have u v ∈ Cs and there exists a constant C, depending only on N

and s, such that

‖u v‖Cs ≤ C
(
‖u‖L∞ ‖v‖Cs + ‖v‖L∞ ‖∇u‖Cs−1

)
.

In our computations we will often have to handle compositions between a paraproduct operator
and a Fourier multiplier. The following lemma (see the proof e.g. in [10]) provides us with
estimates for the commutator operator.

l:comm Lemma 3.7. Let m ∈ R, R > 0 and f ∈ C∞(RN ) be a homogeneous smooth function of degree
m out of the ball B(0, R).

Then, there exists a constant C, depending only on R, such that, for all s ∈ R and all σ < 1,
one has:

est:commest:comm (10) ‖[Tu, f(D)] v‖Cs−m+σ ≤
C

1− σ
‖∇u‖Cσ−1 ‖v‖Cs .

Let us now quote another result (see [13] for the proof of the former part, [10] for the proof
of the latter), pertaining to the composition of functions in Besov spaces, which will be of great
importance in the sequel.

p:comp Proposition 3.8. (i) Let I be an open interval of R and F : I → R a smooth function.

Then for all compact subset J ⊂ I and all s > 0, there exists a constant C such that, for all
function u valued in J and with gradient in Cs−1, we have ∇(F ◦ u) ∈ Cs−1 and

‖∇(F ◦ u)‖Cs−1 ≤ C ‖∇u‖Cs−1 .

(ii) Let s > 0 and m ∈ N be such that m > s. Let u ∈ Cs and ψ ∈ Cmb such that the Jacobian of
ψ−1 is bounded.

Then u ◦ ψ ∈ Cs. Moreover, if s ∈ ]0, 1[ the following estimate holds:

‖u ◦ ψ‖Cs ≤ C (1 + ‖∇ψ‖L∞) ‖u‖Cs .

Finally, let us introduce the notion of paravector-�eld.

d:pvec-f De�nition 3.9. Let X be a vector-�eld with coe�cients in S ′. We can formally de�ne the
paravector-�eld operator TX in the following way:

TXu :=
N∑
i=1

TXi∂iu

for all u ∈ S ′.

The following result (see [12] for the proof) says that the paravector-�eld operator is, in a
certain sense, the principal part of the derivation ∂X : the derivative along X is more regular if
and only if the �paraderivation� along X is.

l:T_X Lemma 3.10. For all vector �eld X ∈ Cs and all u ∈ Ct, we have:

• if t < 1 and s+ t > 1, then

‖∂Xu − TXu‖Cs+t−1 ≤
C

(1− t) (s+ t− 1)
‖X‖Cs ‖∇u‖Ct−1 ;

9



• if t < 0, s < 1 and s+ t > 0, then

‖TXu − div (uX)‖Cs+t−1 ≤
C

t (s+ t) (s− 1)
‖X‖Cs ‖u‖Ct ;

• if t < 1 and s+ t > 0, then

‖∂Xu − TXu‖Cs+t−1 ≤
C

(s+ t) (1− t)
‖̃X‖Cs ‖∇u‖Ct−1 .

Moreover, �rst and last inequalities are still true even in the case t = 1, provided that one replaces
‖∇u‖C0∗ with ‖∇u‖L∞ , while the second is still true even if t = 0, with ‖u‖L∞ instead of ‖u‖C0∗ .

We will heavily use also the following statement about composition of paravector-�eld and
paraproduct operators (see again [12] for its proof).

l:pvec-pprod Lemma 3.11. Fix s ∈ ]0, 1[. There exist constants C, depending only on s, such that, for all
t1 < 0 and t2 ∈ R,

‖TX Tu v‖Cs−1+t1+t2 ≤ C (‖X‖Cs ‖u‖Ct1 ‖v‖Ct2 +

+ ‖v‖Ct2 ‖TXu‖Cs−1+t1 + ‖u‖Ct1 ‖TXv‖Cs−1+t2 ) ,

and this is true still in the case t1 = 0 with ‖u‖L∞ instead of ‖u‖C0∗ .
Moreover, if s− 1 + t1 + t2 > 0, then we have also

‖TX R(u, v)‖Cs−1+t1+t2 ≤ C (‖X‖Cs ‖u‖Ct1 ‖v‖Ct2 +

+ ‖v‖Ct2 ‖TXu‖Cs−1+t1 + ‖u‖Ct1 ‖TXv‖Cs−1+t2 ) .

3.3 Transport and elliptic equations

System (1) is basically a coupling of transport equations of the type

(T )

{
∂tf + v · ∇f = g ,

f|t=0 = f0 .

So, we often need to use the following result, which enables us to solve (T ) in the Hölder spaces
framework.

p:transport Proposition 3.12. Let σ > 0 (σ > −1 if div v = 0).
Let f0 ∈ Cσ, g ∈ L1([0, T ]; Cσ) and v be a time dependent vector �eld in Cb([0, T ]×RN ) such that

∇v ∈ L1([0, T ];L∞) if σ < 1 ,

∇v ∈ L1([0, T ]; Cσ−1) if σ > 1 .

Then equation (T ) has a unique solution f in the space
(⋂

σ′<σ C([0, T ]; Cσ′)
)⋂
Cw([0, T ]; Cσ).

Moreover, for all t ∈ [0, T ] we have

est:no-loss-1est:no-loss-1 (11) e−CV (t) ‖f(t)‖Cσ ≤ ‖f0‖Cσ +

∫ t

0
e−CV (τ) ‖g(τ)‖Cσ dτ

with V ′(t) :=

 ‖∇v(t)‖L∞ if σ < 1 ,

‖∇v(t)‖Cσ−1 if σ > 1 .

If f ≡ v then, for all σ > 0 (σ > −1 if div v = 0), estimate (11) holds with V ′(t) := ‖∇f(t)‖L∞ .
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Finally, we shall make an extensive use of energy estimates for the following elliptic equation:

eq:ellipticeq:elliptic (12) −div (a∇Π) = divF in RN ,

where a = a(x) is a given suitably smooth bounded function satisfying

eq:ellipticityeq:ellipticity (13) a∗ := inf
x∈RN

a(x) > 0 .

We shall use the following result based on Lax-Milgram's theorem (see the proof in e.g. [13]).

l:laxmilgram Lemma 3.13. For all vector �eld F with coe�cients in L2, there exists a tempered distribution
Π, unique up to constant functions, such that ∇Π ∈ L2 and equation (12) is satis�ed. In addition,
we have

a∗ ‖∇Π‖L2 ≤ ‖F‖L2 .

4 Propagation of striated regularity

Now we are ready to tackle the proof of theorem 2.3. We will carry out it in a standard way:
�rst of all we will prove a priori estimates for solutions of the non-homogeneous Euler equations.
Then, we will construct a sequence of regular approximated solutions. Finally, thanks to upper
bounds proved in the �rst part, we will get convergence of this sequence to a solution of our initial
system, with the required properties.

4.1 A priori estimates

First of all, we will prove a priori estimates for a smooth solution (ρ, u,∇Π) of system (1).

4.1.1 Estimates for density and velocity �eld

From �rst equation of (1), it follows that

ρ(t, x) = ρ0

(
ψ−1
t (x)

)
,

so, as the �ow ψt is a di�eomorphism over RN at all �xed time, we have that

est:rho_L^infest:rho_L^inf (14) 0 < ρ∗ ≤ ρ(t) ≤ ρ∗ .

Applying the operator ∂i to the same equation, using classical Lp estimates for the transport
equation and Gronwall's lemma, we get

est:Drho_L^infest:Drho_L^inf (15) ‖∇ρ(t)‖L∞ ≤ ‖∇ρ0‖L∞ exp

(
C

∫ t

0
‖∇u‖L∞ dτ

)
.

From the equation for the velocity, instead, we get, in a classical way,

‖u(t)‖Lp ≤ ‖u0‖Lp +

∫ t

0

∥∥∥∥∇Π

ρ

∥∥∥∥
Lp

dτ ;

so, using (14) and Hölder inequalities, for a certain θ ∈ ]0, 1[, the following estimate holds:

est:u_L^pest:u_L^p (16) ‖u(t)‖Lp ≤ ‖u0‖Lp +
C

ρ∗

∫ t

0
‖∇Π‖θL2 ‖∇Π‖1−θL∞ dτ .

Remark 4.1. Let us observe that, as regularity of the pressure goes like that of the velocity
�eld, one can try to estimate directly the Lp norm of the pressure term. Unfortunately, we can't
solve its (elliptic) equation in this space without assuming a smallness condition on the gradient
of the density. So, we will prove that ∇Π is in L2 ∩L∞, which is actually stronger than previous
property and requires no other hypothesis on the density term.
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Already from (15) it's clear that we need an estimate for the L∞ norm for the gradient of the
velocity. As remarked before, we can't expect to get it from the hypothesis Ω ∈ L∞; the key will
be the further assumption, i.e. the hypothesis of more regularity of the vorticity along some �xed
directions, that is to say along the family X0.
Here we quote also a fundamental lemma, whose proof can be found in [2] for the 2-dimensional
case, in [12] and [17] for the general one. It is the key point to get the velocity �eld to be Lipschitz
and it turns out to be immediately useful in the sequel.

l:Du_L^inf Lemma 4.2. Fix ε ∈ ]0, 1[ and an integer m ≥ N − 1 and take a non-degenerate family Y =
(Yλ)1≤λ≤m of Cε vector-�elds over RN such that also their divergences are in Cε.

Then, for all indices 1 ≤ i, j ≤ N , there exist Cε functions aij, bkλij (with 1 ≤ k ≤ N ,
1 ≤ λ ≤ m) such that, for all (x, ξ) ∈ RN × RN , the following equality holds:

ξi ξj = aij(x)|ξ|2 +
∑
k,λ

bkλij (x) (Yλ(x) · ξ) ξk .

Moreover, the functions in the previous relation could be chosen such that

‖aij‖L∞ ≤ 1∥∥∥bkλij ∥∥∥Cε ≤ C
m2N−2

I(Y )
|||Y ||| 9N−10

Cε .

Now, we can state the stationary estimate which says that the velocity �eld u is Lipschitz.
This can be done as in the classical case, because it's based only on the Biot-Savart law, or better
on it's gradient version (4).

p:Du_L^inf Proposition 4.3. Fix ε ∈ ]0, 1[ and q ∈ ]1,+∞[ and take a non-degenerate family Y = (Yλ)1≤λ≤m
of Cε vector-�elds over RN such that also their divergences are still in Cε.

Then there exists a constant C, depending only on the space dimension N and on the number
of vector-�elds m, such that, for all skew-symmetric matrices Ω with coe�cients in Lq ∩ CεY , the
corresponding (by (3)) divergence-free vector-�eld u satis�es

est:Du_L^infest:Du_L^inf (17) ‖∇u‖L∞ ≤ C

(
q2

q − 1
‖Ω‖Lq +

1

ε (1− ε)
‖Ω‖L∞ log

(
e +

‖Ω‖CεY
‖Ω‖L∞

))
.

