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Abstract

In this paper we obtain a result about propagation of geometric properties for solutions of non-homogeneous
incompressible Euler system in any dimension N > 2. In particular, we investigate conservation of striated
and conormal regularity, which is a natural way of generalising the 2-D structure of vortex patches. The
results we get are only local in time, even in the dimension N = 2: in contrast with the homogeneous
case, the global existence issue is still an open problem, because the vorticity is not preserved during the
time evolution. Moreover we will be able to give an explicit lower bound for the lifespan of the solution, in
terms of the norms of initial data only. In the case of physical dimension N = 2 or 3, we will investigate
also propagation of Holder regularity in the interior of a bounded domain.

1 Introduction

In this paper we are interested in studying conservation of geometric properties for solutions of
the density-dependent incompressible Euler system

Op +u-Vp =0
(1) p(Ou + u-Vu) + VII =0

divu = 0,

which describes the evolution of a non-homogeneous inviscid fluid with no body force acting on
it, an assumption we will make throughout all this paper to simplify the presentation. Here,
p(t,z) € Ry represents the density of the fluid, u(t,r) € RY its velocity field and TI(t,z) € R
its pressure. The term VII can be also seen as the Lagrangian multiplier associated to the
divergence-free constraint over the velocity.

We will always suppose that the variable  belongs to the whole space RY.

The problem of preserving geometric structures came out already in the homogeneous case,
for which p =1 and system (1) becomes

ou + u-Vu + VII =0
(E)

divu = 0,



in studying 2-dimensional vortex patches, that is to say the initial vorticity ) is the characteristic
function of a bounded domain Dy. As we will explain below, in the case of higher dimension N > 3
this notion was generalized by the properties of striated and conormal regularity.

The vorticity of the fluid is defined as the skew-symmetric matrix

(2) Q = Vu — 'Vu
and in the homogenous case it satisfies the equation
X+ u-VQ+ Q-Vu + 'Vu-Q =0.

In dimension N = 2 it can be identified with the scalar function w = 0ju?> — Osu!, while for
N = 3 with the vector-field w = V x u. Let us recall also that in the bidimensional case this
quantity is transported by the velocity field:

Ow + u-Vw =0.

The notion of vortex patches was introduced in [24]| and gained new interest after the survey
paper [22]| of Majda. In the case N = 2 Yudovich’s theorem ensures the existence of a unique
global solution of the homogeneous Euler system, which preserves the geometric structure: the
vorticity remains the characteristic function of the evolution (by the flow associated to this solu-
tion) of the domain Dy. Vortex patches in bounded domains of R? were also studied by Depauw
(see [15]), while Dutrifoy in [16] focused on the case of domains in R3. Moreover, in [6] Chemin
proved that, if the initial domain has boundary dDq of class C!*¢ for some £ > 0, then this
regularity is preserved during the evolution for small times; in [7] he also showed a global-in-time
persistence issue. In [11] Danchin considered instead the case in which initial data of the Euler
system are vortex patches with singular boundary: he proved that if Dg is regular apart from a
closed subset, then it remains regular for all times, apart from the closed subset transported by
the flow associated to the solution.

In the case N > 3 one can’t expect to have global results anymore, nor to preserve the initial
vortex patch structure, because of the presence of the stretching term in the vorticity equation.
Nevertheless, it’s possible to introduce the definition of striated regularity, which generalizes in a
quite natural way the previous one of vortex patch: it means that the vorticity is more regular
along some fixed directions, given by a nondegenerate family of vector-fields (see definition 2.1
below). This notion was introduced first by Bony in [3]| in studying hyperbolic equations, and
then adapted by Alinhac (see [1]) and Chemin (see [5]) for nonlinear partial differential equations.

In [17], Gamblin and Saint-Raymond proved that striated regularity is preserved during the
evolution in any dimension N > 3, but, as already remarked, only locally in time (see also [23]).
They also obtained global results if initial data have other nice properties (e.g., if the initial
velocity is axisymmetric).

As Euler system is, in a certain sense, a limit case of the Navier-Stokes system as the viscosity of
the fluid goes to 0, it’s interesting to study if there is also “convergence” of the geometric properties
of the solutions. Recently Danchin proved results on striated regularity for the solutions of the
Navier-Stokes system

ou +u-Vu —vAu + VII =0
(NSy)

divu = 0,

in [10] for the 2-dimensional case, in [12] for the general one. Already in the former paper, he
had to dismiss the vortex patch structure “stricto sensu” due to the presence of the viscous term,
which comes out also in the vorticity equation and has a smoothing effect; however, he still got
global in time results. Moreover, in both his works he had to handle with spaces of type B;;g
(with p €]2, +oo[ and € €]2/p, 1[) due to technical reasons which come out with a viscous fluid.



Let us immediately clarify that these problems have been recently solved by Hmidi in [20] (see
also [2]), and this fact allows us to consider again the Holder spaces framework. In the above
mentioned works Danchin proved also a priori estimates for solutions of (NS,) independent of the
viscosity v, therefore preservation of the geometric structures in passing from solutions of (NS))
to solutions of (E) in the limit v — 0.

In this paper we will come back to the inviscid case and we will study the non-homogeneous

incompressible Euler system (1). We want to investigate if preservation of geometric properties of
initial data, such as striated and conormal regularity, still holds in this setting, as in the classical
(homogeneous) one. Let us note that in the 2-dimensional case the equation for the vorticity
reads
1
P
80 it’s not better than in higher dimension due to the presence of the density term, which doesn’t
allow us to get conservation of Lebesgue norms. This is also the reason why it’s not clear if
Yudovich’s theorem still holds true for non-homogeneous fluids: having wg € L? N L*°, combined
with suitable hypothesis on pg, doesn’t give rise to a local solution.
So, we will immediately focus on the general case N > 2. We will assume the initial velocity ug
and the initial vorticity g to be in some Lebesgue spaces, in order to assure the pressure term
to belong to L?, a requirement we could not bypass. As a matter of fact, VII satisfies an elliptic
equation with low regularity coefficient,

ﬁtw+u-Vw+V< )/\VH:(),

—div (a VII) = div F,

and it can be solved independently of a only in the energy space L?. Moreover, we will suppose g
to have regularity properties of geometric type. Obviously, we will require some natural but quite
general hypothesis also on the initial density pg of the fluid: we suppose pg to be bounded with
its gradient and that it satisfies geometric assumptions analogous to those for {2y. Let us point
out that proving the velocity field to be Lipschitz, which was the key part in the homogeneous
case, works as in this setting: it relies on Biot-Savart law and it requires no further hypothesis
on the density term. Let us also remark that no smallness condition over the density are needed.
Of course, we will get only local in time results. Moreover, we will see that geometric structures
propagate also to the velocity field and to the pressure term.

Our paper is organized in the following way.

In the first part, we will recall basic facts about Euler system: some properties of the vorticity
and how to associate a flow to the velocity field. In this section we will also give the definition of
the geometric properties we are studying and we will state the main results we got about striated
and conormal regularity.

Then, we will explain the mathematical tools, from Fourier Analysis, we need to prove our
claims: so, we will introduce the Littlewood-Paley decomposition and some techniques coming
from paradifferential calculus. In particular, we will introduce the notion of paravector-field, as
defined in [12]: it will play a fundamental role in our analysis, because it is, in a certain sense,
the principal part of the derivation operator along a fixed vector-field. Moreover, we will also
quote some results about transport equations in Holder spaces and about elliptic equations in
divergence form with low regularity coefficients.

This having been done, we will finally be able to tackle the proof of our result about striated
regularity. First of all, we will state a priori estimates for suitable smooth solutions of the Euler
system (1). Then from them we will get, in a quite classical way, the existence of a solution
with the required properties: we will construct a sequence of regular solutions of system (1) with
approximated data, and, using a compactness argument, we will show the convergence of this
sequence to a “real” solution. Proving preservation of the geometric structure requires instead
strong convergence in rough spaces of type C™® (for some a > 0). Uniqueness of the solution
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will follow from a stability result for our equations. In the following section, we will also give an
estimate from below for the lifespan of the solution.

Finally, we will spend a few words about conormal regularity: proving its propagation from
the previous result is standard and can be done as in the homogenous setting. As a consequence,
inspired by what done in Huang’s paper [21], in the physical case of space dimension N =2 or 3
we can improve our result: we will also show that, if the initial data are Holder continuous in the
interior of a suitably smooth bounded domain, the solution conserves this property during the
time evolution, i.e. it is still Holder continuous in the interior of the domain transported by the
flow.

2 Basic definitions and main results

Let (p,u, VII) be a solution of the density-dependent incompressible Euler system (1) over [0, 7] x
R and let us denote the vorticity of the fluid by €. As in the homogeneous case, it will play a
fundamental role throughout all this paper, so let us spend a few words about it.

From the definition (2), it is obvious that, for all ¢ € [1,00], if Vu € L4, then also € L1.
Conversely, if u is divergence-free then for all 1 < i < N we have Au' = Zjvzl 05, and so,
formally,

(3) ut = = (=AY 0,0

This is the Biot-Savart law, and it says that a divergence free vector-field u is completely deter-
mined by its vorticity. From (3) we immediately get

N
(4) Vu’ = -V (—A)_l 2 8]'91‘3‘ .
Jj=1

Now, as the symbol of the operator —3; (—A)f1 0 is o (&) = &&;/|€|?, the classical Calderon-
Zygmund theorem ensures that! for all ¢ €]1,00[, if © € LY then Vu € L? and

2
q
() IVul[e < C -1 192]] o -

In dimension N = 2 the vorticity equation is simpler than in the general case due to the
absence of the stretching term. Nevertheless, as remarked above, the exterior product involving
density and pressure terms makes it impossible to get conservation of Lebesgue norms, which
was the fundamental issue to get global existence. So, we immediately focus on the case N > 2
whatever, in which the vorticity equation reads

1

(6) atQ+u-VQ+Q-Vu+tVu-Q+V<p

)/\VHzO,

where, for two vector-fields v and w, we have set v A w to be the skew-symmetric matrix with
components
i

(vAw),; = vt — v'w’ .

Finally, recall that we can associate a flow ¥ to the velocity field u of the fluid: it is defined
by the relation

Y(t,x) = Yy(z) = x + /0 u(T, ¥, (x)) dr

!This time the extreme values of ¢ are not included.
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for all (t,2) € [0,T] x RY and it is, for all fixed ¢ € [0, 7], a diffoomorphism over R.

