# Multiplicity of solutions for a mean field equation on compact surfaces 

Francesca De Marchis

January 11, 2011


#### Abstract

We consider a scalar field equation on compact surfaces which has variational structure. When the surface is a torus and a physical parameter $\rho$ belongs to $\left(8 \pi, 4 \pi^{2}\right)$ we show under some extra assumptions that, as conjectured in [9], the functional admits at least three saddle points other than a local minimum.


Key Words: Scalar field equations, Geometric PDE's, Multiplicity result.

## 1 Introduction

Let $(\Sigma, g)$ be a compact Riemann surface (without boundary), $h \in C^{2}(\Sigma)$ be a positive function and $\rho$ a positive real parameter. We consider the equation

$$
\begin{equation*}
-\triangle_{g} u+\rho=\rho \frac{h(x) e^{u}}{\int_{\Sigma} h(x) e^{u} d V_{g}} \quad x \in \Sigma, u \in H_{g}^{1}(\Sigma), \tag{*}
\end{equation*}
$$

where $\Delta_{g}$ is the Laplace-Beltrami operator on $\Sigma$.
When $(\Sigma, g)$ is a flat torus equation $(*)$ is related to the study of some Chern-Simons-Higgs models; indeed via its solutions it is possible to describe the asymptotic behavior of a class of condensates (or multivortex) solutions which are relevant in theoretical physics and which were absent in the classical (Maxwell-Higgs) vortex theory (see [24], [27], [28] and references therein). This PDE arises also in conformal geometry; when $(\Sigma, g)$ is the standard sphere and $\rho=8 \pi$, the geometric meaning of this problem is that from a solution $u$ we can obtain a new conformal metric $e^{u} g$ which has curvature $\frac{\rho}{2} h$; the latter is known as the Kazdan-Warner problem, or as the Nirenberg problem and has been studied for example in [3], [4] and [17]. Moreover this problem arises in statistical mechanics. Indeed, when formulated on bounded domains of $\mathbb{R}^{2}$ with Dirichlet boundary conditions, equation (*) was considered in [1] and [16] as the mean field limit as point vortices for the two-dimensional Euler equation.

Problem (*) has a variational structure and solutions can be found as critical points of the functional

$$
\begin{equation*}
I_{\rho}(u)=\frac{1}{2} \int_{\Sigma}\left|\nabla_{g} u\right|^{2} d V_{g}+\rho \int_{\Sigma} u d V_{g}-\rho \log \int_{\Sigma} h(x) e^{u} d V_{g} \quad u \in H_{g}^{1}(\Sigma) . \tag{1.1}
\end{equation*}
$$

Since equation (*) is invariant when adding constants to $u$, we can restrict ourselves to the subspace of the functions with zero average $\bar{H}_{g}^{1}(\Sigma):=\left\{u \in H_{g}^{1}(\Sigma): \int_{\Sigma} u d v_{g}=0\right\}$.

By virtue of the Moser-Trudinger inequality (see Lemma 2.2 ) one can easily prove the compactness and the coercivity of $I_{\rho}$ when $\rho<8 \pi$ and thus one can find solutions of (*) by minimization.

If $\rho=8 \pi$ the situation is more delicate since $I_{\rho}$ still has a lower bound but it is not coercive anymore; in general when $\rho$ is an integer multiple of $8 \pi$, the existence problem of $(*)$ is much harder (a far from complete list of references on the subject includes works by Chang and Yang [4], Chang, Gursky and Yang [3], Chen and Li [5], Nolasco and Tarantello [24], Ding, Jost, Li and Wang [12] and Lucia [21]).