4.1.2 Estimates for the vorticity

As in [14], using the well-known Lq estimates for transport equation and taking advantage of
Gronwall's lemma and Hölder inequality in Lebesgue spaces, from (6) we obtain, for a certain
γ ∈ ]0, 1[ ,

‖Ω(t)‖Lq ≤ C exp

(∫ t

0
‖∇u‖L∞dτ

)
×est:Om_L^q (18)

×
(
‖Ω0‖Lq +

1

(ρ∗)
2

∫ t

0
e−
∫ τ
0 ‖∇u‖L∞dτ

′ ‖∇ρ‖L∞ ‖∇Π‖γ
L2 ‖∇Π‖1−γL∞ dτ

)
.

Moreover, of course an analogue estimate holds also for the L∞ norm:

‖Ω(t)‖L∞ ≤ C exp

(∫ t

0
‖∇u‖L∞dτ

)
×est:Om_L^inf (19)

×
(
‖Ω0‖L∞ +

1

(ρ∗)
2

∫ t

0
e−
∫ τ
0 ‖∇u‖L∞dτ

′ ‖∇ρ‖L∞ ‖∇Π‖L∞ dτ

)
.

r:q Remark 4.4. Let us �x the index p pertaining to u and let us call q the real number in [2,+∞[
such that 1/p + 1/q = 1/2. From our hypothesis, it's clear that q ≤ q; therefore, thanks to
Hölder and Young inequalities, we have

‖Ω‖Lq ≤ ‖Ω‖
η
Lq ‖Ω‖

1−η
L∞ ≤ ‖Ω‖Lq∩L∞ .
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4.1.3 Estimates for the pressure term
sss:est-p

Now, let us focus on the pressure term: taking the divergence of the second equation of system
(1), we discover that it solves the elliptic equation

eq:Pieq:Pi (20) −div

(
∇Π

ρ

)
= div (u · ∇u) .

From this, remembering our hypothesis and remark 4.4, estimate (5) and lemma 3.13, the control
of L2 norm immeditely follows:

est:Pi_L^2est:Pi_L^2 (21)
1

ρ∗
‖∇Π‖L2 ≤ C ‖u‖Lp ‖Ω‖Lq∩L∞ .

Moreover, we have that ∇Π belongs also to L∞, and so, by interpolation, ∇Π ∈ La for all
a ∈ [2,+∞]. As a matter of fact, now we are going to show a stronger claim, that is to say
∇Π ∈ C1

∗ . Cutting in low and high frequencies, we have that

‖∇Π‖C1∗ ≤ ‖∆−1∇Π‖C1∗ + ‖(Id −∆−1)∇Π‖C1∗ ≤ C
(
‖∇Π‖L2 + ‖∆Π‖C0∗

)
.

Now, from (20) we get

eq:Lapl-Pieq:Lapl-Pi (22) −∆Π = ∇ (log ρ) · ∇Π + ρ div (u · ∇u) .

From this last relation, from the fact that div (u · ∇u) = ∇u : ∇u and the immersion L∞ ↪→ C0
∗ ,

we obtain

‖∆Π‖C0∗ ≤ ‖∆Π‖L∞ ≤ ‖∇ (log ρ) · ∇Π‖L∞ + ‖ρ div (u · ∇u)‖L∞

≤ C
(
‖∇ρ‖L∞ ‖∇Π‖L∞ + ρ∗ ‖∇u‖2L∞

)
.

Now, C1
∗ ↪→ Cη ↪→ L∞ for all η ∈ ]0, 1[; taking for instance η = 1/2 and using interpolation

inequalities between Besov spaces, we thus have, for a certain β ∈ ]0, 1[ ,

‖∇Π‖L∞ ≤ ‖∇Π‖C1/2 ≤ C ‖∇Π‖βC−N/2 ‖∇Π‖1−βC1∗ ≤ C ‖∇Π‖β
L2 ‖∇Π‖1−βC1∗ .

Thanks to Young's inequality, from this relation and (21) one �nally gets

est:Pi_C^1_*est:Pi_C^1_* (23) ‖∇Π‖C1∗ ≤ C
((

1 + ‖∇ρ‖δL∞
)
‖u‖Lp ‖Ω‖Lq∩L∞ + ρ∗ ‖∇u‖2L∞

)
,

for some δ depending only on the space dimension N . So we have proved our claim, i.e. ∇Π ∈ C1
∗ ,

and so it belongs also to L∞.
Finally, we want to prove boundedness of second derivatives of the pressure term. This

property is a consequence of striated regularity for ∇Π we will show in next section: for the
time being, let us admit this fact. So, passing in Fourier variables and using lemma 4.2, for all
1 ≤ i , j ≤ N we can write

ξi ξj Π̂(ξ) = aij(x)|ξ|2 Π̂(ξ) +
∑
k,λ

bkλij (x) (Xλ(x) · ξ) ξk Π̂(ξ) .

Applying the inverse Fourier transform F−1
ξ and passing to L∞ norms, we get∥∥∇2Π

∥∥
L∞
≤ C (‖∆Π‖L∞ + ‖∂X∇Π‖L∞) .

As we will see later, ∂X∇Π ∈ Cε; nevertheless, due to technical reasons it's convenient for
us to estimate its L∞ norm in an intermediate space Cε ↪→ Cη ↪→ C0

∗ and then use interpolation
inequalities. For instance, the choice η = ε/4 will be suitable for our purposes:

‖∂X∇Π‖L∞ ≤ ‖∂X∇Π‖Cε/4 ≤ ‖∂X∇Π‖3/4C0∗ ‖∂X∇Π‖1/4Cε .
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Using Bony's paraproduct decomposition to handle the norm in C0
∗ �nally leads us to the following

control:
‖∂X∇Π‖L∞ ≤ ‖X‖

3/4
Cε ‖∇Π‖3/4C1∗ ‖∂X∇Π‖1/4Cε .

Therefore, from previous inequality and from the control for ∆Π, we get

est:D^2-Piest:D^2-Pi (24)
∥∥∇2Π

∥∥
L∞
≤ C

(
‖∇ρ‖L∞ ‖∇Π‖C1∗ + ρ∗ ‖∇u‖2L∞ + ‖X‖3/4Cε ‖∇Π‖3/4C1∗ ‖∂X∇Π‖1/4Cε

)
,

and this �nally proves our claim, once one admits striated regularity for ∇Π.

4.2 A priori estimates for striated regularity

After having established the �classical� estimates, let us now focus on the conservation of striated
regularity. The most important step lies in �nding a priori estimates for the derivations along the
vector-�eld X. So, let us now state a lemma which explains the relation between the operators
∂X and div ( ·X) (see also remark 2.2).

l:div Lemma 4.5. For every vector-�eld X with components and divergence in Cε, and every function
f ∈ Cη for some η ∈ ]0, 1], we have

‖div (f X) − ∂Xf‖Cmin{ε,η}−1 ≤ C ‖̃X‖Cε ‖f‖Cη .

Moreover, the previous inequality is still true in the limit case η = 0, with ‖f‖L∞ instead of ‖f‖C0∗ .

Proof. The thesis immediately follows from the identity div (f X) − ∂Xf = f divX and from
Bony's paraproduct decomposition.

4.2.1 The evolution of the family of vector-�elds

First of all, we want to prove that the family of vector-�elds X(t) = (Xλ(t))1≤λ≤m, where each
Xλ(t) is de�ned by (7), still remains non-degenerate for all t, and that each Xλ(t) still has
components and divergence in Cε. Throughout this paragraph we will denote by Y (t) a generic
element of the family X(t).

Applying the divergence operator to (8), an easy computation shows us that div Y satis�es

(∂t + u · ∇) div Y = 0 ,

which immediately implies div Y (t) ∈ Cε for all t and

est:div-Xest:div-X (25) ‖div Y (t)‖Cε ≤ C ‖div Y0‖Cε exp

(
c

∫ t

0
‖∇u‖L∞ dτ

)
.

Moreover, starting again from (8), we get (for the details, see proposition 4.1 of [12])

(∂t + u · ∇)

(
N−1
∧ Xλ

)
= t∇u ·

(
N−1
∧ Xλ

)
,

from which it follows(
N−1
∧ Xλ

)
(t, x) =

(
N−1
∧ Xλ

)
(0, ψ−1

t (x)) −
∫ t

0

t∇u ·
(
N−1
∧ Xλ

)
(τ, ψ−1

t (ψτ (x))) dτ .

This relation gives us∣∣∣∣(N−1
∧ Xλ

)
(0, ψ−1

t (x))

∣∣∣∣ ≤ ∣∣∣∣(N−1
∧ Xλ

)
(t, x)

∣∣∣∣ +

+

∫ t

0
‖∇u(t− τ)‖L∞

∣∣∣∣(N−1
∧ Xλ

)
(t− τ, ψ−1

τ (x))

∣∣∣∣ dτ ,
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and by Gronwall's lemma one gets∣∣∣∣(N−1
∧ Xλ

)
(t, x)

∣∣∣∣ ≥ ∣∣∣∣(N−1
∧ X0,λ

)
(ψ−1

t (x))

∣∣∣∣ e−c ∫ t0 ‖∇u‖L∞ dτ .

From this inequality we immediately have that the family still remains non-degenerate at every
time t:

est:Iest:I (26) I(X(t)) ≥ I(X0) exp

(
− c
∫ t

0
‖∇u‖L∞ dτ

)
.

Finally, again from the evolution equation (8), it's clear that, to prove that Y (t) is of class Cε,
we need a control on the norm in this space of the term ∂Y u. To get this, we use, as very often
in the sequel, the following decomposition:

∂Y u = TY u + (∂Y − TY )u ,

with (by lemma 3.10)
‖(∂Y − TY )u‖Cε ≤ C ‖̃Y ‖Cε ‖∇u‖L∞ .

Moreover, for all 1 ≤ i ≤ N thanks to (3) we can write

TY u
i = −

∑
k,j

(
∂k (−∆)−1 TY j∂jΩik −

[
∂k (−∆)−1 , TY j∂j

]
Ωik

)
.

Obviously, from lemma 3.10 we have∥∥∥∥∥∥∂k (−∆)−1
∑
j

TY j∂jΩik

∥∥∥∥∥∥
Cε

≤ ‖TY Ω‖Cε−1 ≤ ‖∂Y Ω‖Cε−1 + C ‖̃Y ‖Cε ‖Ω‖L∞ ,

while for the commutator term we use lemma 3.7, which gives us the following control:∥∥∥[∂k (−∆)−1 , TY j∂j

]
Ωik

∥∥∥
Cε
≤ C ‖Y ‖Cε ‖Ω‖L∞ .