Let us now introduce the geometric properties we are handling throughout this paper. The
first notion we are interested in is the striated regularity, that is to say initial data are more regular
along some given directions.

So, let us take a family X = (X));<,<,, of m vector-fields with components and divergence
of class C¢ for some fixed ¢ €]0, 1[. We also suppose this family to be non-degenerate, i.e.

1

N-1 N-1
I(X) := inf sup A Xa(z)

N
zeR AeAT

> 0.

1

Here A € A%;_; means that A = (A,...,Ay—1), with each \; € {1,...,m} and \; < \; for i < j,
N—1

while the symbol A~ X, stands for the element of RY such that

N-1
VY eRY, ( A XA) Y = det (X - X, Y)

For each vector-field of this family we put
[ Xalles := [ Xxlles + lldiv Xillee

while we will use the symbol ||| - ||| in considering the supremum over all indices A € A" =

{1...m}.

Definition 2.1. Take a vector-field Y with components and divergence in C* and fix a n €
[e,1 4+ ¢]. A function f € L* is said to be of class C" along Y, and we write f € Cy, if
div (fY) e C1H(RY).

If X = (X)\);<)<, is @ non-degenerate family of vector-fields as above, we define

1 o :
G= () G and ey = g (e Xlle: + lldiv (7 X) [lerm)
1<A<m

Remark 2.2. Our aim is to investigate Holder regularity of the derivation of f along the fixed
vector-field (say) Y, i.e. the quantity

N
Oy f =Y Y'Of.
=1

If f is only bounded, however, this expression has no meaning: this is why we decided to focus on
div (fY), as done in the literature about this topic (see also [12]). Lemma 4.5 below will clarify
the relation between these two quantities.

Now, let us take a vector-field X and define its time evolution X (¢):
(7) X(t,2) = Xi(x) = Oxo@@te (¥ (@)

that is X (¢) is the vector-field X transported by the flow associated to u. From this definition,
it immediately follows that [X(¢), 0 + u- V] =0, i.e. X (¢) satisfies the following system:

(8)

(0 + u-V)X = dxu

We are now ready for stating our first result, on striated regularity.



t:conorm-N

Theorem 2.3. Fir ¢ €]0,1[ and take a non-degenerate family of vector-fields Xo = (Xox);<y<pm
over RY | whose components and divergence are in C¢.
Let the initial velocity field ug € LP, with p €)2,+00|, and its vorticity Qy € L N L4, with
q € [2,+o00[ such that 1/p + 1/q > 1/2. Let us suppose Qg € C%;, .
Finally, let the initial density pg € W1 be such that 0 < p, < pg < p* and Vpg € C,-

Then there exist a time T > 0 and a unique solution (p,u, VII) of system (1), such that:

e p € L™([0,T); W) N Cy([0,T] x RY), such that 0 < p. < p < p* at every time;
e u € C([0,T); LP)NL>([0,T];COY), with Oyu € C([0,T); L?) and vorticity Q € C([0,T]; L9);
e VII € C([0,T); L?), with VI € L>([0,T]; L*™°).

Moreover, the family of vector-fields transported by the flow still remains, at every time, non-
degenerate and with components and divergence in C%, and striated regularity is preserved: at
every time t € [0,T], one has that

o Vp(t) and Q(t) € Cxw) -

e u(t) and VII(t) € C}J(f)

uniformly on [0,T).

Another interesting notion, strictly related to the previous one, is that of conormal regularity.
First of all, we have to recall a definition (see also [12]).

Definition 2.4. Let ¥ C RY be a compact hypersurface of class C'*¢. Let us denote by Ts
the set of all vector-fields X with components and divergence in C®, which are tangent to ¥, i.e.
Ox H |, = 0 for all local equations H of ¥.

Given a 7 € [e,1 + ], we say that a function f € L belongs to the space C¢. if

VX € 75, div(fX)ecr?!.

Similarly to what happens for striated regularity, also conormal structure propagates during
the time evolution.

Theorem 2.5. Fiz e €0, 1[ and take a compact hypersurface Yo C RN of class C1*°.
Let us suppose the initial velocity field ug € LP, with p €2, +00|, and its vorticity Qo € L N LY,
with q € [2,+00] such that 1/p + 1/q > 1/2. Moreover, let us suppose Qy € Cs,-
Finally, let the initial density pg € W1 be such that 0 < p, < po < p* and Vpg € Cs,, -

Then there exist a time T > 0 and a unique solution (p,u, VII) of system (1), which verifies
the same properties of theorem 2.3.
Moreover, if we define

%(t) = e (3o) ,

Y(t) is, at every time t € [0,T), a hypersurface of class C1*¢ of RN and conormal regularity is
preserved: at every time t € [0,T), one has

e Vp(t) and Q(t) € Co) -
o u(t) and VII(t) € Cgij

uniformly on [0,T].



3 Tools

In this section we will introduce the main tools used to prove our results; they are mostly based
on Fourier analysis techniques. Unless otherwise specified, one can find the proof of all the results
quoted here in [2].

3.1 Littlewood-Paley decomposition and Besov spaces

Let us first define the so called “Littlewood-Paley decomposition”, based on a non-homogeneous
dyadic partition of unity with respect to the Fourier variable. So, fix a smooth radial function
X supported in (say) the ball B(0, %), equal to 1 in a neighborhood of B(0,3) and such that
r — x(re,) is nonincreasing over Ry, and set ¢ (§) = x (§/2) — x (§) .

The dyadic blocks (A;);ez are defined by?
Aj:=0if j<-2, A_j:=x(D) and A;:=¢277D) if j>0.
We also introduce the following low frequency cut-off:
Sju = x(27'D) = Z A for j>0.
E<j—1

The following classical properties will be used freely throughout the paper:

o for any u € &', the equality u = 3"; Aju holds true in §;

e for all u and v in &', the sequence (Sj_ju Ajv)jeN is spectrally supported in dyadic annuli.
One can now define what a Besov space B, is.

Definition 3.1. Let u be a tempered distribution, s a real number, and 1 < p,r < oco. We set

p,r

1
|ullBs = <ZQT]’S‘A]-UHEP> if r<oo and |ullgs = s>up (QJSHAjuHLp).
J

We then define the space B, as the subset of distributions u € &’ such that [lu|[ps  is finite.

From the above definition, it is easy to show that for all s € R, the Besov space Bj , coincides
with the non-homogeneous Sobolev space H*, while for all s € R}\N, the space B, ., is actually
the Holder space C*.

If s € N, instead, we set Cj := B, ., to distinguish it from the space C* of the differentiable
functions with continuous partial derivatives up to the order s. Moreover, the strict inclusion
C; — C; holds, where C; denotes the subset of C® functions bounded with all their derivatives
up to the order s.

If s <0, we define the “negative Holder space” C* as the Besov space B, .

Finally, let us also point out that for any k£ € N and p € [1, 400], we have the following chain
of continuous embeddings:

k k,p k
Bp’1 — WH5P — Bppo,

where W*P denotes the set of LP functions with derivatives up to order k in LP.
Besov spaces have many nice properties which will be recalled throughout the paper whenever
they are needed. For the time being, let us just mention that if the condition

N N
s> 1+ — or s=14+ — and r=1
p p

holds true, then B, , is an algebra continuously embedded in the set C%! of bounded Lipschitz
functions, and that the gradient operator maps B, , in B;;l.

*Throughout we agree that f(D) stands for the pseudo-differential operator u + F ™ (f Fu).



The following result will be also needed.

Proposition 3.2. Let F : RY — R be a smooth homogeneous function of degree m away from a
neighborhood of the origin.

Then for all (p,7) € [1,00]% and all s € R, the operator F(D) maps By, in By.™.

The following fundamental lemma describes, by the so-called Bernstein’s inequalities, the way
derivatives act on spectrally localized functions.

Lemma 3.3. Let 0 < r < R. A constant C' exists so that, for any nonnegative integer k, any
couple (p,q) in [1,00)% with 1 < p < q and any function u € LP, we have, for all A > 0,

11
Supp@ C B(0, AR) = ||[VFu| e < chr kN (53) || v ;
Suppd C {€ € RN /rA < |€] < RAY = CTF U0\ ||u|| e < [|[VFul|r < CEFFINE||u| Lo .

As an immediate consequence of the first Bernstein inequality, one gets the following embed-
ding result.

Corollary 3.4. The space Bp!, s continuously embedded in the space Bp? ., for all indices

satisfying 1 < p1 < po < 400 and

1 1 1 1
52<51—N<—) or 52:.91—N<—> and 1 < rp < ry < 400.
p1 P2 p1 P2

As we are interested in the class of Holder spaces, from now on we will focus on this particular
case.

3.2 Paradifferential calculus

Let us now introduce Bony’s decomposition of the product of two tempered distrubutions u and
v: we will define the paraproduct operator and recall a few nonlinear estimates in Holder spaces.
Constructing the paraproduct operator relies on the observation that, formally, the product uv,
may be decomposed into

9) uv = Tyv + Tyu + R(u,v),

with
Ty = ZSj,luAjv and R(u,v) = Z Z AjuAgv.
J

J|k=jl<1
The above operator T is called “paraproduct”, whereas R is called “remainder”.

The paraproduct and remainder operators have many nice continuity properties. The following
ones will be of constant use in this paper.

Proposition 3.5. For any s € R andt > 0, the paraproduct operator T maps L*° x C® in C*° and
C7t x C* in C*7t, and the following estimates hold:

[Tuvlles < Cllullzee [[Volles—s and  [[Tyvlles—e < Cllufle— [[Vvllgs-1 -

For any s1 and so in R such that sy + so > 0, the remainder operator R maps C%' x C%2 in
Cs1%52 continuously.

Combining the above proposition with Bony’s decomposition (9), we easily get the following
“tame estimate”
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Corollary 3.6. Let u be a bounded function such that Vu € C5~! for some s > 0.
Then for any v € C° we have uv € C° and there exists a constant C, depending only on N
and s, such that

luvlies < €(Nullze [vlles + l[ollzee [Fulleamr)

In our computations we will often have to handle compositions between a paraproduct operator
and a Fourier multiplier. The following lemma (see the proof e.g. in [10]) provides us with
estimates for the commutator operator.

Lemma 3.7. Let m € R, R > 0 and f € C°(RYN) be a homogencous smooth function of degree
m out of the ball B(0, R).