For $\rho>8 \pi$, as the functional $I_{\rho}$ is unbounded from below and from above, solutions have to be found as saddle points.
In [11] Ding, Jost, Li and Wang proved that, assuming $\rho \in(8 \pi, 16 \pi)$ and assuming that the genus of the surface is greater or equal than 1 , there exists a solution to (*). In [19] Yan Yan Li initiated a program to find solutions for $\rho>8 \pi$ by using the topological degree theory. He proved an uniform bound for solutions to equation $(*)$ whenever $\rho$ is contained in a compact set of $(8 k \pi, 8(k+1) \pi)$, where $k \geq 0$ is an integer. Therefore, the Leray-Schauder degree for ( $*$ ) remains the same when $\rho$ is in the interval $(8 k \pi, 8(k+1) \pi)$. Few years ago this program was completed by Chen and Lin in [7] using a finite-dimensional reduction to compute the jump values. The authors obtained a complete degree-counting formula, extending the results in [20], where the case $\Sigma=S^{2}$ and $k=1$ was studied. Finally, when $\rho \notin 8 \mathbb{N} \pi$, Djadli [13] generalized these previous results establishing the existence of a solution for any $(\Sigma, g)$; to do that he deeply investigated the topology of low sublevels of $I_{\rho}$ in order to perform a min-max scheme (already introduced in Djadli and Malchiodi [14]).

Not much is known about multiplicity. Recently the author in [10], via Morse inequalities, improved significantly the multiplicity estimate which can be deduced from the degree-counting formula in [7].

Besides, the case of the flat torus, which is a relevant situation from the physical point of view, has been treated by Struwe and Tarantello under the assumptions that $h \equiv 1$ and $\rho \in\left(8 \pi, 4 \pi^{2}\right)$. In these hypotheses, $u=0$ is clearly a critical point for $I_{\rho}$. Moreover, $u=0$ is a strict local minimum, since the second variation in the direction $v \in \bar{H}_{g}^{1}(T)$ can be estimated as follows

$$
\begin{equation*}
D^{2} I_{\rho}(0)[v, v]=\|v\|^{2}-\rho \int_{\Sigma} v^{2} d x \geq\left(1-\frac{\rho}{4 \pi^{2}}\right)\|v\|^{2} \tag{1.2}
\end{equation*}
$$

Under these conditions, the functional possesses a mountain pass geometry and by thanks to this structure the existence of a saddle point of $I_{\rho}$ has been detected by Struwe and Tarantello.

Theorem 1.1. ([26]) Let $\Sigma$ be the flat torus and $h \equiv 1$. Then, for any $\rho \in\left(8 \pi, 4 \pi^{2}\right)$, there exists a non-trivial solution $u_{\rho}$ of $(*)$ satisfying $I_{\rho}\left(u_{\rho}\right) \geq\left(1-\rho / 4 \pi^{2}\right) c_{0}$ for some constant $c_{0}>0$ independent of $\rho$.

As $g$ is the flat metric and $h$ is constant, if $u$ is a solution of $(*)$, the functions $u_{x_{0}}(x):=u\left(x-x_{0}\right)$ still solve $(*)$, for any $x_{0} \in T$; so from Theorem 1.1 we can deduce the existence of an infinite number of solutions of $(*)$.

Perturbing $g$ and $h$ there is still a local minimum, $\bar{u}$, close to $u=0$ and the same procedure of [26] ensures the presence of a saddle point, but on the other hand, if $u$ is a non-trivial solution, the criticality of the translated functions $u_{x_{0}}$ is not anymore guaranteed. In [9] the author improved this result stating that apart from $\bar{u}$ there are at least two critical points, see Theorem 3.1 in Section 3.

The strategy of the proof consists in defining a deformed functional $\tilde{I}_{\rho}$, having the same saddle points of $I_{\rho}$ but a greater topological complexity of its low sublevels, and in estimating from below the number of saddle points of $\tilde{I}_{\rho}$ using the notion of Lusternik-Schnirelmann relative category (roughly speaking a natural number measuring how a set is far from being contractible, when a subset is fixed).

Always in [9] the author conjectured that apart from the minimum and the two saddle points another critical point should exist. In fact this turns out to be true.

Theorem 1.2. If $\rho \in\left(8 \pi, 4 \pi^{2}\right)$ and $\Sigma=T$ is the torus, if the metric $g$ is sufficiently close in $C^{2}\left(T ; S^{2 \times 2}\right)$ to $d x^{2}$ and $h$ is uniformly close to the constant $1, I_{\rho}$ admits a point of strict local minimum and at least three different saddle points.