So, in the end, from the hypothesis of striated regularity for the vorticity we get that also the
velocity �eld u is more regular along the �xed directions and

est:d_X-uest:d_X-u (27) ‖∂Y u‖Cε ≤ C
(
‖∂Y Ω‖Cε−1 + ‖̃Y ‖Cε ‖∇u‖L∞

)
.

Moreover, applying proposition 3.12 to (8) and using (27), (25) and Gronwall's inequality �nally
give us

est:X_C^eest:X_C^e (28) ‖̃Y (t)‖Cε ≤ C exp

(
c

∫ t

0
‖∇u‖L∞ dτ

)(
‖̃Y0‖Cε +

∫ t

0
e− c

∫ τ
0 ‖∇u‖L∞ dτ ′ ‖∂Y Ω‖Cε−1 dτ

)
.

These estimates having being established, from now on for simplicity we will consider the case
of only one vector-�eld X(t): the generalization to the case of a �nite family is quite obvious, and
where the di�erence is substantial, we will suggest references for the details.

4.2.2 Striated regularity for the density

Now, we want to investigate propagation of striated regularity for the density. First of all, let us
state a stationary lemma.

l:f->Df Lemma 4.6. Let f be a function in C1
∗ .
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(i) If ∂Xf ∈ Cε and ∇f ∈ L∞, then one has ∂X∇f ∈ Cε−1 and the following inequality holds:

est:f->Dfest:f->Df (29) ‖∂X∇f‖Cε−1 ≤ C
(
‖∂Xf‖Cε + ‖̃X‖Cε

(
‖f‖C1∗ + ‖∇f‖L∞

))
.

(ii) Conversely, if ∂X∇f ∈ Cε−1, then ∂Xf ∈ Cε and one has

est:Df->fest:Df->f (30) ‖∂Xf‖Cε ≤ C
(
‖̃X‖Cε

(
‖f‖C1∗ + ‖∇f‖L∞

)
+ ‖∂X∇f‖Cε−1

)
.

Proof. (i) Using the paravector-�eld operator (remember de�nition 3.9), we can write:

∂X ∇f = (∂X − TX)∇f + TX ∇f .

From lemma 3.10, we have that the �rst term of the previous equality is in Cε−1 and

est:d-T_Dest:d-T_D (31) ‖(∂X − TX)∇f‖Cε−1 ≤ C ‖̃X‖Cε ‖∇f‖L∞ .

Now, we have to estimate the paravector-�eld term: note that

TX ∇f = ∇ (TXf) + [TX ,∇] f .

From hypothesis of the lemma, it's obvious that ∇ (TXf) ∈ Cε−1. For the last term,
remembering that ∇ and TX are operators of order 1, we can use lemma 3.7 and get

est:T_Dest:T_D (32) ‖[TX ,∇] f‖Cε−1 ≤ C ‖X‖Cε ‖f‖C1∗ .

Putting together (31), (32) and the control for ‖∇ (TXf)‖Cε−1 gives us the �rst part of the
lemma.

(ii) For the second part, we can write:

∂Xf = TXf + (∂X − TX) f .

By de�nition of the space CεX , we know that ∇f is bounded: so, second term can be easily
controlled in Cε thanks to lemma 3.10. Now let us de�ne the operator Ψ such that, in
Fourier variables, for all vector-�elds v we have

Fx (Ψv) (ξ) = − i 1

|ξ|2
ξ · v̂(ξ) .

So, noting that the paravector term involves only high frequencies of f , we can write

TXf = TX (Ψ∇f) = ΨTX∇f + [TX ,Ψ]∇f .

Now, applying lemmas 3.10 and 3.7 completes the proof.

r:lem_f->Df Remark 4.7. Let us note that, if f ∈ Lb (for some b ∈ [1,+∞]) is such that ∇f ∈ L∞, then
f ∈ C1

∗ (indeed f ∈ C0,1) and (separating low and high frequencies)

‖f‖C1∗ ≤ C (‖f‖Lb + ‖∇f‖L∞) .

Both u and ρ satisfy such an estimate, respectively with b = p and b = +∞.
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Thanks to lemma 4.6, we can equally deal with ρ or ∇ρ: as the equation for ρ is very simple,
we choose to work with it. Keeping in mind that [X(t) , ∂t + u · ∇] = 0, we have

∂t (∂Xρ) + u · ∇ (∂Xρ) = 0 ,

from which (remember also (30)) it immediately follows that

est:d_X-rhoest:d_X-rho (33)
∥∥∂X(t)ρ(t)

∥∥
Cε ≤ C

(
‖̃X0‖Cε (ρ∗ + ‖∇ρ0‖L∞) + ‖∂X0∇ρ0‖Cε−1

)
exp

(
c

∫ t

0
‖∇u‖L∞ dτ

)
.

Therefore, one gets also

∥∥∂X(t)∇ρ(t)
∥∥
Cε−1 ≤ C exp

(∫ t

0
‖∇u‖L∞ dτ

)
×est:d_X-Drho (34)

×
(

(ρ∗ + ‖∇ρ0‖L∞) ‖̃X0‖Cε + ‖∂X0∇ρ0‖Cε−1 +

+

∫ t

0
e−
∫ τ
0 ‖∇u‖L∞dτ

′ ‖∂XΩ‖Cε−1 dτ

)
.

4.2.3 Striated regularity for the pressure term

In this paragraph we want to show geometric properties for the pressure term we have pointed
out in section 4.1.3, i.e. we want to prove ∂X∇Π ∈ Cε. As a matter of fact, as regularity of the
gradient of the pressure goes like that of the velocity �eld, it seems quite natural to expect such
a property.

Again, we use the decomposition

∂X∇Π = TX (∇Π) + (∂X − TX)∇Π .

Let us consider the second term: from lemma 3.10 we have

‖(∂X − TX)∇Π‖Cε ≤ C ‖̃X‖Cε
∥∥∇2Π

∥∥
L∞

.

Hence, using estimate (24) and applying Young's inequality to isolate the term ‖∂X∇Π‖Cε , we
see that it can be controlled by the quantity

est:d_X-T_X-Piest:d_X-T_X-Pi (35) C ‖̃X‖Cε
((
‖∇ρ‖L∞ + ‖̃X‖4/3Cε

)
‖∇Π‖C1∗ + ρ∗ ‖∇u‖2L∞

)
+

1

4
‖∂X∇Π‖Cε .

To deal with the paravector term, we keep in mind that ∇Π = ∇ (−∆)−1 (g1 + g2), where
we have set {

g1 = −∇ (log ρ) · ∇Π

g2 = ρ div (u · ∇u) ,

so it's enough to prove that both TX∇ (−∆)−1 g1 and TX∇ (−∆)−1 g2 belong to Cε. Let us
consider �rst the term

eq:T_X-Opeq:T_X-Op (36) TX∇ (−∆)−1 g2 = ∇ (−∆)−1 TXg2 +
[
TX ,∇ (−∆)−1

]
g2 .

From lemma 3.7 one immediately gets that∥∥∥[TX ,∇ (−∆)−1
]
g2

∥∥∥
Cε
≤ C ‖̃X‖Cε ‖g2‖C0∗ ≤ C ρ∗ ‖̃X‖Cε ‖∇u‖2L∞ ,

while it's obvious that ∥∥∥∇ (−∆)−1 TXg2

∥∥∥
Cε
≤ C ‖TXg2‖Cε−1 .
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Now we use Bony's paraproduct decomposition and write

TXg2 = TXTρdiv (u · ∇u) + TXTdiv (u·∇u)ρ + TXR (ρ, div (u · ∇u)) .

Lemma 3.11 and the fact that div (u · ∇u) = ∇u : ∇u tell us that the the �rst two terms of the
previous relation can be bounded in Cε−1 by

‖X‖Cε ‖ρ‖C1∗ ‖∇u‖
2
L∞ + ‖∇u‖2L∞ ‖TXρ‖Cε + ‖ρ‖C1∗ ‖TXdiv (u · ∇u)‖Cε−1 ;

the remainder term is actually more regular, and it can be estimated in Cε by the same quantity
as before. Now the problem is the control of the Cε−1 norm of TXdiv (u · ∇u). We write

TXdiv (u · ∇u) =
∑
i,j

2TXT∂iuj∂ju
i + TX∂iR(uj , ∂ju

i)

=
∑
i,j,k

2TXk∂kT∂iuj∂ju
i + ∂iTXk∂kR(uj , ∂ju

i) − T∂iXk∂kR(uj , ∂ju
i) .

Again from lemma 3.11 we can easily see that the quantity

‖̃X‖Cε (‖u‖Lp + ‖∇u‖L∞) ‖∇u‖L∞ + (‖u‖Lp + ‖∇u‖L∞) ‖TX∇u‖Cε−1 + ‖∇u‖L∞ ‖TXu‖Cε

controls the Cε−1 norm of all the previous terms; so, keeping in mind lemmas 3.10 and 4.6, it
follows that

‖TXdiv (u · ∇u)‖Cε−1 ≤ C
(
‖̃X‖Cε (‖u‖Lp + ‖∇u‖L∞)2 + ‖∂Xu‖Cε (‖u‖Lp + ‖∇u‖L∞)

)
.

Putting together all these estimates, applying again lemma 3.10 and remembering remark 4.7, we
�nally get∥∥∥TX∇ (−∆)−1 g2

∥∥∥
Cε
≤ C

(
(ρ∗ + ‖∇ρ‖L∞) ‖̃X‖Cε (‖u‖Lp + ‖∇u‖L∞)2 +est:g_2 (37)

+ (ρ∗ + ‖∇ρ‖L∞) ‖∂Xu‖Cε (‖u‖Lp + ‖∇u‖L∞) +

+ ‖∂Xρ‖Cε ‖∇u‖2L∞
)
.

Before going on, let us state a simple lemma.

l:d_X-F Lemma 4.8. Fix a ε ∈ ]0, 1[ and an open interval I ⊂ R.
Let X be a Cε vector-�eld with divergence in Cε and F : I → R be a smooth function.

Then for all compact set J ⊂ I and all ρ ∈ W 1,∞ valued in J and such that ∂Xρ ∈ Cε, one
has that ∂X(F ◦ ρ) ∈ Cε and ∂X∇(F ◦ ρ) ∈ Cε−1. Moreover, the following estimates hold:

‖∂X(F ◦ ρ)‖Cε ≤ C ‖ρ‖W 1,∞ ‖∂Xρ‖Cε

‖∂X∇(F ◦ ρ)‖Cε−1 ≤ C ‖ρ‖W 1,∞

(
‖∂Xρ‖Cε + ‖̃X‖Cε ‖ρ‖W 1,∞

)
,

for a constant C depending only on F and on the �xed subset J .