Then, there exists a constant C, depending only on R, such that, for all s € R and all 0 < 1,
one has:

C
(10) [T, F(D)]0llcs—mte < 7—— [[Vullgo1 [|v]lcs -

l1—0c

Let us now quote another result (see [13] for the proof of the former part, [10] for the proof
of the latter), pertaining to the composition of functions in Besov spaces, which will be of great
importance in the sequel.

Proposition 3.8. (i) Let I be an open interval of R and F : I — R a smooth function.

Then for all compact subset J C I and all s > 0, there exists a constant C' such that, for all
function u valued in J and with gradient in C°*~', we have V(F ou) € C5~1 and

IV(F ow)ers < C[[Vullers.

(i) Let s >0 and m € N be such that m > s. Let uw € C° and ) € CJ* such that the Jacobian of
=1 is bounded.

Then uwo € C°. Moreover, if s €]0,1] the following estimate holds:
luotlles < C (1 +[IVh]peo) l[ulles -

Finally, let us introduce the notion of paravector-field.

Definition 3.9. Let X be a vector-field with coefficients in §’. We can formally define the
paravector-field operator Tx in the following way:

N
TXu = Z TXiE?iu

i=1
for all u € S.

The following result (see [12]| for the proof) says that the paravector-field operator is, in a
certain sense, the principal part of the derivation dx: the derivative along X is more regular if
and only if the “paraderivation” along X is.

Lemma 3.10. For all vector field X € C* and all u € Ct, we have:
e ift<1lands+t>1, then

C
(1—t)(s+t—1)

lOxu — TXu||Cs+t—1 < [ X les [Vullge-1;
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e ift<0,s<1lands+t>0, then

H Xu ll (u‘<)|’C$+t_1 S t(S t) (S 1) H HCS HuHCt7
o ift<1lands+t>0, then
oxu x| pstt— Xes [|Vullpe=1 .
X XUl|gs+t—1 S G+i -1 C ct-1

Moreover, first and last inequalities are still true even in the case t = 1, provided that one replaces
[Vullco with ||Vu| L, while the second is still true even if t =0, with ||ul|L~ instead of |lu||co-

We will heavily use also the following statement about composition of paravector-field and
paraproduct operators (see again [12| for its proof).

Lemma 3.11. Fiz s €]0,1[. There exist constants C, depending only on s, such that, for all
t1 <0 and ty € R,

ITx Tuvllgs-14e4, - < C (1 X]les [lullern 0]l +

Fllvllees [Txulles—1va + flullen [Txvllesr+e2)

and this is true still in the case t1 = 0 with ||ul|L instead of ||lul|co.
Moreover, if s—1+t1 +to > 0, then we have also

ITx R(w, v)lgs—1+040, - < C (1 X]les [[ullen lvllee +

+ vl [Txulles—e + flullen [[Txvlles—1+t2) -
3.3 Transport and elliptic equations
System (1) is basically a coupling of transport equations of the type
6tf +v- vf =9,
Jii=0 = fo-

So, we often need to use the following result, which enables us to solve (T") in the Hélder spaces
framework.

(1)

Proposition 3.12. Let o >0 (0 > —1 if divvo =0).
Let fo €C%, g € L*([0,T];C°) and v be a time dependent vector field in Cy([0,T] x RY) such that

Vo € LY[0,T];L*°) if o<1,
Vv € LY[0,T);co 1) if o>1.
o'<o

Then equation (T) has a unique solution f in the space (ﬂ C([O,T];C"l)) N Cw([0,T];C7).

Moreover, for all t € [0,T] we have

t
(11) eI N Ol < olles + /O eV Yg(7)lco dr

IVl <t
with V'(t) == _
IVu(t)||co—1 if o >1.

If f =v then, for allo >0 (o > —1 if divev =0), estimate (11) holds with V'(t) := ||V f(t)] L.

10
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st :rho_L~inf

't :Drho_L~inf

Finally, we shall make an extensive use of energy estimates for the following elliptic equation:
(12) —div(aVI) =divF in RY,
where a = a(x) is a given suitably smooth bounded function satisfying

13 .= inf > 0.
(13) a xlerﬁwa(x)

We shall use the following result based on Lax-Milgram’s theorem (see the proof in e.g. [13]).

Lemma 3.13. For all vector field F with coefficients in L?, there exists a tempered distribution
I1, unique up to constant functions, such that VII € L? and equation (12) is satisfied. In addition,
we have

ax [[VI| 2 < [[FlLz .

4 Propagation of striated regularity

Now we are ready to tackle the proof of theorem 2.3. We will carry out it in a standard way:
first of all we will prove a priori estimates for solutions of the non-homogeneous Euler equations.
Then, we will construct a sequence of regular approximated solutions. Finally, thanks to upper
bounds proved in the first part, we will get convergence of this sequence to a solution of our initial
system, with the required properties.

4.1 A priori estimates

First of all, we will prove a priori estimates for a smooth solution (p, u, VII) of system (1).

4.1.1 Estimates for density and velocity field
From first equation of (1), it follows that
pt,x) = po (¢ (@) ,
s0, as the flow ¢ is a diffeomorphism over RV at all fixed time, we have that
(14) 0 <pe<pt)<p.

Applying the operator 0; to the same equation, using classical LP estimates for the transport
equation and Gronwall’s lemma, we get

t
(1) VoMl < Vol exp (C/O Ve oo dT> .

From the equation for the velocity, instead, we get, in a classical way,

v

t
lu@)llze < lluollze + / dr
0

Lp

so, using (14) and Holder inequalities, for a certain 6 €]0, 1], the following estimate holds:

C t _
(16) Ju®)ll < lollr + - / VI, VI dr

Remark 4.1. Let us observe that, as regularity of the pressure goes like that of the velocity
field, one can try to estimate directly the LP norm of the pressure term. Unfortunately, we can’t
solve its (elliptic) equation in this space without assuming a smallness condition on the gradient
of the density. So, we will prove that VII is in L? N L>°, which is actually stronger than previous
property and requires no other hypothesis on the density term.

11
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p:Du_L~inf

est:Du_L~inf

est:0m_L~inf

Already from (15) it’s clear that we need an estimate for the L> norm for the gradient of the
velocity. As remarked before, we can’t expect to get it from the hypothesis Q2 € L®; the key will
be the further assumption, i.e. the hypothesis of more regularity of the vorticity along some fixed
directions, that is to say along the family Xj.

Here we quote also a fundamental lemma, whose proof can be found in [2] for the 2-dimensional
case, in [12] and [17] for the general one. It is the key point to get the velocity field to be Lipschitz
and it turns out to be immediately useful in the sequel.

Lemma 4.2. Fiz ¢ €]0,1[ and an integer m > N — 1 and take a non-degenerate family Y =
(Ya)1<x<m Of C% wector-fields over RN such that also their divergences are in C°.

T}_LE’I;, for all indices 1 < i,57 < N, there exist C° functions a;j, bfj)‘ (with 1 < k < N,
1 < X < m) such that, for all (x,£) € RN x RN, the following equality holds:

&€ = ay()l€f + Zb’“ )-€) & -
Moreover, the functions in the previous relation could be chosen such that
laijll e < 1
2N -2
m
R e [ [P
e < Ty I

Now, we can state the stationary estimate which says that the velocity field u is Lipschitz.
This can be done as in the classical case, because it’s based only on the Biot-Savart law, or better
on it’s gradient version (4).

Proposition 4.3. Fize €]0,1] and ¢ €1, +00] and take a non-degenerate family Y = (Yx);<r<pm
of C% wvector-fields over R such that also their divergences are still in C%.

Then there exists a constant C, depending only on the space dimension N and on the number
of vector-fields m, such that, for all skew-symmetric matrices {1 with coefficients in LY N C5,, the
corresponding (by (3)) divergence-free vector-field u satisfies

(17) 1Vl < € [T (e + L [ tog [ e 4 12 es
Uu Lo = q—l L4 6(1— L>10g | € HQ”LOO .

5

4.1.2 Estimates for the vorticity

As in [14], using the well-known LY estimates for transport equation and taking advantage of
Gronwall’s lemma and Holder inequality in Lebesgue spaces, from (6) we obtain, for a certain
v €]0,1],

09) [0l < € e ([ IVullmdr) x

1 t - , 3
X < ( )2/ e~ Jo IVullLocdr V0l . ”VHH’Z/Q HVHH},w’Y dT) '
Px 0

Moreover, of course an analogue estimate holds also for the L* norm:
t
19) 190l = Coxn( [ IVulimdr) 5
0

1 t . ,
. (|Qo||Loo o [ BT 9 df) |
* 0

Remark 4.4. Let us fix the index p pertaining to u and let us call g the real number in [2, +o00]
such that 1/p + 1/g = 1/2. From our hypothesis, it’s clear that ¢ < @; therefore, thanks to
Hoélder and Young inequalities, we have

1—
120z < 1017 1901=" < 1920 anpoe -

12
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4.1.3 Estimates for the pressure term

Now, let us focus on the pressure term: taking the divergence of the second equation of system
(1), we discover that it solves the elliptic equation

VII

(20) ~div (p) = div (u- Vu) .

From this, remembering our hypothesis and remark 4.4, estimate (5) and lemma 3.13, the control
of L? norm immeditely follows:

1
(21) e VIl 2 < Clulle [[2f] Lanres -

Moreover, we have that VII belongs also to L°°, and so, by interpolation, VII € L% for all
€ [2,+00]. As a matter of fact, now we are going to show a stronger claim, that is to say
VII € C}. Cutting in low and high frequencies, we have that

IVIIer < [AVI]ler + [[(Id = A_y)VIler < C (V2 + [[ATLco) -
Now, from (20) we get
(22) —AIl = V (logp) - VII + p div (u- Vu) .

From this last relation, from the fact that div (u - Vu) = Vu : Vu and the immersion L™ — C?,
we obtain

|ATley < AT <[V (logp) - VT e + [|p div (- V)] oc
< (¥l IVT + p* [ FulFc) -

N

Now, C! < C" «— L™ for all n €]0,1[; taking for instance n = 1/2 and using interpolation
inequalities between Besov spaces, we thus have, for a certain g €10, 1],

1— 1—
VI o < [[VIlgrz < CVIZ_y,. [VTllg,” < CVIT|IZ, [VITl, 7
Thanks to Young’s inequality, from this relation and (21) one finally gets
(23) 19Ty < € ((1+ 19005 ) llullzo 190 zarns + p* [Vl ) |

for some ¢ depending only on the space dimension N. So we have proved our claim, i.e. VII € C},
and so it belongs also to L.

Finally, we want to prove boundedness of second derivatives of the pressure term. This
property is a consequence of striated regularity for VII we will show in next section: for the
time being, let us admit this fact. So, passing in Fourier variables and using lemma 4.2, for all
1<i,5 <N we can write

G&GTI(E) = ay(@)|PTIE) + Zb )+ €) & TI(E).

Applying the inverse Fourier transform ]:g 1 and passing to L™ norms, we get

V2L oo < C (AT oo + [0x VI o) -

As we will see later, OxVII € C¢; nevertheless, due to technical reasons it’s convenient for
us to estimate its L°° norm in an intermediate space C° < C"7 — C? and then use interpolation
inequalities. For instance, the choice n = ¢/4 will be suitable for our purposes:

10x VI oo < (|05 VIl gepa < [[0x VIS (|0 VIT[ "

13



Using Bony’s paraproduct decomposition to handle the norm in C? finally leads us to the following

control:

3/4 3/4 1/4
10X VI oo < I XEE IVITEL" fl0x VIT "

Therefore, from previous inequality and from the control for AIl, we get

@) V0] . < € (Il VT

* 3/4 3/4 1
e+ 0" [Vl + XL IVIIE ox vITelt)

and this finally proves our claim, once one admits striated regularity for VII.

4.2 A priori estimates for striated regularity

After having established the “classical” estimates, let us now focus on the conservation of striated
regularity. The most important step lies in finding a priori estimates for the derivations along the
vector-field X. So, let us now state a lemma which explains the relation between the operators
Ox and div (- X) (see also remark 2.2).

Lemma 4.5. For every vector-field X with components and divergence in C%, and every function
f €C" for some n €10,1], we have

[div (f X) = Ox fllgmintemn -1 < C | X]les [ fllen -
Moreover, the previous inequality is still true in the limit case 1 = 0, with || f|| L instead of || f||co-

Proof. The thesis immediately follows from the identity div (f X) — dxf = fdivX and from
Bony’s paraproduct decomposition. ]

4.2.1 The evolution of the family of vector-fields

First of all, we want to prove that the family of vector-fields X (t) = (Xx()); <)<, Where each
X, (t) is defined by (7), still remains non-degenerate for all ¢, and that each X,(t) still has
components and divergence in C%. Throughout this paragraph we will denote by Y (¢) a generic
element of the family X (¢).

Applying the divergence operator to (8), an easy computation shows us that divY satisfies

(at + U,V) divY = 0,
which immediately implies div Y (t) € C¢ for all ¢ and
t
(25) [|divY (¢)|o- < C ||divYp|c- exp (c/ |Vull e dT> .
0
Moreover, starting again from (8), we get (for the details, see proposition 4.1 of [12])
N—1 . N—1
O +u-V)[ AN Xn) ="Vu- | AN X,
from which it follows
N—1 N-1 t N-1
< A X,\> (t,z) = < A X)\> (0,4, 1(z)) — / Y - ( A XA> (7, ¢; L (W, (2))) dr .
0

This relation gives us

’(NAl XA) <07wt‘1(w))‘ < ’(N/\l XA> (t,2)

t
+ /0 IVa(t - )]l

_|_

dr,

(NA 1 XA> (t - 7 ()

14



and by Gronwall’s lemma one gets

} (NA_ ! X,\> (t,2)

From this inequality we immediately have that the family still remains non-degenerate at every
time t:

t
e~ ¢ Jo IVullpoo dr )

z“ﬁ?xm)wf@»

(26) 1X(0) 2 10) exp (e [ [Vuludr )

Finally, again from the evolution equation (8), it’s clear that, to prove that Y (¢) is of class C¢,
we need a control on the norm in this space of the term dyu. To get this, we use, as very often
in the sequel, the following decomposition:

oyu = Tyu + (Oy — Ty ) u,

with (by lemma 3.10) N
1@y = Ty)ullee < C [[Y]lce [Vl Lo -

Moreover, for all 1 <4 < N thanks to (3) we can write
i ~1 -1
Tyu' = = <8k(—A) Ty 0, — [ak(—A) ,Tyjaj} Qk> .
k.j

Obviously, from lemma 3.10 we have

O (=)D 0| < Ty Qlges < 10y Qllee—1 + C Y [le= [120]20<
j o

while for the commutator term we use lemma 3.7, which gives us the following control:

H [ak (—A)! ,Tyja]} Qi

. < CIYles 91z

So, in the end, from the hypothesis of striated regularity for the vorticity we get that also the
velocity field w is more regular along the fixed directions and

(27) 1ovule: < € (I0yQlle=—r + Y llee [IVullze ) -

Moreover, applying proposition 3.12 to (8) and using (27), (25) and Gronwall’s inequality finally
give us

~ t ~ t . )
(28) |IY ()]s < Cexp (c/ IVu|| o0 d7-> <||Y[}”C€ + / e~ ¢Jo IIVullLoc dr 10y Q| pe—1 dT).
0 0

These estimates having being established, from now on for simplicity we will consider the case
of only one vector-field X (¢): the generalization to the case of a finite family is quite obvious, and
where the difference is substantial, we will suggest references for the details.

4.2.2 Striated regularity for the density

Now, we want to investigate propagation of striated regularity for the density. First of all, let us
state a stationary lemma.

Lemma 4.6. Let f be a function in C}.

15



(i) If Oxf € C® and Vf € L™, then one has OxV f € C°~' and the following inequality holds:
(20) 05V fllees < € (19x Sl + TXNes (Iflex + 9 F1z))
(ii) Conversely, if OxV f € C°71, then Oxf € C° and one has

(30) 10x fle- < € (1Xe= (I1f

&t + 9 ll=) + 105V =) -

Proof. (i) Using the paravector-field operator (remember definition 3.9), we can write:
OxVf=(0x —Tx)Vf+TxVf.

From lemma 3.10, we have that the first term of the previous equality is in C*~! and

(31) 10x = Tx) Vflge-r < CllX|les [V Flzee -
Now, we have to estimate the paravector-field term: note that
IxVf=V(Ixf)+ [Tx,V]f.

From hypothesis of the lemma, it’s obvious that V (Txf) € C*~!. For the last term,
remembering that V and T'x are operators of order 1, we can use lemma 3.7 and get

(32) 1175, V] fllee—s < ClIX]le= [ fller -

Putting together (31), (32) and the control for ||V (Tx f)||¢ce—1 gives us the first part of the
lemma.

(ii) For the second part, we can write:
Oxf =Txf+ (Ox—Tx)f.

By definition of the space C5, we know that V[ is bounded: so, second term can be easily
controlled in C® thanks to lemma 3.10. Now let us define the operator ¥ such that, in
Fourier variables, for all vector-fields v we have

Fo (W) (€) = z'|§|25-6<5>.

So, noting that the paravector term involves only high frequencies of f, we can write
Txf =Tx(VVf) =9vTxVf + [Tx,V]Vf.

Now, applying lemmas 3.10 and 3.7 completes the proof.
O

Remark 4.7. Let us note that, if f € L? (for some b € [1,400]) is such that Vf € L>, then
f €C! (indeed f € C%!) and (separating low and high frequencies)

[fller < C U fllee + IV Fllze) -

Both u and p satisfy such an estimate, respectively with b = p and b = +o0c.
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Thanks to lemma 4.6, we can equally deal with p or Vp: as the equation for p is very simple,
we choose to work with it. Keeping in mind that [X(¢), 0; +u - V] = 0, we have

O (0xp) + u-V(0xp) =0,

from which (remember also (30)) it immediately follows that
) [Ox000lt)
Therefore, one gets also
t
est:d_X-Drho| (34) H@X(t)Vp(t) ce—1 = C exp (/ IV u|| 1,0 d7'> X
0
x (0" + I poll ) T Xoles + 110x, Vpollee—s +

t
+ / e o IVuleeed™ 19 Qs d7> .
0

~ t
e < C(IXolles "+ ¥ mle) + [0, Tonllecrs ) exp (< [ [Vl ar )

4.2.3 Striated regularity for the pressure term

In this paragraph we want to show geometric properties for the pressure term we have pointed
out in section 4.1.3, i.e. we want to prove OxVII € C%. As a matter of fact, as regularity of the
gradient of the pressure goes like that of the velocity field, it seems quite natural to expect such
a property.

Again, we use the decomposition

OxVII = Tx (VH) + (aX — Tx) VII.
Let us consider the second term: from lemma 3.10 we have

[(0x — Tx) VII|le- < C||X]lc=

vl

Hence, using estimate (24) and applying Young’s inequality to isolate the term ||0x VII||,., we
see that it can be controlled by the quantity

: ~ Y n4/3 . 1
tiaxtxpi] (35 C X[ (190l +IX0E5) I19Tey + o7 VUl ) + 7 10x VT -
To deal with the paravector term, we keep in mind that VII = V (—A)fl (91 + g2), where

we have set
g1 = —V(logp) - VII
g2 = pdiv(u-Vu),

so it’s enough to prove that both TxV (=A)"!g; and TxV (—A)™! g2 belong to C5. Let us
consider first the term

(36) TxV (—A) Vg = V(=A) " Tigs + TX,V(—A)’I} ga.
From lemma 3.7 one immediately gets that

|7 v =27 g, < CTXle ligaller < € o7 TX e [Vl

while it’s obvious that
|v2)" Txge| . < O ITxgllers

17



Faxr]

Now we use Bony’s paraproduct decomposition and write
Txg2 = TxTpdiv (u-Vu) + TxTaiv wvwyp + Tx R (p,div (u- Vu)) .

Lemma 3.11 and the fact that div (u- Vu) = Vu : Vu tell us that the the first two terms of the
previous relation can be bounded in C°~! by

1Xlle= lpllex 1VulZoe + [Vl | Txplles + llpller 1Txdiv (w- Vu)llee-1 s

the remainder term is actually more regular, and it can be estimated in C* by the same quantity
as before. Now the problem is the control of the C°~! norm of Txdiv (u - Vu). We write

Txdiv (u-Vu) = Z 2TXT3iujajUi + TxO;R(uw!, 9;u")
4,3
= > 2Tk T, 05u’ + 0TxrOp R, 0ju’) — Ty, xrOpR(w, 05u’) .
irj,k

Again from lemma 3.11 we can easily see that the quantity

[ Xlles (lullze + [IVullpoe) [[Vullzee + ([ulle + [Vullze) [Tx Vulleerr + IVl oo [ Txullee

controls the C°~! norm of all the previous terms; so, keeping in mind lemmas 3.10 and 4.6, it
follows that

[Txdiv (u-Vu)llee < C(HXHCE (lullze + 1 Vullz)? + I9xullc (Ilullze + HVUIILoo)) :

Putting together all these estimates, applying again lemma 3.10 and remembering remark 4.7, we
finally get

67 [ mva) el < (00 + 19l Xl (lulles + [ Vull<)? +
+ (" + Vel [0xullee (Jullze + IVull =) +
+[10xplles VulZe) -
Before going on, let us state a simple lemma.