Proof. The �rst inequality is immediate keeping in mind identity ∂X(F ◦ ρ) = F ′(ρ) ∂Xρ and
estimate ∥∥F ′(ρ)

∥∥
Cε ≤ C

∥∥F ′′∥∥
L∞(J)

‖ρ‖Cε ≤ C
∥∥F ′′∥∥

L∞(J)
‖ρ‖W 1,∞ .

For the second one, we write:

∂X∇(F ◦ ρ) = ∂X
(
F ′(ρ)∇ρ

)
= F ′(ρ) ∂X∇ρ + F ′′(ρ)∇ρ ∂Xρ .

Let us observe that the �rst term is well-de�ned in Cε−1, and using decomposition in paraproducts
and remainder operators, we have∥∥F ′(ρ) ∂X∇ρ

∥∥
Cε−1 ≤ C

∥∥F ′(ρ)
∥∥
W 1,∞ ‖∂X∇ρ‖Cε−1 .

Now, the thesis immediately follows from lemma 4.6.
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Let us come back to g1: we use the same trick as (36). Again, the control of the commutator
term follows from lemma 3.7:∥∥∥[TX ,∇ (−∆)−1

]
g1

∥∥∥
Cε
≤ C ‖X‖Cε ‖g1‖C0∗ ≤

C

ρ∗
‖X‖Cε ‖∇ρ‖L∞ ‖∇Π‖C1∗ .

For the second term, we use again Bony's paraproduct decomposition. From lemma 3.11, we see
that both TXT∇(log ρ)∇Π and TXT∇Π∇(log ρ) belong to Cε−1, while the remainder term is in
Cε/2, and the quantity

‖X‖Cε ‖∇ρ‖L∞ ‖∇Π‖C1∗ + ‖∇Π‖C1∗ ‖TX∇(log ρ)‖Cε−1 + ‖∇ρ‖L∞ ‖TX∇Π‖Cε/2

bounds their norms in the respective spaces.
Now, from lemmas 3.10 and 4.8 we get

‖TX∇(log ρ)‖Cε−1 ≤ C (ρ∗ + ‖∇ρ‖L∞)
(
‖∂Xρ‖Cε + (ρ∗ + ‖∇ρ‖L∞) ‖̃X‖Cε

)
,

while interpolation inequalities for the inclusions Cε ↪→ Cε/2 ↪→ C0
∗ and proposition 3.5 (just as

done in section 4.1.3 for bounding the L∞ norm of ∂X∇Π) give us

‖TX∇Π‖Cε/2 ≤ C ‖X‖1/2Cε ‖∇Π‖1/2C1∗ ‖TX∇Π‖1/2Cε .

Note that lemma 3.10 and inequality (35) imply

‖TX∇Π‖Cε ≤
5

4
‖∂X∇Π‖Cε + C ‖̃X‖Cε

((
‖∇ρ‖L∞ + ‖̃X‖4/3Cε

)
‖∇Π‖C1∗ + ρ∗ ‖∇u‖2L∞

)
.

So, putting all these inequalities together, applying Young's inequality and performing some
manipulations we get the estimate for the term g1:∥∥∥TX∇ (−∆)−1 g1

∥∥∥
Cε
≤ C

(
(ρ∗ + ‖∇ρ‖L∞) ‖∂Xρ‖Cε ‖∇Π‖C1∗ + ρ∗ ‖∇u‖2L∞ +est:g_1 (38)

+‖̃X‖Cε
(

1 + ‖̃X‖4/3Cε
)

(ρ∗ + ‖∇ρ‖L∞)2 ‖∇Π‖C1∗
)

+

+
5

8
‖∂X∇Π‖Cε .

Therefore, from (35), (37) and (38), we �nally obtain the estimate of the Cε norm of the
pressure term along the �xed direction:

‖∂X∇Π‖Cε ≤ C
(
(ρ∗ + ‖∇ρ‖L∞) ‖∂Xρ‖Cε ‖∇Π‖C1∗ + (ρ∗ + ‖∂Xρ‖Cε) ‖∇u‖2L∞ +est:d_X-Pi (39)

+ ‖̃X‖Cε
(

1 + ‖̃X‖4/3Cε
)

(ρ∗ + ‖∇ρ‖L∞)2 ‖∇Π‖C1∗ +

+ (ρ∗ + ‖∇ρ‖L∞) ‖̃X‖Cε (‖u‖Lp + ‖∇u‖L∞)2 +

+ (ρ∗ + ‖∇ρ‖L∞) ‖∂Xu‖Cε (‖u‖Lp + ‖∇u‖L∞)) .

4.2.4 Conservation of striated regularity for the vorticity

Let us now establish a control on the regularity of Ω along the vector-�elds (Xλ)1≤λ≤m. Applying
the operator ∂X to (6), we obtain the evolution equation for ∂XΩ:

eq:vort_streq:vort_str (40) ∂t (∂XΩ) + u · ∇ (∂XΩ) = ∂X

(
1

ρ2
∇ρ ∧∇Π

)
− ∂X (Ω · ∇u) − ∂X

(
t∇u · Ω

)
.

Second and third terms of the right-hand side of (40) can be treated taking advantage once
again of the following decomposition:

∂X
(
Ω · ∇u + t∇u · Ω

)
= (∂X − TX)

(
Ω · ∇u + t∇u · Ω

)
+ TX

(
Ω · ∇u + t∇u · Ω

)
.
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Lemma 3.10 says that the operator ∂X −TX maps C0
∗ in Cε−1 continuously: as L∞ ↪→ C0

∗ , one has∥∥(∂X − TX)
(
Ω · ∇u + t∇u · Ω

)∥∥
Cε−1 ≤ C ‖̃X‖Cε ‖Ω‖L∞ ‖∇u‖L∞ ≤ C ‖̃X‖Cε ‖∇u‖2L∞ .

To handle the paravector term, we proceed in the following way. First of all, we note that, as
div u = 0, we can write(

Ω · ∇u + t∇u · Ω
)
ij

=
∑
k

(
∂iu

k ∂ku
j − ∂ju

k ∂ku
i
)

=
∑
k

(
∂k

(
uj ∂iu

k
)
− ∂k

(
ui ∂ju

k
))

.

So, we have to estimate the Cε−1 norm of terms of the type TXT∇u∇u and TX∇R(u,∇u) . Using
the same trick as in (36) for the remainder terms and applying lemmas 3.11 and 3.7 give us the
control of TX

(
Ω · ∇u + t∇u · Ω

)
in Cε−1 by the quantity

‖X‖Cε (‖u‖Lp + ‖∇u‖L∞)2 + (‖u‖Lp + ‖∇u‖L∞)2 ‖TX∇u‖Cε−1 + ‖∇u‖L∞ ‖TXu‖Cε .

So, from lemmas 3.10 and 4.6 it easily follows∥∥∂X (Ω · ∇u + t∇u · Ω
)∥∥
Cε−1 ≤ C

(
‖̃X‖Cε (‖u‖Lp + ‖∇u‖L∞)2 +est:Om-Du (41)

+ ‖∂Xu‖Cε (‖u‖Lp + ‖∇u‖L∞)) .

Now, let us analyse the �rst term of (40). It can be written as the sum of three terms:

∂X

(
1

ρ2
∇ρ ∧∇Π

)
= − 2

ρ3
(∂Xρ) (∇ρ ∧∇Π) +

1

ρ2
(∂X∇ρ) ∧∇Π +

1

ρ2
∇ρ ∧ (∂X∇Π) .

So, let us consider each one separately and prove that it belongs to the space Cε−1.
Obviously, from previous estimates we have that �rst and third terms are in L∞ ↪→ Cε−1 and

satisfy ∥∥∥∥ 1

ρ3
(∂Xρ) (∇ρ ∧∇Π)

∥∥∥∥
Cε−1

≤ C

(ρ∗)
3 ‖∂Xρ‖Cε ‖∇ρ‖L∞ ‖∇Π‖C1∗∥∥∥∥ 1

ρ2
∇ρ ∧ (∂X∇Π)

∥∥∥∥
Cε−1

≤ C

(ρ∗)
2 ‖∇ρ‖L∞ ‖∂X∇Π‖Cε .

Now, let us �nd a Cε−1 control for the second term.
From lemma 4.6, we know that ∂X∇ρ belongs already to this space, but the product of a Cσ
function, σ < 0, with a L∞ one is not in Cσ: in general, we can't even de�ne it. Nevertheless, we
know that the pressure term is more regular, i.e. ∇Π ∈ C1

∗ , so (∂X∇ρ) ∧ ∇Π still belongs (using
Bony's paraproduct decomposition) to the Hölder space Cε−1.
Moreover, as already pointed out in remark 4.7, also ρ ∈ C1

∗ , and so does a := 1/ρ (it satis�es the
same hypothesis and the same equation of ρ) and also a2 (because C1

∗ is an algebra), so the term
is well-de�ned and we can control it in Cε−1.

Let us make rigorous what we have just said. With a little abuse of notation (at the end, we
would have to deal with the sum of products of components of the two vector-�elds), we write

(∂X∇ρ)∇Π = T(∂X∇ρ)∇Π + T∇Π (∂X∇ρ) + R (∂X∇ρ,∇Π) ;

remembering the continuity properties of the paraproduct and remainder operators and that
C1
∗ ↪→ L∞ ↪→ C0

∗ , we get:

‖(∂X∇ρ) ∧∇Π‖Cε−1 ≤ C ‖∂X∇ρ‖Cε−1 ‖∇Π‖C1∗ .
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In the same way, we can control also the previous term multiplied by 1/ρ2, and from remark 4.7
applied to 1/ρ2 we get∥∥∥∥ 1

ρ2
(∂X∇ρ) ∧∇Π

∥∥∥∥
Cε−1

≤ C

(ρ∗)
2

(
1 +
‖∇ρ‖L∞

ρ∗

)2

‖∂X∇ρ‖Cε−1 ‖∇Π‖C1∗ .

So, �nally we obtain, for a constant C depending also on ρ∗ and ρ∗,∥∥∥∥∂X ( 1

ρ2
∇ρ ∧∇Π

)∥∥∥∥
Cε−1

≤ C
(
‖∂Xρ‖Cε ‖∇ρ‖L∞ ‖∇Π‖C1∗ + ‖∇ρ‖L∞ ‖∂X∇Π‖Cε +est:wedge (42)

+ ‖∇ρ‖2L∞ ‖∂X∇ρ‖Cε−1 ‖∇Π‖C1∗
)
.

Therefore, from equation (40), classical estimates for transport equation in the Hölder spaces
framework and inequalities (41) and (42) (in which we apply also (30)), we obtain

‖∂XΩ(t)‖Cε−1 ≤ C exp

(
c

∫ t

0
‖∇u‖L∞ dτ

)(
‖∂X0Ω0‖Cε−1 +

∫ t

0
e−
∫ t
0 ‖∇u‖L∞dτ

′×est:d_X-Om (43)

×
(
‖̃X‖Cε (‖u‖Lp + ‖∇u‖L∞)2 + ‖∂Xu‖Cε (‖u‖Lp + ‖∇u‖L∞) +

+ ‖̃X‖Cε ‖∇ρ‖2L∞ ‖∇Π‖C1∗ + ‖∇ρ‖L∞ ‖∂X∇Π‖Cε +

+ ‖∇ρ‖2L∞ ‖∇Π‖C1∗ ‖∂X∇ρ‖Cε−1

)
dτ
)
,

and this relation allows us to close estimates: let us see how.