Lemma 4.8. Fiz a ¢ €]0,1[ and an open interval I C R.
Let X be a C® vector-field with divergence in C* and F : I — R be a smooth function.

Then for all compact set J C I and all p € WH™ walued in J and such that Oxp € C%, one
has that Ox(F o p) € C° and OxV(F o p) € C=~1. Moreover, the following estimates hold:

10x(Fopllee < Clipllwan 19xplce
10xV(Fop)lces < Cliplwie (19xplce + TXNee lolwr) -

for a constant C depending only on F and on the fized subset J.

Proof. The first inequality is immediate keeping in mind identity dx(F o p) = F'(p) dxp and
estimate

HF,(p) ce < C HF”HLOO(J) [plles < € HF”HLW(J) ol -

For the second one, we write:
OxV(Fop) = dx (F'(p)Vp) = F'(p)dxVp + F"(p) Vp dxp.

Let us observe that the first term is well-defined in C*~!, and using decomposition in paraproducts
and remainder operators, we have

I70) 95Vl ee-s < CIF )y 15 Tplces

Now, the thesis immediately follows from lemma 4.6. O

18



Let us come back to gi: we use the same trick as (36). Again, the control of the commutator
term follows from lemma 3.7:

_ C
[0V a7 o < CIXler lgaler < = 1X e IVl 9Ty

For the second term, we use again Bony’s paraproduct decomposition. From lemma 3.11, we see
that both TxTy (g, VIl and TxTynV(logp) belong to C°~!, while the remainder term is in

C%/2, and the quantity
1 X le= IVollzee IVIT|ler + [[VIler [[Tx V(log p)llce—1 + [[Vpllzoe | Tx VII[|ge/

bounds their norms in the respective spaces.
Now, from lemmas 3.10 and 4.8 we get

[TxV(log p)lle=—1 < C(p" + [IVpllL~) <||<9XP||cs + (0" + I VpllL=) HXHCE) :

while interpolation inequalities for the inclusions C= < C/2 < C¥ and proposition 3.5 (just as
done in section 4.1.3 for bounding the L> norm of dx VII) give us

1 1/2 1/2

| TxVIleere < CHX [ [VITh? [T VIT|EE

Note that lemma 3.10 and inequality (35) imply

5 ~ ~ o 14/3
ITx VIl < 3 10x Ve + CliXee (IVll e + X1 VT

* 2
e+ 0" [Vulis).

So, putting all these inequalities together, applying Young’s inequality and performing some
manipulations we get the estimate for the term g;:

(8) ||TxvV =) e < 6 + IVl I9xplle: IVTer + o | Vullf +

i i 4/3 *
XN (14 TX16E) (0* + 19pllze)? 9Ty ) +
)
T3 [0x VI|ce

Therefore, from (35), (37) and (38), we finally obtain the estimate of the C* norm of the
pressure term along the fixed direction:

(39) 0xVHle: < C((0" + [Vplle=) [9xplles IVTlex + (0" + l1Oxpllee) IVulff +
nt i 4/3 *
+1Xles (1+TXUE) (0 + 1Vpllze)” VTTex +
+ (0" + [Vpll=) 1Xlles (ullzo + [ Vullz=)” +
+ (0" + Vel 0xulle: (lullz + [Vl ).

4.2.4 Conservation of striated regularity for the vorticity

Let us now establish a control on the regularity of Q along the vector-fields (X >\)1§ A<m- Applying
the operator dx to (6), we obtain the evolution equation for dx2:

(40) O (0xQ) + u-V (0xQ) = 0x <p12 Vp A VH) — 0x (- Vu) — 0x (tVu . Q) .

Second and third terms of the right-hand side of (40) can be treated taking advantage once
again of the following decomposition:

Ox (Q-Vu + 'Vu-Q) = (0x — Tx) (- Vu + 'Vu-Q) + Tx (- Vu + 'Vu-Q) .
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Lemma 3.10 says that the operator Ox — T'x maps C? in C°~! continuously: as L™ < CY, one has

|(0x — Tx) (2 Vu + 'Vu- Q)| < ClIXlles 1Qllz IVullze < CliXlee IVl -

Ca—l

To handle the paravector term, we proceed in the following way. First of all, we note that, as
divu = 0, we can write

(Q -Vu + 'Vu - Q)ij = zk: (&'uk Opu? — Gjuk 6kui> = Zk: ((3% (uj &-uk) — O <u’ 8juk)) .

So, we have to estimate the C°~! norm of terms of the type TxTv,Vu and TxVR(u, Vu). Using
the same trick as in (36) for the remainder terms and applying lemmas 3.11 and 3.7 give us the
control of T'x (Q -Vu + 'Vu - Q) in C*~! by the quantity

2 2
[ Xles (lullze + IVullze)™ + (ullze + [[Vul|eo)™ | Tx Vullges + [[Vullzeo [ Txulle- -
So, from lemmas 3.10 and 4.6 it easily follows

(41) |0x (2-Vu + 'Vu- Q)]

c-1 < C( IXlles (l[ull o + | Vull)* +
+lloxullee ([ullr + [Vl re)) -

Now, let us analyse the first term of (40). It can be written as the sum of three terms:

1 2 1 1
Ox </)2 Vp A VH> = - S (Oxp) (Vp AVII) + g2 (0xVp) ANVII + 7 Vp A (0xVII) .
So, let us consider each one separately and prove that it belongs to the space C5~1.
Obviously, from previous estimates we have that first and third terms are in L>® < C*~! and

satisfy

1 C
5 @xn@envm| < g iaxsle 9ol 191
Cce— *
1 C
|5 von@vm| < S5 19l fox v
p et (p+)

Now, let us find a C°~! control for the second term.
From lemma 4.6, we know that 0xVp belongs already to this space, but the product of a C?
function, o < 0, with a L one is not in C?: in general, we can’t even define it. Nevertheless, we
know that the pressure term is more regular, i.e. VII € C}, so (0xVp) A VII still belongs (using
Bony’s paraproduct decomposition) to the Holder space C5~ 1.
Moreover, as already pointed out in remark 4.7, also p € C!, and so does a := 1/p (it satisfies the
same hypothesis and the same equation of p) and also a® (because C! is an algebra), so the term
is well-defined and we can control it in C1.

Let us make rigorous what we have just said. With a little abuse of notation (at the end, we
would have to deal with the sum of products of components of the two vector-fields), we write

(0xVp) VII = T(9,v,) VIL + Tyn (0xVp) + R(9xVp, VII) ;

remembering the continuity properties of the paraproduct and remainder operators and that
Cl s L™ < CV, we get:

10xVp) AVI|eer < C [|0xVpllpemr VI -

20



est:d_X-0m

ss:fin-est

In the same way, we can control also the previous term multiplied by 1/p?, and from remark 4.7
applied to 1/p? we get

C Vollze
< — <1+ ”;)HL> 10x Vpllce—r VIl -

1
— (0xVp) A VII
? -1 (pa)? *

k

So, finally we obtain, for a constant C depending also on p, and p*,

(42)ox (7o)

< C([loxplies [Vl [VIT

1 ct T [IVelpe [19xVI]lee +
Ce—

+ [Vl 10X Vpllees IV, )

Therefore, from equation (40), classical estimates for transport equation in the Hélder spaces
framework and inequalities (41) and (42) (in which we apply also (30)), we obtain

t t
(43) [0x Q1) g s < C exp ( / ||VUHL°<>dT> <”3X090’c61 b [ e
0 0
(X lles (lullzr + IVullze)? + [9xule: (el + [ Fullz) +
X s Vol Iy + IV pllzee 0 VTT]er +

IVl 9Ty 0x Vller ) dr) |

cl

and this relation allows us to close estimates: let us see how.

4.3 Final estimates
First of all, we note that for all n € [0, 1], thanks to Young’s inequality and estimates (21) and
(23), we have
() IV, [V < IV ey < € (141908 ) Tl [90zanz + " IVellE ).
So, setting

L(t) = [lu®)llze + (12 LanLes ,

putting (15) into (16), (18) and (19), for all fixed 7' > 0 we obtain, in the time interval [0, 7], an
inequality of the form

T t t
L(t) < C exp <c/ ]VUHLoodT) <L(O) + / ||Vu||%oo dr +/ L*(7) d7'> ,
0 0 0
with a constant C depending only on initial data. Now, if we define

t
(45) T := sup {t >0 / (e_ Jo L(dr' 1) + ||VU(7')||%OO) dr < 2L(O)} ,
0

from previous inequality and Gronwall’s lemma and applying a standard bootstrap procedure, we
manage to estimate the norms of the solution on [0,7] in terms of initial data only:
lu@)llze + [1Q@)]|Lance < C([[uollr + [[QollLanLee) -

From this, keeping in mind (21) and (23), we also have

IVTI0) [ z2ner < C (1 + [9pollie ) (uoles + 120 zarzos)?
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Now, let us focus on estimates about striated regularity. For notation convenience, let us set
S(t) = [|0x 1 Q)| pe-r-

First of all, from (26) we get that the family X (¢) remains non-degenerate in time evolution.
Moreover, as log(e +y) <y + 1 for y > 0, from (17) we get

S
IVu| e < CLlog <e+L> < C(Cy+ S)

in [0, 7], for some constants C, C which depend only on initial data. Hence, keeping in mind
(25), (27) and (28) we obtain also (for different constants we will keep to call C, Cp)

-~ t T ’ ’
iXee , oxulle. < C (co LSy / oI5 S 5y m) |
0

while (34) and (33) tell us that

t
£ S(r)dr — [T S(r")dr'
e 0
10xVpllee < C el (C’ +/ e Jo S(T)dT)
0

and that the same holds for ||0xp||,-. These estimates together with (39) give us

t t t
|0x V|| < C<Co+/ e—f55d7+5+5/ e—f55d7+52+52/ e I8 dr+
0 0 0
t 7/3
+S3+S7/3+</ efSSd7'> )
0
t t t 7/3
< C Co+/ e_fsSdT+S2/ e_fSSdT+S3+(/ e_f58d7-> ,

0 0 0

where in second inequality we have kept only terms to the smallest and biggest powers. Now,
putting all these relations in (43) and absorbing intermediate powers as just done, we get an
inequality of the type

t r
S(t) < CehsSMin <Oo+/ ef05<co+/ e 155 dr + 5%+
0 0

- - 7/3
+52/ e_fSSdT’—l—</ e_fSSdT'> )d?).
0 0

Therefore, if we pass to Z(t) := supjy S, we have

t t T < <

Z(t) < CeloZ(Mdr <CO + / elo Z (CO +7Z24+ 7+ 1723 + 77/327/3) dT> .
0
So, let us suppose also T' to have been chosen so small that, for all ¢t € [0, 7], one has
t

(46) / els 7 (00 iy Sy B < 3 77/327/3) dr < 20

0
hence a bootstrap argument again allows us to get the bound H@X(t)Q(t) ce—1 < C Ko uniformly

on [0,T7], for a universal constant C' (depending only on N, ¢, ¢, p, and p*) and a K\ depending
only on the norms of initial data in the relative functional spaces.

Remark 4.9. The lifespan T of the solution is essentially determined by conditions (45) and
(46), and it’s quite clear that 7' > 0 because of continuity of the function ¢ +— fg In addition, in
section 5 we will establish a lower bound for T" in terms of the norms of initial data only and we
will compare it with the classical result in the case of constant density.
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4.4 Proof of the existence of a solution

After establishing a priori estimates, we want to give the proof of the existence of a solution for
system (1) under our assumptions.

We will get it in a classical way: first of all, we will construct a sequence of approximate
solutions of our problem, for which a priori estimates of the previous section hold uniformly, and
then we will show the convergence of such a sequence to a solution of (1).

Now, we will work only for positive times, but it goes without saying that the same argument
holds also for negative times evolution.

4.4.1 Construction of a sequence of approximate solutions

For each n € N, let us define ug := S,ug; obviously uj € LP, and an easy computation shows
that it belongs also to the space By, for all o € R and all r € [1,+00]. Let us notice that
(, By C Cp°, so in particular we have that ug € LP N BS, ., for some fixed s > 1 and r € [1, +o0]
such that BS, , — oL,

Keeping in mind that [S,, V] = 0, we have that Qf = S,Q0 € LIN ng}; in particular, from
(5) we get Vug € L1.

Now let us take an even radial function 6 € C§°(RY), supported in the unitary ball, such that
0<6<1and [pn0(z)ds =1, and set 6, (x) = n” §(nz) for all n € N. We define p§ := 6, * po:
it belongs to BS, , and it satisfies the bounds 0 < p. < pif < p*.

Moreover, by properties of localisation operators S, and of 6,, we also have:

o o = poin W and |[Vppllz= < ¢||Vpolz~:

e ul — g in the space LP and |[uf||zr < c||uolLr;

o Qg —= Qo in L9 and [|Qf]|lze < ¢|[QollLe, [z < ¢[Qo] zoe-

So, for each n, theorem 3 and remark 4 of [14] give us a unique solution of (1) such that:
(i) p™ € C([0,T7]; B, ), with 0 < p, < p" < p*;
(ii) u™ € C([0,T™]; LP N B, ,.), with Q" € C([0,T™]; LY N B3 });
(iii) VI™ € C([0,T"]; L*) N L*([0,T"]; BE, ).
For such a solution, a priori estimates of the previous section hold at every step n. Moreover,
remembering previous properties about approximated initial data and that the function y —

ylog (e + ;) is nondecreasing, we can find a control independent of n € N. So, we can find a

positive time 7" < T™ for all n € N, such that in [0, 7] approximate solutions are all defined for
every n and satisfy uniform bounds.

4.4.2 Convergence of the sequence of approximate solutions

To prove convergence of the obtained sequence, we appeal to a compactness argument. Actually,
we weren’t able to apply the classical method used for the homogeneous case, i.e. proving estimates
in rough spaces as C~% («a > 0): we couldn’t solve the elliptic equation for the pressure term in
this framework.

We know that (p"),cy C L®([0,T]; WH), (u™),cny © L®([0,T]; LP) and (VII"), oy C
L>°(]0,T); L?) and, thanks to a priori estimates, all these sequences are bounded in the respective
functional spaces.

Due to the reflexivity of L? and L? and seeing L™ as the dual of L', up to a subsequence, we
obtain the existence of functions p, v and VII such that:
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e p" > pin the space L®([0, T]; Wh),
e u" — win L*>([0,T]; LP) and
e VII" — VII in L>(]0,T]; L?).

Nevertheless, we are not able to prove that (p, u, VII) is indeed a solution of system (1): passing
to the limit in nonlinear terms requires strong convergence in (even rough) suitable functional
spaces. So let us argue in a different way and establish strong convergence properties, which will
be useful also to prove preservation of striated regularity.

First of all, let us recall that, by construction, uf — ug in L” and Qf — Qg in L?, and (pg),,
is bounded in W1, So, for a > 0 big enough (for instance, take o = max {N/p, N/q}), we have
that (pg),,, (ug),,, (£3),, are all bounded in the space C~¢.

n’

Remark 4.10. It goes without saying that the sequences of wj and € still converge in C™¢;
moreover, also pi — pg in this space. Remember that py belongs to the space C}, which coincides
(see [8] for the proof) with the Zygmund space, i.e. the set of bounded functions f for which there
exists a constant Zy such that

lf(z+y) + flx—y) — 2f(2)] < Zflyl

for all z, y € RV. So, using the symmetry of 6, we can write

(@) = pla) = 50 [ 8w) (i) + oo =) = 2 ula) d:

from this identity we get that pfj — po in L°°, and so also in C™¢.

Now, let us consider the equation for p™:
Op" = —u"-Vp".
From a priori estimates we get that (u™), is bounded in L°°([0,T];C}) and (Vp"),, is bounded
in the space L*°([0,T]; L>); so, from the properties of paraproduct and remainder operators,
one has that the sequence (9;p"),, is bounded in L*>°([0,T];C~®). Therefore (p™), is bounded in
C%1([0,T];C~), and in particular uniformly equicontinuous in the time variable.

Now, up to multiply by a ¢ € D(RY) (recall theorem 2.94 of [2]) and extract a subse-
quence, Ascoli-Arzela theorem and Cantor diagonal process ensure us that p* — p in the space
e((0,755C,2).

Exactly in the same way, one can show that (p"),, is bounded in Cy([0, 7] xR") and it converges
to p in this space.

Finally, remembering that p € L% ([0, T]; W) (recall the compactness argument), by in-

terpolation we have convergence also in L*°([0, T'; Cllozn) for all n > 0.

We repeat the same argument for the velocity field. For all n, we have
ou™ = —u" - Vu'r — o VII",

where we have set a” := (p")”'. Let us notice that, as pg, ag := (po)~ ' satisfy the same
hypothesis and a”, p" satisfy the same equations, they have also the same properties.
Keeping this fact in mind, let us consider each term separately.

e Thanks to what we have just said, (a"), C Cy([0,T] x RY) N L%°([0,T];CL) is bounded;
moreover, from a priori estimates, we have that also (VII") is bounded in the space
LY([0,T7;CL). Therefore, it follows that (™ VII"), is a bounded sequence in L*([0,T];C~%)
for all k € [1,+o0[.
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e In the same way, as (u"),, C L°°([0,7];C}) and (Vu™), C L>([0,T]; L°°) are both bounded
sequences, one has that the sequence (u" - Vu™), is bounded in L*°([0,77;C~%).

Therefore, exactly as done for the density, we get that (u"), is bounded in C?([0,T];C~%) for
some 0 < 8 < 1, so uniformly equicontinuous in the time variable, and this fact implies that
u™ — win C([0,T];C,5).

Finally, thanks to uniform bounds and Fatou’s property of Besov spaces, we have that u €
L>(]0,T);CL) and, by interpolation, that u™ — w in C([O,T];Cllozn) for all n > 0.

So, thanks to strong convergence properties if we test the equations on a ¢ € C*([0, T]; S(RV))
(here we have set S to be the Schwartz class), we can pass to the limit and get that (p,u, VII) is

indeed a solution of the Euler system (1).

Before going on with the striated regularity, let us establish continuity properties of the solu-
tions with respect to the time variable.

First of all, from

dp = —u-Vp,
as u € C([0,T]; L*°) (from the properties of convergence stated before) and Vp € L*°([0,T]; L>),
we obtain that p € C%1([0,T]; L>°), and the same holds for a := p~1.

Remember that v € L%°([0,T];LP), Vu and a € L*([0,T]; L>°). Moreover, as VII €
L>([0,T); L2)NLY ([0, T]; L>), it belongs also to L'([0, T]; L?) (in fact, it belongs to L*([0, T]; LP),
where k = (1 — )%, 6 being the interpolation exponent between L? and L™, see also (16)). So,
from the equation

Oy = —u-Vu — aVIIL,
we get that du € LY([0, T); LP), therefore u € C([0, T]; LP).

In the same way, from (6) we get that Q € C([0,T]; L?), and therefore the same holds true for
Vu.

Now, using elliptic equation (20) and keeping in mind properties just proved for p and a, one
can see that VII € C([0,T]; L?). So, coming back to the previous equation, we discover that also
Osu belongs to the same space.

4.4.3 Final checking about striated regularity

It remains us to prove that also properties of striated regularity are preserved in passing to the
limit. For doing this, we will follow the outline of the proof in [10].

1. Conwvergence of the flow

Let 9" and 1 be the flows associated respectively to u™ and u; for all fixed ¢ € D(RY), by
definition we have:

|p(2) ("(t,2) = (L, 2))] < /O\so(x)(u“(W"(ms))—u<f,w<r,x>>>|d7

< /O () (u — ) (7,47 (r, )] +
T (@) (r, " (7, 7)) — ol (r, (7, 2)) | dr
< /0 IV (@) (87 — ) (7, 2)| dr +

t
4 / lou™ — pul o dr.
0

So, from convergence properties stated in previous part, we have that ¢ — 1 in the space
L>([0,T]; Id + Lj%.). Moreover, it’s easy to see that

t
[V (®)] e < c exp ( [ vt dr) |
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which tells us that the sequence (1)™),, is bounded in L>([0,T]; Id + C®'). Hence, finally
we discover that ™ — 4 also in the spaces L™ ([0,T]; Id + Cllozn) for all n > 0.