4.3 Final estimates
ss:fin-est

First of all, we note that for all η ∈ [0, 1], thanks to Young's inequality and estimates (21) and
(23), we have

f-est:Pif-est:Pi (44) ‖∇Π‖η
L2 ‖∇Π‖1−ηL∞ ≤ ‖∇Π‖L2∩C1∗ ≤ C

((
1 + ‖∇ρ‖δL∞

)
‖u‖Lp ‖Ω‖Lq∩L∞ + ρ∗ ‖∇u‖2L∞

)
.

So, setting
L(t) := ‖u(t)‖Lp + ‖Ω(t)‖Lq∩L∞ ,

putting (15) into (16), (18) and (19), for all �xed T > 0 we obtain, in the time interval [0, T ], an
inequality of the form

L(t) ≤ C exp

(
c

∫ T

0
‖∇u‖L∞dτ

)(
L(0) +

∫ t

0
‖∇u‖2L∞ dτ +

∫ t

0
L2(τ) dτ

)
,

with a constant C depending only on initial data. Now, if we de�ne

cond-T_1cond-T_1 (45) T := sup

{
t > 0

∣∣∣∣ ∫ t

0

(
e−
∫ τ
0 L(τ ′)dτ ′L(τ) + ‖∇u(τ)‖2L∞

)
dτ ≤ 2L(0)

}
,

from previous inequality and Gronwall's lemma and applying a standard bootstrap procedure, we
manage to estimate the norms of the solution on [0, T ] in terms of initial data only:

‖u(t)‖Lp + ‖Ω(t)‖Lq∩L∞ ≤ C (‖u0‖Lp + ‖Ω0‖Lq∩L∞) .

From this, keeping in mind (21) and (23), we also have

‖∇Π(t)‖L2∩C1∗ ≤ C
(

1 + ‖∇ρ0‖δL∞
)

(‖u0‖Lp + ‖Ω0‖Lq∩L∞)2 .
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Now, let us focus on estimates about striated regularity. For notation convenience, let us set
S(t) :=

∥∥∂X(t)Ω(t)
∥∥
Cε−1 .

First of all, from (26) we get that the family X(t) remains non-degenerate in time evolution.
Moreover, as log(e+ y) ≤ y + 1 for y ≥ 0, from (17) we get

‖∇u‖L∞ ≤ C L log

(
e+

S

L

)
≤ C (C0 + S)

in [0, T ], for some constants C, C0 which depend only on initial data. Hence, keeping in mind
(25), (27) and (28) we obtain also (for di�erent constants we will keep to call C, C0)

‖̃X‖Cε , ‖∂Xu‖Cε ≤ C

(
C0 + S +

∫ t

0
e−
∫ τ
0 S(τ ′)dτ ′S(τ) dτ

)
,

while (34) and (33) tell us that

‖∂X∇ρ‖Cε ≤ C e
∫ t
0 S(τ)dτ

(
C0 +

∫ t

0
e−
∫ τ
0 S(τ ′)dτ ′S(τ) dτ

)
and that the same holds for ‖∂Xρ‖Cε . These estimates together with (39) give us

‖∂X∇Π‖Cε ≤ C

(
C0 +

∫ t

0
e−
∫
SS dτ + S + S

∫ t

0
e−
∫
SS dτ + S2 + S2

∫ t

0
e−
∫
SS dτ+

+S3 + S7/3 +

(∫ t

0
e−
∫
SS dτ

)7/3
)

≤ C

(
C0 +

∫ t

0
e−
∫
SS dτ + S2

∫ t

0
e−
∫
SS dτ + S3 +

(∫ t

0
e−
∫
SS dτ

)7/3
)
,

where in second inequality we have kept only terms to the smallest and biggest powers. Now,
putting all these relations in (43) and absorbing intermediate powers as just done, we get an
inequality of the type

S(t) ≤ C e
∫ t
0 S(τ)dτ

(
C0 +

∫ t

0
e
∫ τ
0 S

(
C0 +

∫ τ

0
e−
∫
SS dτ ′ + S3+

+S2

∫ τ

0
e−
∫
SS dτ ′ +

(∫ τ

0
e−
∫
SS dτ ′

)7/3
)
dτ

)
.

Therefore, if we pass to Z(t) := sup[0,t] S, we have

Z(t) ≤ C e
∫ t
0 Z(τ)dτ

(
C0 +

∫ t

0
e
∫ τ
0 Z
(
C0 + τZ + Z3 + τZ3 + τ7/3Z7/3

)
dτ

)
.

So, let us suppose also T to have been chosen so small that, for all t ∈ [0, T ], one has

cond-T_2cond-T_2 (46)
∫ t

0
e
∫ τ
0 Z
(
C0 + τZ + Z3 + τZ3 + τ7/3Z7/3

)
dτ ≤ 2C0 ;

hence a bootstrap argument again allows us to get the bound
∥∥∂X(t)Ω(t)

∥∥
Cε−1 ≤ C K0 uniformly

on [0, T ], for a universal constant C (depending only on N , q, ε, ρ∗ and ρ∗) and a K0 depending
only on the norms of initial data in the relative functional spaces.

r:T Remark 4.9. The lifespan T of the solution is essentially determined by conditions (45) and
(46), and it's quite clear that T > 0 because of continuity of the function t 7→

∫ t
0 . In addition, in

section 5 we will establish a lower bound for T in terms of the norms of initial data only and we
will compare it with the classical result in the case of constant density.
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4.4 Proof of the existence of a solution

After establishing a priori estimates, we want to give the proof of the existence of a solution for
system (1) under our assumptions.

We will get it in a classical way: �rst of all, we will construct a sequence of approximate
solutions of our problem, for which a priori estimates of the previous section hold uniformly, and
then we will show the convergence of such a sequence to a solution of (1).

Now, we will work only for positive times, but it goes without saying that the same argument
holds also for negative times evolution.

4.4.1 Construction of a sequence of approximate solutions

For each n ∈ N, let us de�ne un0 := Snu0; obviously un0 ∈ Lp, and an easy computation shows
that it belongs also to the space Bσ

p,r for all σ ∈ R and all r ∈ [1,+∞]. Let us notice that⋂
σB

σ
p,r ⊂ C∞b , so in particular we have that un0 ∈ Lp∩Bs

∞,r, for some �xed s > 1 and r ∈ [1,+∞]
such that Bs

∞,r ↪→ C0,1.
Keeping in mind that [Sn,∇] = 0, we have that Ωn

0 = SnΩ0 ∈ Lq ∩Bs−1
∞,r ; in particular, from

(5) we get ∇un0 ∈ Lq.
Now let us take an even radial function θ ∈ C∞0 (RN ), supported in the unitary ball, such that

0 ≤ θ ≤ 1 and
∫
RN θ(x) dx = 1, and set θn(x) = nN θ(nx) for all n ∈ N. We de�ne ρn0 := θn ∗ ρ0:

it belongs to Bs
∞,r and it satis�es the bounds 0 < ρ∗ ≤ ρn0 ≤ ρ∗.

Moreover, by properties of localisation operators Sn and of θn, we also have:

• ρn0 ⇀ ρ0 in W 1,∞ and ‖∇ρn0‖L∞ ≤ c ‖∇ρ0‖L∞ ;

• un0 → u0 in the space Lp and ‖un0‖Lp ≤ c ‖u0‖Lp ;

• Ωn
0 → Ω0 in Lq and ‖Ωn

0‖Lq ≤ c ‖Ω0‖Lq , ‖Ωn
0‖L∞ ≤ c ‖Ω0‖L∞ .

So, for each n, theorem 3 and remark 4 of [14] give us a unique solution of (1) such that:

(i) ρn ∈ C([0, Tn];Bs
∞,r), with 0 < ρ∗ ≤ ρn ≤ ρ∗;

(ii) un ∈ C([0, Tn];Lp ∩Bs
∞,r), with Ωn ∈ C([0, Tn];Lq ∩Bs−1

∞,r);

(iii) ∇Πn ∈ C([0, Tn];L2) ∩ L1([0, Tn];Bs
∞,r).

For such a solution, a priori estimates of the previous section hold at every step n. Moreover,
remembering previous properties about approximated initial data and that the function y 7→
y log

(
e+ c

y

)
is nondecreasing, we can �nd a control independent of n ∈ N. So, we can �nd a

positive time T ≤ Tn for all n ∈ N, such that in [0, T ] approximate solutions are all de�ned for
every n and satisfy uniform bounds.

4.4.2 Convergence of the sequence of approximate solutions

To prove convergence of the obtained sequence, we appeal to a compactness argument. Actually,
we weren't able to apply the classical method used for the homogeneous case, i.e. proving estimates
in rough spaces as C−α (α > 0): we couldn't solve the elliptic equation for the pressure term in
this framework.

We know that (ρn)n∈N ⊂ L∞([0, T ];W 1,∞), (un)n∈N ⊂ L∞([0, T ];Lp) and (∇Πn)n∈N ⊂
L∞([0, T ];L2) and, thanks to a priori estimates, all these sequences are bounded in the respective
functional spaces.

Due to the re�exivity of L2 and Lp and seeing L∞ as the dual of L1, up to a subsequence, we
obtain the existence of functions ρ, u and ∇Π such that:
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• ρn ∗
⇀ ρ in the space L∞([0, T ];W 1,∞),

• un ⇀ u in L∞([0, T ];Lp) and

• ∇Πn ⇀ ∇Π in L∞([0, T ];L2).

Nevertheless, we are not able to prove that (ρ, u,∇Π) is indeed a solution of system (1): passing
to the limit in nonlinear terms requires strong convergence in (even rough) suitable functional
spaces. So let us argue in a di�erent way and establish strong convergence properties, which will
be useful also to prove preservation of striated regularity.

First of all, let us recall that, by construction, un0 → u0 in Lp and Ωn
0 → Ω0 in Lq, and (ρn0 )n

is bounded in W 1,∞. So, for α > 0 big enough (for instance, take α = max {N/p ,N/q}), we have
that (ρn0 )n, (un0 )n, (Ωn

0 )n are all bounded in the space C−α.

r:conv-data Remark 4.10. It goes without saying that the sequences of un0 and Ωn
0 still converge in C−α;

moreover, also ρn0 → ρ0 in this space. Remember that ρ0 belongs to the space C1
∗ , which coincides

(see [8] for the proof) with the Zygmund space, i.e. the set of bounded functions f for which there
exists a constant Zf such that

|f(x+ y) + f(x− y) − 2 f(x)| ≤ Zf |y|

for all x, y ∈ RN . So, using the symmetry of θ, we can write

ρn0 (x) − ρ0(x) =
1

2
nN
∫
RN

θ(ny) (ρ0(x+ y) + ρ0(x− y) − 2 ρ0(x)) dy ;

from this identity we get that ρn0 → ρ0 in L∞, and so also in C−α.