. Regularity of Ox,v

First of all, let us notice that, by definition,
Oxo(2)¥" (1) = X{(P"(t, @)
applying proposition 3.8, we get
(47) 10x0%¢'llee = [1X{" 0 i'llee < e IVl X llee s

which implies that (Ox,v"™),, is bounded in the space L*°([0,7;C?). Now we note that, for
every fixed ¢ € D(RN), we have

P Ox, V" — @ Oxo¥ = Oxo (@Y™ — b)) — (Ox,0p) (V" — 1) ;

the second term is compactly supported, hence it converges in L*> because of what we have
already proved. So let us focus on the first one and consider the difference

Ax, (P 9") — Ox, (0 ¢) = div (Xo @ p(¥" —4)) — (™ — ) div Xp;

decomposing both terms in paraproduct and remainder and remembering hypothesis over
Xp, it’s easy to see that

1%, (9 %™) = Oxo (2 ¥)llee—1 < € lo ¥ — 9 WBlle: [ Xolle: -

Therefore, from what we have just proved, Ox,9" — 0x,% in LOO([O,T];Cfozl); moreover,

by Fatou’s property, one gets that dx,¢ € L*([0,T];C?) and it verifies estimate (47). So,

by interpolation, convergence occurs also in L*°([0,T; C;,.") for all n > 0.

. Regularity of X

Remembering the definitions

Xe(@) = (Oxp)¥) (t 07 ' (x))
divX; = divXgoe; !,

from proposition 3.8 it immediately follows that X; and div X; both belong to C¢. Moreover,
the same proposition implies that X™ — X in the space L>([0,T];C;,.") for all n > 0, and
the same holds for the divergence. In particular, we have convergence also in L>([0,T]; L}S.),

which finally tells us that X; remains non-degenerate for all ¢ € [0, 7], i.e. I(X;) > ¢ I(Xo).

. Striated reqularity for the density and the vorticity

Let us first prove that regularity of the density with respect to the vector field X, is preserved
during the time evolution. To simplify the presentation, we will omit the localisation by
¢ € D(RN): formally, we should repeat the same reasoning applied to prove regularity of
O0x,%. So, let us consider

Oxnp" — Oxp = div (p" (X" — X)) — p"div(X"—X) + div ((p" — p) X) — (p" —p) divX

and prove the convergence in LOO([O,T];CZ;;). Using Bony’s paraproduct decomposition,
it’s not difficult to see that first and third terms can be bounded by ||p"| e || X™ — X||zee +
lp™ — pllee || X|| o, while second and last terms can be controlled by || p"||ze~ [|div (X™ —
X)leer2 + 1lp"™ — pllzee [|div X || o</2, for instance. So, from the convergence properties stated

for (p"), and (X™), , we get that dxnp" — Oxp in the space L=([0,T];C; ), as claimed.

n’ loc
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Moreover, from a priori bounds and Fatou’s property of Besov spaces, we have that Oxp €
L>([0,T];C%) and so, by interpolation, convergence occurs also in L>°([0,77];C; ") for all
n > 0.

Now we consider the vorticity term (again, we omit the multiplication by a D(RY) function):
Oxnd" — 0xQ = div (X"-X)eQ") - Q"div(X"-X) +
+div (X @ (Q"-Q)) — (Q"—-Q) divX.

From the convergence properties of (u™),,, we get that Q" — Qin L*°([0,T];C,,”) for all n >
0, so for instance also for n = /2. From this, using again paraproduct decomposition as done

before, one can prove that dx»Q" — 9xQin L*>([0,T]; Cl;Cl_E/z). Therefore, as usual from a

priori estimates and Fatou’s property of Besov spaces, we have that 9xQ € L> ([0, T];C*™1),
and moreover convergence remains true (by interpolation) in spaces L*°([0,T7; Cleo—cl—n) for
all 1 > 0.

So, all the properties linked to striated regularity are now verified, and this concludes the
proof of the existence part of theorem 2.3.

4.5 Uniqueness

Let us spend a few words on proof of uniqueness: it is an immediate consequence of the following
stability result.

Proposition 4.11. Let (pl,ul,VHl) and (pz,uz,VH2) be solutions of system (1) with
0 < pe <p'p® < pt
Let us suppose that 0p := p' — p> € C([0,T); L?) and that éu := u' —u?> € C'([0,T]; L?).

Finally, assume that Vp?, Vu', Vu? and VII? all belong to L'([0, T]; L>).
Then, for all t € [0,T], we have the following estimate:

16p(®)lIz2 + Iou(®) g2 < Ce ™ ([8p(0)] 12 + [1u(0)]]2) .

where we have defined
t
10 = [ (19 + 170 e+ V2] + 9] )
Proof. From 0;6p + u' - Vép = — du - Vp?, we immediately get

t
16p()[L2 < [[6p(0)]] 2 +/0 6wl |VP?|| e dr.

Moreover, the equation for du reads as follows:

VoIl  VIIZ
A

Odu + u' - Véu = —du-Vu? —

1

where we have set §II = II' — IT2. So, from standard LP estimates for transport equations, one

has:

t
[6u(®)llz2 < lou(0)] 2 +C/0 (8wl 2 [[Ve? || o + IVOTL] g2 + [ VIE]| oo [16p]] 2) .
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Now, to get bounds for VJIII, we analyse its equation:
oIl g
—div <V1 ) = div (V125p+u1-V5u+6u-Vu2)
p ptp

2
= div <— le; §p + ou- (Vu' + Vug)) ,

where, to get the second equality, we have used the algebraic identity
div (v - Vw) = div (w - Vv) + div (v divw) — div (w divo).
So, from lemma 3.13 we obtain
Vo2 < O (|[VIP[| o 100]22 + loullz ([|Vu'] oo + (Ve[| )
and Gronwall’s inequality completes the proof of the proposition. O

Now, let us prove uniqueness: let (pl, ul, VHI) and (p2, u?, VH2) satisfy system (1) with same
initial data (pg, up), under hypothesis of theorem 2.3.

As du(0) = 0 and u € C([0,T]; LP), Vu € C([0,T]; L9), one easily gets that du € C*([0,T]; L?).
Moreover, from this fact, observing that also dp(0) = 0, the equation for dp tells us that dp €
C([0,T7]; L?). Hence proposition 4.11 can be applied and uniqueness immediately follows.

5 On the lifespan of the solution

The aim of this section is to establish, in the most accurate way, an explicit lower bound for the
lifespan of the solution of system (1) in terms of initial data only. Our starting point is subsection
4.3: with the same notations, we define moreover

A@) = Vo)l poe o U@ = [Vut)ll e, V(E) = /0 (L(7) + Z(r)) dr,
L(t) = [ X(#)les s R(E) = ||0x( Volt)

It’s only matter of repeating previous computations in a more accurate way. As

Cce—1

(48) Ut) < C (L) + Z()) = CV'(t)

and the exponent § > 1, we can write
t
(49) L(t) < CeV® <L0 + Ao (1+ A0)5/ (eV'L? + 2?) d7'> .
0
Concerning the “striated norms”, first of all, from (28) and (27), we have

I'(t)

IN

t
CeV® (ro + / ecV(ﬂsde) < CeVO(Ty + Z1)
0

lox@u®le. < € (2 + ToeV (L4 2) + VO (L+2) Zt)

while (33) and (34) imply

Ce

10xpllee < C eV O (To(14 Ag) + Ro) , R(t) < CeV W (To(1+ Ag) + Ro+ Zt).

Now, we analyse carefully the terms in (39) one by one: keeping in mind also (44), we get that
the first of them can be bounded by

ecV(t) (L2 + ZQ) (1 + A())Q—HS (Fo + Ro)
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and the same holds for the second one. The third term, instead, can be decomposed into two
parts, one in which we have || X||¢c and the other one with HXHZQ?’

control the former with

. It’s easy to see that we can

eV W (L% + Z%) (14 Ag)*™° Ty + VO (L2 + 22%) (1 + Ag)**° Z1t
and the latter with
eV (L2 + 72) (14 Ag)** F8/3 + eV (L2 + 22) (14 Ag)2+e Z7/347/3.
Finally, fourth and last terms of (39) can be bounded by
eV () (L2+Z2) (14 Ag) (1+To) + eV () (L2+Z2) (1+A0)2+5 Zt,
and all these inequalities lead us to control ||0x VII| .. with

(50) ecV(t) (1+A0)2+5 (V/)13/3t7/3 + ecV(t)(1+A0)2+5 (V/)St +
eV (1 4 A4g)2H0 (1 + Ro+ rg/3) (V')2.

Now let us find a bound for Z(t). Again, let us proceed carefully, starting from estimate (43).
First and second terms under the integral are actually smaller than the last two ones we have just
analysed in considering the gradient of the pressure. Moreover, |Vpl| e ||0x VII|| s, like the last
term, can be bounded by the same quantity in (50) multiplied by 1 4+ Ay, while

[ Xlle [1Vpllze VTe; < CTo (14 Ag)* e (V)2

which is controlled again by (50).
So, keeping in mind (49), we finally get

t
GUV'() < ) ef2V® <v’(o)+/ eC2V ((1+A0)3+5 (1+R0+rg/3) (V)24
0
(14 Ag)PTO (V)3T 4 (1 4 Ag)PT (V’)3T> dT).

Let us set T the supremum of the positive times for which the integral in the right-hand side
of the (51) is less than or equal to 2V’(0). Hence on [0,7*] we have

VI(t) < CsV'(0)e2VH — 1 — eV < o V(0)t.

Now let us define

(52) T = éi (V/(0) (@ + 4p)**? (1+Ro+rg/3)>_1 ,

for a constant 0 < K < 1 small enough (we will get later an estimate for it). For the sequel it is

JON
convenient to define K := (1 — K) )

We claim that T* > T.
First of all, in [0,7] N [0,T*], remembering last two inequalities we have e“2V(®) < K and
V'(t) < C3 KV'(0). Therefore, in this time interval the integral in (51) can be controlled by

K ((1 + Ag)3td (1 Ry + rg/3> (O3 K)2 (V'(0))2T +

+%(1—|—A0)3+5 (Cs K)13/3 (V/(0))13/3 71073

DO | —

s a0 k) <v’<o>>3T2) |
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Now we want_this expression to be less than or equal to 2V’(0); hence, from (52) we get an
equation for K:

- ~\ 10/3 ~\ 2
K| Eerp+ 2 <K> (€K + (f) (CsK) | < 2.
4

So, if we take K small enough, we obtain T" < T as claimed.