Now, let us consider the equation for ρn:

∂tρ
n = −un · ∇ρn .

From a priori estimates we get that (un)n is bounded in L∞([0, T ]; C1
∗) and (∇ρn)n is bounded

in the space L∞([0, T ];L∞); so, from the properties of paraproduct and remainder operators,
one has that the sequence (∂tρ

n)n is bounded in L∞([0, T ]; C−α). Therefore (ρn)n is bounded in
C0,1([0, T ]; C−α), and in particular uniformly equicontinuous in the time variable.

Now, up to multiply by a ϕ ∈ D(RN ) (recall theorem 2.94 of [2]) and extract a subse-
quence, Ascoli-Arzelà theorem and Cantor diagonal process ensure us that ρn → ρ in the space
C([0, T ]; C−αloc ).

Exactly in the same way, one can show that (ρn)n is bounded in Cb([0, T ]×RN ) and it converges
to ρ in this space.

Finally, remembering that ρ ∈ L∞([0, T ];W 1,∞) (recall the compactness argument), by in-
terpolation we have convergence also in L∞([0, T ]; C1−η

loc ) for all η > 0.

We repeat the same argument for the velocity �eld. For all n, we have

∂tu
n = −un · ∇un − an∇Πn ,

where we have set an := (ρn)−1. Let us notice that, as ρ0, a0 := (ρ0)−1 satisfy the same
hypothesis and an, ρn satisfy the same equations, they have also the same properties.

Keeping this fact in mind, let us consider each term separately.

• Thanks to what we have just said, (an)n ⊂ Cb([0, T ] × RN ) ∩ L∞([0, T ]; C1
∗) is bounded;

moreover, from a priori estimates, we have that also (∇Πn)n is bounded in the space
L1([0, T ]; C1

∗). Therefore, it follows that (an∇Πn)n is a bounded sequence in Lκ([0, T ]; C−α)
for all κ ∈ [1,+∞[.
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• In the same way, as (un)n ⊂ L∞([0, T ]; C1
∗) and (∇un)n ⊂ L∞([0, T ];L∞) are both bounded

sequences, one has that the sequence (un · ∇un)n is bounded in L∞([0, T ]; C−α).

Therefore, exactly as done for the density, we get that (un)n is bounded in Cβ([0, T ]; C−α) for
some 0 < β < 1, so uniformly equicontinuous in the time variable, and this fact implies that
un → u in C([0, T ]; C−αloc ).

Finally, thanks to uniform bounds and Fatou's property of Besov spaces, we have that u ∈
L∞([0, T ]; C1

∗) and, by interpolation, that un → u in C([0, T ]; C1−η
loc ) for all η > 0.

So, thanks to strong convergence properties if we test the equations on a ϕ ∈ C1([0, T ];S(RN ))
(here we have set S to be the Schwartz class), we can pass to the limit and get that (ρ, u,∇Π) is
indeed a solution of the Euler system (1).

Before going on with the striated regularity, let us establish continuity properties of the solu-
tions with respect to the time variable.

First of all, from
∂tρ = −u · ∇ρ ,

as u ∈ C([0, T ];L∞) (from the properties of convergence stated before) and ∇ρ ∈ L∞([0, T ];L∞),
we obtain that ρ ∈ C0,1([0, T ];L∞), and the same holds for a := ρ−1.

Remember that u ∈ L∞([0, T ];Lp), ∇u and a ∈ L∞([0, T ];L∞). Moreover, as ∇Π ∈
L∞([0, T ];L2)∩L1([0, T ];L∞), it belongs also to L1([0, T ];Lp) (in fact, it belongs to Lκ([0, T ];Lp),
where κ = (1− θ)−1, θ being the interpolation exponent between L2 and L∞, see also (16)). So,
from the equation

∂tu = −u · ∇u − a∇Π ,

we get that ∂tu ∈ L1([0, T ];Lp), therefore u ∈ C([0, T ];Lp).
In the same way, from (6) we get that Ω ∈ C([0, T ];Lq), and therefore the same holds true for

∇u.
Now, using elliptic equation (20) and keeping in mind properties just proved for ρ and a, one

can see that ∇Π ∈ C([0, T ];L2). So, coming back to the previous equation, we discover that also
∂tu belongs to the same space.

4.4.3 Final checking about striated regularity

It remains us to prove that also properties of striated regularity are preserved in passing to the
limit. For doing this, we will follow the outline of the proof in [10].

1. Convergence of the �ow

Let ψn and ψ be the �ows associated respectively to un and u; for all �xed ϕ ∈ D(RN ), by
de�nition we have:

|ϕ(x) (ψn(t, x)− ψ(t, x))| ≤
∫ t

0
|ϕ(x) (un(τ, ψn(τ, x))− u(τ, ψ(τ, x)))| dτ

≤
∫ t

0
|ϕ(x) (un − u) (τ, ψn(τ, x))| +

+ |ϕ(x)un(τ, ψn(τ, x))− ϕ(x)un(τ, ψ(τ, x))| dτ

≤
∫ t

0
‖∇un‖L∞ |ϕ(x) (ψn − ψ) (τ, x)| dτ +

+

∫ t

0
‖ϕun − ϕu‖L∞ dτ .

So, from convergence properties stated in previous part, we have that ψn → ψ in the space
L∞([0, T ]; Id+ L∞loc). Moreover, it's easy to see that

‖∇ψn(t)‖L∞ ≤ c exp

(∫ t

0
‖∇un‖L∞ dτ

)
,
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which tells us that the sequence (ψn)n is bounded in L∞([0, T ]; Id + C0,1). Hence, �nally
we discover that ψn → ψ also in the spaces L∞([0, T ]; Id+ C1−η

loc ) for all η > 0.

2. Regularity of ∂X0ψ

First of all, let us notice that, by de�nition,

∂X0(x)ψ
n(t, x) = Xn

t (ψn(t, x)) ;

applying proposition 3.8, we get

est:X-o-psiest:X-o-psi (47) ‖∂X0ψ
n
t ‖Cε = ‖Xn

t ◦ ψnt ‖Cε ≤ c ‖∇ψnt ‖L∞ ‖X
n
t ‖Cε ,

which implies that (∂X0ψ
n)n is bounded in the space L∞([0, T ]; Cε). Now we note that, for

every �xed ϕ ∈ D(RN ), we have

ϕ∂X0ψ
n − ϕ∂X0ψ = ∂X0(ϕψn − ϕψ) − (∂X0ϕ) (ψn − ψ) ;

the second term is compactly supported, hence it converges in L∞ because of what we have
already proved. So let us focus on the �rst one and consider the di�erence

∂X0 (ϕψn)− ∂X0 (ϕψ) = div (X0 ⊗ ϕ(ψn − ψ)) − ϕ(ψn − ψ) divX0 ;

decomposing both terms in paraproduct and remainder and remembering hypothesis over
X0, it's easy to see that

‖∂X0 (ϕψn)− ∂X0 (ϕψ)‖Cε−1 ≤ c ‖ϕψn − ϕψ‖Cε ‖̃X0‖Cε .

Therefore, from what we have just proved, ∂X0ψ
n → ∂X0ψ in L∞([0, T ]; Cε−1

loc ); moreover,
by Fatou's property, one gets that ∂X0ψ ∈ L∞([0, T ]; Cε) and it veri�es estimate (47). So,
by interpolation, convergence occurs also in L∞([0, T ]; Cε−ηloc ) for all η > 0.

3. Regularity of Xt

Remembering the de�nitions

Xt(x) :=
(
∂X0(x)ψ

)
(t, ψ−1

t (x))

divXt = divX0 ◦ ψ−1
t ,

from proposition 3.8 it immediately follows that Xt and divXt both belong to Cε. Moreover,
the same proposition implies that Xn → X in the space L∞([0, T ]; Cε−ηloc ) for all η > 0, and
the same holds for the divergence. In particular, we have convergence also in L∞([0, T ];L∞loc),
which �nally tells us that Xt remains non-degenerate for all t ∈ [0, T ], i.e. I(Xt) ≥ c I(X0).

4. Striated regularity for the density and the vorticity

Let us �rst prove that regularity of the density with respect to the vector �eldXt is preserved
during the time evolution. To simplify the presentation, we will omit the localisation by
ϕ ∈ D(RN ): formally, we should repeat the same reasoning applied to prove regularity of
∂X0ψ. So, let us consider

∂Xnρn − ∂Xρ = div (ρn (Xn −X)) − ρn div (Xn−X) + div ((ρn − ρ)X) − (ρn−ρ) divX

and prove the convergence in L∞([0, T ]; C−1
loc ). Using Bony's paraproduct decomposition,

it's not di�cult to see that �rst and third terms can be bounded by ‖ρn‖L∞ ‖Xn−X‖L∞ +
‖ρn − ρ‖L∞ ‖X‖L∞ , while second and last terms can be controlled by ‖ρn‖L∞ ‖div (Xn −
X)‖Cε/2 + ‖ρn−ρ‖L∞ ‖divX‖Cε/2 , for instance. So, from the convergence properties stated
for (ρn)n and (Xn)n, we get that ∂Xnρn → ∂Xρ in the space L∞([0, T ]; C−1

loc ), as claimed.
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Moreover, from a priori bounds and Fatou's property of Besov spaces, we have that ∂Xρ ∈
L∞([0, T ]; Cε) and so, by interpolation, convergence occurs also in L∞([0, T ]; Cε−ηloc ) for all
η > 0.

Now we consider the vorticity term (again, we omit the multiplication by a D(RN ) function):

∂XnΩn − ∂XΩ = div ((Xn −X)⊗ Ωn) − Ωn div (Xn −X) +

+ div (X ⊗ (Ωn − Ω)) − (Ωn − Ω) divX .

From the convergence properties of (un)n, we get that Ωn → Ω in L∞([0, T ]; C−ηloc ) for all η >
0, so for instance also for η = ε/2. From this, using again paraproduct decomposition as done

before, one can prove that ∂XnΩn → ∂XΩ in L∞([0, T ]; C−1−ε/2
loc ). Therefore, as usual from a

priori estimates and Fatou's property of Besov spaces, we have that ∂XΩ ∈ L∞([0, T ]; Cε−1),
and moreover convergence remains true (by interpolation) in spaces L∞([0, T ]; Cε−1−η

loc ) for
all η > 0.

So, all the properties linked to striated regularity are now veri�ed, and this concludes the
proof of the existence part of theorem 2.3.

4.5 Uniqueness

Let us spend a few words on proof of uniqueness: it is an immediate consequence of the following
stability result.

p:stab Proposition 4.11. Let
(
ρ1, u1,∇Π1

)
and

(
ρ2, u2,∇Π2

)
be solutions of system (1) with

0 < ρ∗ ≤ ρ1 , ρ2 ≤ ρ∗ .

Let us suppose that δρ := ρ1 − ρ2 ∈ C([0, T ];L2) and that δu := u1 − u2 ∈ C1([0, T ];L2).
Finally, assume that ∇ρ2, ∇u1, ∇u2 and ∇Π2 all belong to L1([0, T ];L∞).

Then, for all t ∈ [0, T ], we have the following estimate:

‖δρ(t)‖L2 + ‖δu(t)‖L2 ≤ C ec I(t) (‖δρ(0)‖L2 + ‖δu(0)‖L2) ,

where we have de�ned

I(t) :=

∫ t

0

(∥∥∇ρ2
∥∥
L∞

+
∥∥∇u1

∥∥
L∞

+
∥∥∇u2

∥∥
L∞

+
∥∥∇Π2

∥∥
L∞

)
dτ .

Proof. From ∂tδρ + u1 · ∇δρ = − δu · ∇ρ2, we immediately get

‖δρ(t)‖L2 ≤ ‖δρ(0)‖L2 +

∫ t

0
‖δu‖L2

∥∥∇ρ2
∥∥
L∞

dτ .

Moreover, the equation for δu reads as follows:

∂tδu + u1 · ∇δu = − δu · ∇u2 − ∇δΠ
ρ1

+
∇Π2

ρ1 ρ2
δρ ,

where we have set δΠ = Π1 − Π2. So, from standard Lp estimates for transport equations, one
has:

‖δu(t)‖L2 ≤ ‖δu(0)‖L2 + C

∫ t

0

(
‖δu‖L2

∥∥∇u2
∥∥
L∞

+ ‖∇δΠ‖L2 +
∥∥∇Π2

∥∥
L∞
‖δρ‖L2

)
dτ .
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Now, to get bounds for ∇δΠ, we analyse its equation:

−div

(
∇δΠ
ρ1

)
= div

(
− ∇Π2

ρ1 ρ2
δρ + u1 · ∇δu + δu · ∇u2

)
= div

(
− ∇Π2

ρ1 ρ2
δρ + δu · (∇u1 +∇u2)

)
,

where, to get the second equality, we have used the algebraic identity

div (v · ∇w) = div (w · ∇v) + div (v divw) − div (w div v) .

So, from lemma 3.13 we obtain

‖∇δΠ‖L2 ≤ C
(∥∥∇Π2

∥∥
L∞
‖δρ‖L2 + ‖δu‖L2

(∥∥∇u1
∥∥
L∞

+
∥∥∇u2

∥∥
L∞

))
,

and Gronwall's inequality completes the proof of the proposition.

Now, let us prove uniqueness: let
(
ρ1, u1,∇Π1

)
and

(
ρ2, u2,∇Π2

)
satisfy system (1) with same

initial data (ρ0, u0), under hypothesis of theorem 2.3.
As δu(0) = 0 and u ∈ C([0, T ];Lp), ∇u ∈ C([0, T ];Lq), one easily gets that δu ∈ C1([0, T ];L2).

Moreover, from this fact, observing that also δρ(0) = 0, the equation for δρ tells us that δρ ∈
C([0, T ];L2). Hence proposition 4.11 can be applied and uniqueness immediately follows.

5 On the lifespan of the solution
s:lifespan

The aim of this section is to establish, in the most accurate way, an explicit lower bound for the
lifespan of the solution of system (1) in terms of initial data only. Our starting point is subsection
4.3: with the same notations, we de�ne moreover

A(t) := ‖∇ρ(t)‖L∞ , U(t) := ‖∇u(t)‖L∞ , V (t) :=

∫ t

0
(L(τ) + Z(τ)) dτ ,

Γ(t) := ‖̃X(t)‖Cε , R(t) :=
∥∥∂X(t)∇ρ(t)

∥∥
Cε−1 .

It's only matter of repeating previous computations in a more accurate way. As

est:Uest:U (48) U(t) ≤ C (L(t) + Z(t)) = C V ′(t)

and the exponent δ > 1, we can write

life:Llife:L (49) L(t) ≤ C ecV (t)

(
L0 +A0 (1 +A0)δ

∫ t

0

(
ecV L2 + Z2

)
dτ

)
.

Concerning the �striated norms�, �rst of all, from (28) and (27), we have

Γ(t) ≤ C ecV (t)

(
Γ0 +

∫ t

0
e−cV (τ)S(τ) dτ

)
≤ C ecV (t) (Γ0 + Z t)∥∥∂X(t)u(t)

∥∥
Cε ≤ C

(
Z + Γ0 e

cV (t)(L+ Z) + ecV (t)(L+ Z)Z t
)

while (33) and (34) imply

‖∂Xρ‖Cε ≤ C ecV (t) (Γ0(1 +A0) +R0) , R(t) ≤ C ecV (t) (Γ0(1 +A0) +R0 + Z t) .

Now, we analyse carefully the terms in (39) one by one: keeping in mind also (44), we get that
the �rst of them can be bounded by

ecV (t)
(
L2 + Z2

)
(1 +A0)2+δ (Γ0 +R0)
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and the same holds for the second one. The third term, instead, can be decomposed into two
parts, one in which we have ‖̃X‖Cε and the other one with ‖̃X‖7/3Cε . It's easy to see that we can
control the former with

ecV (t)
(
L2 + Z2

)
(1 +A0)2+δ Γ0 + ecV (t)

(
L2 + Z2

)
(1 +A0)2+δ Z t

and the latter with

ecV (t)
(
L2 + Z2

)
(1 +A0)2+δ Γ

7/3
0 + ecV (t)

(
L2 + Z2

)
(1 +A0)2+δ Z7/3 t7/3 .

Finally, fourth and last terms of (39) can be bounded by

ecV (t)
(
L2 + Z2

)
(1 +A0) (1 + Γ0) + ecV (t)

(
L2 + Z2

)
(1 +A0)2+δ Z t ,

and all these inequalities lead us to control ‖∂X∇Π‖Cε with

ecV (t) (1 +A0)2+δ (V ′)13/3 t7/3 + ecV (t) (1 +A0)2+δ (V ′)3 t +life:d_X-P (50)

+ ecV (t) (1 +A0)2+δ
(

1 +R0 + Γ
7/3
0

)
(V ′)2 .

Now let us �nd a bound for Z(t). Again, let us proceed carefully, starting from estimate (43).
First and second terms under the integral are actually smaller than the last two ones we have just
analysed in considering the gradient of the pressure. Moreover, ‖∇ρ‖L∞ ‖∂X∇Π‖Cε , like the last
term, can be bounded by the same quantity in (50) multiplied by 1 +A0, while

‖̃X‖Cε ‖∇ρ‖2L∞ ‖∇Π‖C1∗ ≤ C Γ0 (1 +A0)2+δ ecV (t) (V ′)2

which is controlled again by (50).
So, keeping in mind (49), we �nally get

V ′(t) ≤ C1 e
C2V (t)

(
V ′(0) +

∫ t

0
eC2V

(
(1 +A0)3+δ

(
1 +R0 + Γ

7/3
0

)
(V ′)2+life:V (51)

+ (1 +A0)3+δ (V ′)13/3τ7/3 + (1 +A0)3+δ (V ′)3τ
)
dτ
)
.

Let us set T ∗ the supremum of the positive times for which the integral in the right-hand side
of the (51) is less than or equal to 2V ′(0). Hence on [0, T ∗] we have

V ′(t) ≤ C3 V
′(0) eC2 V (t) =⇒ 1 − e−C2 V (t) ≤ C4 V

′(0) t .

Now let us de�ne

life:Tlife:T (52) T :=
K̃

C4

(
V ′(0) (1 +A0)3+δ

(
1 +R0 + Γ

7/3
0

))−1
,

for a constant 0 < K̃ < 1 small enough (we will get later an estimate for it). For the sequel it is

convenient to de�ne K :=
(

1− K̃
)−1

.

We claim that T ∗ ≥ T .
First of all, in [0, T ] ∩ [0, T ∗], remembering last two inequalities we have eC2 V (t) ≤ K and

V ′(t) ≤ C3K V ′(0). Therefore, in this time interval the integral in (51) can be controlled by

K
(

(1 +A0)3+δ
(

1 +R0 + Γ
7/3
0

)
(C3K)2 (V ′(0))2 T +

+
3

10
(1 +A0)3+δ (C3K)13/3 (V ′(0))13/3 T 10/3 +

+
1

2
(1 +A0)3+δ (C3K)3 (V ′(0))3 T 2

)
.
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Now we want this expression to be less than or equal to 2V ′(0); hence, from (52) we get an
equation for K̃:

K

 K̃

C4
(C3K)2 +

3

10

(
K̃

C4

)10/3

(C3K)13/3 +
1

2

(
K̃

C4

)2

(C3K)3

 ≤ 2 .

So, if we take K̃ small enough, we obtain T ≤ T ∗, as claimed.

r:life Remark 5.1. Let us notice that, in the classical case (constant density), the lifespan of a solution
was controlled by below by

Tcl := C

(
‖Ω0‖Lq∩L∞ log

(
e+

‖Ω0‖CεX0

‖Ω0‖Lq∩L∞

))−1

(see also [12]). We have just proved that in our case the lifespan is given by (52), instead. As

V ′(0) = ‖u0‖Lp + ‖Ω0‖Lq∩L∞ + ‖∂X0Ω0‖Cε−1 ≥ c ‖Ω0‖Lq∩L∞ log

(
e+

‖Ω0‖CεX0

‖Ω0‖Lq∩L∞

)
,

it's quite evident that T ≤ Tcl (up to multiplication by a constant). Note also that the loga-
rithmic dependence disappeared thanks to estimate (48), which really simpli�es our complicated
computations but is maybe quite rough.

6 Generalizing vortex patches

First of all, let us prove conservation of conormal regularity.
Given a compact hypersurface Σ ⊂ RN of class C1+ε, we can always �nd, in a canonical way,

a family X of m = N(N + 1)/2 vector-�elds such that the inclusion CηΣ ⊂ C
η
X holds for all

η ∈ [ε, 1 + ε]. For completeness, let us recall the result (see proposition 5.1 of [12]), which turns
out to be important in the sequel.

p:con->stri Proposition 6.1. Let Σ be a compact hypersurface of class C1+ε.
Then there exists a non-degenerate family of m = N(N + 1)/2 vector-�elds X ⊂ T εΣ such that

CηΣ ⊂ C
η
X for all η ∈ [ε, 1 + ε].