Remark 5.1. Let us notice that, in the classical case (constant density), the lifespan of a solution
was controlled by below by

1€20lles,, -
Ty == C | |Q]lzanre> log | e + 77—
10| Lanroe

(see also [12]). We have just proved that in our case the lifespan is given by (52), instead. As

1920l cs
V'(0) = |luollze + 190l Lanzee + [|0x,Q0llee—1 > ¢ [|Q0llzanree log | e + =2 | |
1920l Lane

it’s quite evident that T' < T, (up to multiplication by a constant). Note also that the loga-
rithmic dependence disappeared thanks to estimate (48), which really simplifies our complicated
computations but is maybe quite rough.

6 Generalizing vortex patches

First of all, let us prove conservation of conormal regularity.

Given a compact hypersurface ¥ C RN of class C'*¢, we can always find, in a canonical way,
a family X of m = N(N + 1)/2 vector-fields such that the inclusion C§i C C% holds for all
n € [e,1 + ¢]. For completeness, let us recall the result (see proposition 5.1 of [12]), which turns
out to be important in the sequel.

Proposition 6.1. Let X be a compact hypersurface of class C11¢.
Then there exists a non-degenerate family of m = N(N + 1)/2 vector-fields X C T such that
Ce c C% forallnmele,1+e].

Hence, thanks to theorem 2.3 we propagate striated regularity with respect to this family.
Finally, in a classical way, from this fact one can recover conormal properties of the solution, and
so get the thesis of theorem 2.5 (see e.g. [17] and [12] for the details).

Actually, in the case of space dimension N = 2, 3 (finally, the only relevant ones from the
physical point of view) one can improve the statement of theorem 2.5. To avoid traps coming
from differential geometry, let us clarify our work setting.

In considering a submanifold ¥ C R of dimension k and of class C1*¢ (for some ¢ > 0), we
mean that Y is a manifold of dimension k endowed with the differential structure inherited from
its inclusion in RY, and the transition maps are of class C1*¢.

In particular, for all z € ¥ there is an open ball B C RY containing x, and a C'* local
parametrization ¢ : R¥ — B N Y with inverse of class C'*¢. This is equivalent to require lo-
cal equations H : B — R¥ of class C'*¢ such that Hpns =0.

Given a local parametrization ¢ on U := ¥ N B, its differential o, : TR* — TU = T'Y induces,
in each point z € R*, a linear isomorphism between the tangent spaces, Pz - T,RF — To@)X.
Moreover, the dependence of this map on the point = € R* is of class C°: in coordinates, o, is
given by the Jacobian matrix V.
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Finally, we say that a function f defined on ¥ is (locally) of class C¢ (for @ > 0) if the
composition f o : RF — R is a-Hoélder continuous for any local parametrization ¢.

Before stating our claim, some preliminary results are in order. Let us start with a very simple
lemma.

Lemma 6.2. Let f € L¥(RYN) such that its gradient is a-Hélder continuous for some o > 0.
Then f € C1T(RY).

Proof. 1t’s obvious using dyadic characterization of Holder spaces and Bernstein’s inequalities. [J

Now, by analogy, one may ask if this property still holds true for a function defined on
a submanifold, with Hoélder continuous tangential derivatives. In fact, with some additional
hypothesis on the submanifold, one can prove that also in this case there is a gain of regularity.

Lemma 6.3. Let ¥ C RY be a submanifold of dimension k and of class C'*¢, for some € > 0.
Moreover, let us suppose Y to be compact.
Let us consider a function f : 3 — R, bounded on 3, such that Ox f € C5(X) for all vector-fields
X of class C* tangent to 3.

Then f € CtT¢(X).

Proof. Let us fix a coordinate set U := BN X (for some open ball B ¢ RY) with its C'*¢ local
parametrization ¢ : R¥ — U, and let us define g := fop : RF —» R.

Obviously, g € L®(RF).

Moreover, for all 1 < i < k let us set ¢.(0;) = X;: then, X; is obviously of class C*. Hence
we have 0;g(x) = X;(f)(¢(x)), i.e. 0;g in a point x is the derivation X; applied to the function
f, and evaluated in the point ¢(z). In our notations, we get d;g = (Jx, f) o .

Therefore, from our hypothesis it follows that Vg € C°, and so, by lemma 6.2, g € C'+5(RF).

In conclusion, we have proved that f composed with any local parametrization ¢ is of class
C'*¢ on R*. Moreover, as ¥ is compact, we can bound its Holder norm gobally on ¥, that is to
say in a way independent of the fixed open set U, and we get that f € C1*5(X). O

Remark 6.4. Let us note that the operator 0x depends linearly on the vector-field X. Hence,
in the hypothesis of previous lemma it’s enough to assume that one can find, locally on X, a
family {X7,..., Xx} of linearly independent vector-fields of class C¢ such that Jx, f € C5(X) for
all 1 <4 < k.

Corollary 6.5. Let ¥ C RN be a compact hypersurface of class C'*¢, and let f € CL(RY).
If f €Cy™, then fis € C1TE(X).

Proof. By proposition 6.1 and non-degeneracy condition, we can find, locally on 3, N —1 linearly
independent vector-fileds X ... Xy_1, defined on the whole RY and of class C¢, which are tangent
to ¥ and such that div (f X;) € C5(RY) forall 1 <i < N — 1.

Moreover, also the divergence of these vector-fields is e-Holder continuous; therefore, using
also Bony’s paraproduct decomposition, we gather that

Ox,f = div(fX;) — fdivX; € CC(RY) VI1<i<N-1,

and hence this regularity is preserved if we restrict Ox, f only to X.
So, lemma 6.3 and remark 6.4 both imply that fis € clre(x). O

Now, let us come back to the situation of theorem 2.5. Moreover, let us suppose that the
hypersurface ¥y is also connected: then it separates the whole space RY into two connected
components, the first one bounded and the other one unbounded. In dimension 2, this is nothing
but the Jordan curve theorem, while in the case N = 3 it’s a consequence of Alexander duality
theorem (see e.g. [19]).
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So, let us set Dy to be the bounded domain of RY whose boundary is 9Dy = ¥y and let us
define D(t) = ¥(Dy). As the flow v, is a diffeomorphism for every fixed time ¢, we have that
dD(t) = X(t) and also the complementary region is transported by ¢: D(t)¢ = ¢ (D).

Let us denote by x4 the characteristic function of a set A.

Proposition 6.6. Under hypothesis of theorem 2.5, suppose also that the initial data can be
decomposed in the following way:

po(z) = pi(@) xpo(2) + pi(2) xpg(z) and  Qo(z) = () xpy(2) + (@) xpg(2),

with pb € C¢(Dp) and Q) € C5(Dy).
Then, the previous decomposition still holds for the solution at every time t € [0,T):

(53) p(t,z) = p'(t,x) xpw (@) + p°(t, =) Xproye (z)
(54) Qt,z) = Q(t,2)xpe () + QU x) xpye(a) -

Moreover, Hélder continuity in the interior of the domain D(t) is preserved, uniformly on [0,T):
at every time t, we haove

e pi(t) € C(D(t)) and
o QU(t) € C5(D()),

and reqularity on D(t) propagates also for the velocity field and the pressure term: u(t) and VII(t)
both belong to C1*e(D(t)).

Proof. First of all, let us recall that, by theorem 2.5, on [0, 7] we have

T
(55) / IVu(t)| o dt < C.
0
Thanks to first equation of (1), relation (53) obviously holds, with

Pt x) = pyt (v (@)

So, we immediately get that p’(t) belongs to the space C1*(D(t)). Let us observe also that a
decomposition analogous to (53) holds also for a = 1/p, and its components a*® have the same
properties of the corresponding ones of p.

Now let us handle the vorticity term. We can always decompose the solution in a component
localised on D(t) and the other one supported on the complementary set, defining

At @) = Ut @) xp (@), Q) = Qt,2) Xpr)(2),

and therefore obtain relation (54). By virtue of this fact, equation (6) restricted on the domain
D(t) reads as follows:

O + u-VQ = _(Qi-Vu—i-tVu-Qi —i—Vai/\VH),

which gives us the estimate (keep in mind also (55))

(o)

t
ce +/ (]Q° - Vu+ 'Vu- @
0

e T||Va' AVIT

) d7> |

We claim that the first term under the integral can be controlled in C¢. As a matter of facts, by
(3) we know that the velocity field satisfies the elliptic equation

e <C (H%

N
— Ak =" 0,05;
j=1
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in D(t), with the boundary condition (by theorem 2.5 and corollary 6.5) ujsp() € C1Te(0D(t)).
So (see theorem 8.33 of [18]) we have that u € C1*¢(D(t)) and the following inequality holds:

luller+=(peyy < € (Hu|6D(t)HC1+E(8D(t)) + [l CE(D(t)))'

Let us note that, as pointed out in [18], a priori the constant C' depends on dD(t) through the
C1*¢ norms of its local parametrizations, so finally on exp (fot | V|| Lo dT). However relation (55)

allows us to control it uniformy on [0,7T]. Therefore, in D(t) one gets the following inequality:

1€ Vu + 'Vu -

y <o

Ce(D(t) Cce(D(t)) HUHCl+E(D(t)) )

which proves our claim.
Finally, let us handle the pressure term: we will argue as just done for the velocity field. From
what we have proved, we have that Va® is in C%; moreover, VII satisfies the equation

—AIl = V(loga®) - VII + p'Vu: Vu

in the bounded domain D(t), provided with the boundary conditions (again thanks to theorem
2.5 and corollary 6.5) VIIgpy) € C1T(0D(t)). So we get (see again [18]) VII € C'*¢(D(t)) and
its norm in this space can be bounded (recall (55) again) by

VI n T HVai

. 5 '
®ller+e@pi c=oen Ve oy + 10 lerve ooy 1V llee (o)
applying interpolation inequality for Holder spaces for the inclusions C'T¢ < C® < L™ leads us
to the control of [|[VII||gisepy)-

Putting all these inequalities together and applying Gronwall’s lemma, we finally get a control
for the C* norm of Q¢ in the interior of D(t), and this completes the proof of the corollary. [
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