Hence, thanks to theorem 2.3 we propagate striated regularity with respect to this family.
Finally, in a classical way, from this fact one can recover conormal properties of the solution, and
so get the thesis of theorem 2.5 (see e.g. [17] and [12] for the details).

Actually, in the case of space dimension N = 2 , 3 (�nally, the only relevant ones from the
physical point of view) one can improve the statement of theorem 2.5. To avoid traps coming
from di�erential geometry, let us clarify our work setting.

In considering a submanifold Σ ⊂ RN of dimension k and of class C1+ε (for some ε > 0), we
mean that Σ is a manifold of dimension k endowed with the di�erential structure inherited from
its inclusion in RN , and the transition maps are of class C1+ε.
In particular, for all x ∈ Σ there is an open ball B ⊂ RN containing x, and a C1+ε local
parametrization ϕ : Rk → B ∩ Σ with inverse of class C1+ε. This is equivalent to require lo-
cal equations H : B → Rk of class C1+ε such that H|B∩Σ ≡ 0.

Given a local parametrization ϕ on U := Σ∩B, its di�erential ϕ∗ : TRk → TU ∼= TΣ induces,
in each point x ∈ Rk, a linear isomorphism between the tangent spaces, ϕ∗,x : TxRk → Tϕ(x)Σ.
Moreover, the dependence of this map on the point x ∈ Rk is of class Cε: in coordinates, ϕ∗ is
given by the Jacobian matrix ∇ϕ.
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Finally, we say that a function f de�ned on Σ is (locally) of class Cα (for α > 0) if the
composition f ◦ ϕ : Rk → R is α-Hölder continuous for any local parametrization ϕ.

Before stating our claim, some preliminary results are in order. Let us start with a very simple
lemma.

l:D->Hold Lemma 6.2. Let f ∈ L∞(RN ) such that its gradient is α-Hölder continuous for some α > 0.
Then f ∈ C1+α(RN ).

Proof. It's obvious using dyadic characterization of Hölder spaces and Bernstein's inequalities.

Now, by analogy, one may ask if this property still holds true for a function de�ned on
a submanifold, with Hölder continuous tangential derivatives. In fact, with some additional
hypothesis on the submanifold, one can prove that also in this case there is a gain of regularity.

l:Hold-man Lemma 6.3. Let Σ ⊂ RN be a submanifold of dimension k and of class C1+ε, for some ε > 0.
Moreover, let us suppose Σ to be compact.
Let us consider a function f : Σ → R, bounded on Σ, such that ∂Xf ∈ Cε(Σ) for all vector-�elds
X of class Cε tangent to Σ.

Then f ∈ C1+ε(Σ).

Proof. Let us �x a coordinate set U := B ∩ Σ (for some open ball B ⊂ RN ) with its C1+ε local
parametrization ϕ : Rk → U , and let us de�ne g := f ◦ ϕ : Rk → R.

Obviously, g ∈ L∞(Rk).
Moreover, for all 1 ≤ i ≤ k let us set ϕ∗(∂i) = Xi : then, Xi is obviously of class Cε. Hence

we have ∂ig(x) = Xi(f)(ϕ(x)), i.e. ∂ig in a point x is the derivation Xi applied to the function
f , and evaluated in the point ϕ(x). In our notations, we get ∂ig = (∂Xif) ◦ ϕ.

Therefore, from our hypothesis it follows that ∇g ∈ Cε, and so, by lemma 6.2, g ∈ C1+ε(Rk).
In conclusion, we have proved that f composed with any local parametrization ϕ is of class

C1+ε on Rk. Moreover, as Σ is compact, we can bound its Hölder norm gobally on Σ, that is to
say in a way independent of the �xed open set U , and we get that f ∈ C1+ε(Σ).

r:Hold-man Remark 6.4. Let us note that the operator ∂X depends linearly on the vector-�eld X. Hence,
in the hypothesis of previous lemma it's enough to assume that one can �nd, locally on Σ, a
family {X1, . . . , Xk} of linearly independent vector-�elds of class Cε such that ∂Xif ∈ Cε(Σ) for
all 1 ≤ i ≤ k.

c:Hold-man Corollary 6.5. Let Σ ⊂ RN be a compact hypersurface of class C1+ε, and let f ∈ C1
∗(RN ).

If f ∈ C1+ε
Σ , then f|Σ ∈ C1+ε(Σ).

Proof. By proposition 6.1 and non-degeneracy condition, we can �nd, locally on Σ, N −1 linearly
independent vector-�leds X1 . . . XN−1, de�ned on the whole RN and of class Cε, which are tangent
to Σ and such that div (f Xi) ∈ Cε(RN ) for all 1 ≤ i ≤ N − 1.

Moreover, also the divergence of these vector-�elds is ε-Hölder continuous; therefore, using
also Bony's paraproduct decomposition, we gather that

∂Xif = div (f Xi) − f divXi ∈ Cε(RN ) ∀ 1 ≤ i ≤ N − 1 ,

and hence this regularity is preserved if we restrict ∂Xif only to Σ.
So, lemma 6.3 and remark 6.4 both imply that f|Σ ∈ C1+ε(Σ).

Now, let us come back to the situation of theorem 2.5. Moreover, let us suppose that the
hypersurface Σ0 is also connected: then it separates the whole space RN into two connected
components, the �rst one bounded and the other one unbounded. In dimension 2, this is nothing
but the Jordan curve theorem, while in the case N = 3 it's a consequence of Alexander duality
theorem (see e.g. [19]).
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So, let us set D0 to be the bounded domain of RN whose boundary is ∂D0 = Σ0 and let us
de�ne D(t) = ψt(D0). As the �ow ψt is a di�eomorphism for every �xed time t, we have that
∂D(t) = Σ(t) and also the complementary region is transported by ψ: D(t)c = ψt(D

c
0).

Let us denote by χA the characteristic function of a set A.

p:conorm Proposition 6.6. Under hypothesis of theorem 2.5, suppose also that the initial data can be
decomposed in the following way:

ρ0(x) = ρi0(x)χD0(x) + ρe0(x)χDc0(x) and Ω0(x) = Ωi
0(x)χD0(x) + Ωe

0(x)χDc0(x) ,

with ρi0 ∈ C1+ε(D0) and Ωi
0 ∈ Cε(D0).

Then, the previous decomposition still holds for the solution at every time t ∈ [0, T ]:

ρ(t, x) = ρi(t, x)χD(t)(x) + ρe(t, x)χD(t)c(x)eq:dec_rho (53)

Ω(t, x) = Ωi(t, x)χD(t)(x) + Ωe(t, x)χD(t)c(x) .eq:dec_vort (54)

Moreover, Hölder continuity in the interior of the domain D(t) is preserved, uniformly on [0, T ]:
at every time t, we have

• ρi(t) ∈ C1+ε(D(t)) and

• Ωi(t) ∈ Cε(D(t)),

and regularity on D(t) propagates also for the velocity �eld and the pressure term: u(t) and ∇Π(t)
both belong to C1+ε(D(t)).

Proof. First of all, let us recall that, by theorem 2.5, on [0, T ] we have

est:L^1_t-Duest:L^1_t-Du (55)
∫ T

0
‖∇u(t)‖L∞ dt ≤ C .

Thanks to �rst equation of (1), relation (53) obviously holds, with

ρi,e(t, x) = ρi,e0

(
ψ−1
t (x)

)
.

So, we immediately get that ρi(t) belongs to the space C1+ε(D(t)). Let us observe also that a
decomposition analogous to (53) holds also for a = 1/ρ, and its components ai,e have the same
properties of the corresponding ones of ρ.

Now let us handle the vorticity term. We can always decompose the solution in a component
localised on D(t) and the other one supported on the complementary set, de�ning

Ωi(t, x) := Ω(t, x)χD(t)(x) , Ωe(t, x) := Ω(t, x)χD(t)c(x) ,

and therefore obtain relation (54). By virtue of this fact, equation (6) restricted on the domain
D(t) reads as follows:

∂tΩ
i + u · ∇Ωi = −

(
Ωi · ∇u + t∇u · Ωi + ∇ai ∧∇Π

)
,

which gives us the estimate (keep in mind also (55))∥∥Ωi(t)
∥∥
Cε ≤ C

(∥∥Ωi
0

∥∥
Cε +

∫ t

0

(∥∥Ωi · ∇u+ t∇u · Ωi
∥∥
Cε +

∥∥∇ai ∧∇Π
∥∥
Cε
)
dτ

)
.

We claim that the �rst term under the integral can be controlled in Cε. As a matter of facts, by
(3) we know that the velocity �eld satis�es the elliptic equation

−∆uk =

N∑
j=1

∂jΩ
i
kj
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in D(t), with the boundary condition (by theorem 2.5 and corollary 6.5) u|∂D(t) ∈ C1+ε(∂D(t)).
So (see theorem 8.33 of [18]) we have that u ∈ C1+ε(D(t)) and the following inequality holds:

‖u‖C1+ε(D(t)) ≤ C
(∥∥u|∂D(t)

∥∥
C1+ε(∂D(t))

+
∥∥Ωi

∥∥
Cε(D(t))

)
.

Let us note that, as pointed out in [18], a priori the constant C depends on ∂D(t) through the

C1+ε norms of its local parametrizations, so �nally on exp
(∫ t

0 ‖∇u‖L∞dτ
)
. However relation (55)

allows us to control it uniformy on [0, T ]. Therefore, in D(t) one gets the following inequality:∥∥Ωi · ∇u+ t∇u · Ωi
∥∥
Cε(D(t))

≤ C
∥∥Ωi

∥∥
Cε(D(t))

‖u‖C1+ε(D(t)) ,

which proves our claim.
Finally, let us handle the pressure term: we will argue as just done for the velocity �eld. From
what we have proved, we have that ∇ai is in Cε; moreover, ∇Π satis�es the equation

−∆Π = ∇(log ai) · ∇Π + ρi∇u : ∇u

in the bounded domain D(t), provided with the boundary conditions (again thanks to theorem
2.5 and corollary 6.5) ∇Π|∂D(t) ∈ C1+ε(∂D(t)). So we get (see again [18]) ∇Π ∈ C1+ε(D(t)) and
its norm in this space can be bounded (recall (55) again) by∥∥∇Π|∂D(t)

∥∥
C1+ε(∂D(t))

+
∥∥∇ai∥∥Cε(D(t))

‖∇Π‖Cε(D(t)) +
∥∥ρi∥∥C1+ε(D(t))

‖∇u‖2Cε(D(t)) ;

applying interpolation inequality for Hölder spaces for the inclusions C1+ε ↪→ Cε ↪→ L∞ leads us
to the control of ‖∇Π‖C1+ε(D(t)).

Putting all these inequalities together and applying Gronwall's lemma, we �nally get a control
for the Cε norm of Ωi in the interior of D(t), and this completes the proof of the corollary.
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