In the above statement $S^{2 \times 2}$ stands for the symmetric matrices on $T$. To prove Theorem 3.1 we exploit the following inequality derived in [9]:

$$
\#\{\text { solutions of }(*)\} \geq \operatorname{Cat}_{X, \partial X} X
$$

where $X$ is the topological cone over $T$. Next, applying a classical result we are able to estimate from below the previous relative category by one plus the cup-length of the pair $(T \times[0,1], T \times(\{0\} \cup\{1\}))$. The cup-length of a topological pair $(Y, Z)$, denoted by $\mathrm{CL}(Y, Z)$, is the maximum number of elements of the cohomology ring $H^{*}(Y)$ having positive dimensions and whose cup product do not "annihilate" the ring $H^{*}(Y, Z)$; we refer to the next section for a rigorous definition. Finally, to obtain the thesis, we show that $\mathrm{CL}(T \times[0,1], T \times(\{0\} \cup\{1\})) \geq \mathrm{CL}(T)=2$.

Remark 1.3. Since all the arguments only use the presence of a strict local minimum and the fact that $X$ is the topological cone over $T$, whenever on some $(\Sigma, g)$ the functional $I_{\rho}$ possesses a strict local minimum, the theorem holds true, more precisely $I_{\rho}$ has at least $C L(\Sigma)+1$ critical points other than the minimum.

In section 2 we collect some useful material concerning the topological structure of $I_{\rho}$ and we recall some definitions and some classical results in algebraic topology; besides, we focus on the notion of Lusternik-Schnirelmann relative category and its relation with the cuplength. In section 3 we present briefly the result in [9] and prove our multiplicity result.

## Acknowledgements

The author is grateful to Professor Andrea Malchiodi for helpful discussions and for having proposed her this topic. She is supported by Project FIRB-IDEAS "Analysis and Beyond".

## 2 Notation and preliminaries

In this section we collect some facts needed in order to obtain the multiplicity result.
First of all we consider some improvements of the Moser-Trudinger inequality which are useful to study the topological structure of the sublevels of $I_{\rho}$. Next, we collect some basic notions in algebraic topology and we recall the definition of Lusternik-Schnirelmann relative category stating also some results relating the category to both the cup-length and the existence of critical points.

Let now fix our notation. The symbol $B_{r}(p)$ denotes the metric ball of radius $r$ and center $p$. As already specified we set $\bar{H}_{g}^{1}(\Sigma):=\left\{u \in H_{g}^{1}(\Sigma): \int_{\Sigma} u d v_{g}=0\right\}$.
Large positive constants are always denoted by $C$, and the value of $C$ is allowed to vary from formula to formula. Moreover, given a smooth functional $I: H_{g}^{1}(\Sigma) \rightarrow \mathbb{R}$ and a real number $c$, we set $I^{c}:=\left\{u \in H_{g}^{1}(\Sigma) \mid I(u) \leq c\right\}$.
Finally, given a pair of topological spaces $(X, A)$ we will denote by $\mathrm{H}^{q}(X, A)$ the relative $q$-th cohomology group with coefficients in $\mathbb{R}$ and by $\mathrm{H}^{*}(X, A)$ the direct sum of the cohomology groups, $\bigoplus_{q=0}^{\infty} \mathrm{H}^{q}(X, A)$.

### 2.1 Variational Structure

Even though the Palais-Smale is not known to hold for our functional, employing together a deformation lemma proved by Lucia in [22] and a compactness result due to Li and Shafrir [18] it is possible to establish for $I_{\rho}$ a strong result through and through analogous to the classical deformation lemma.

Proposition 2.1. If $\rho \neq 8 k \pi$ and if $I_{\rho}$ has no critical levels inside some interval $[a, b]$, then $\left\{I_{\rho} \leq a\right\}$ is a deformation retract of $\left\{I_{\rho} \leq b\right\}$.

To understand the topology of sublevels of $I_{\rho}$ it is useful to recall the well-known Moser-Trudinger inequality on compact surfaces.

Lemma 2.2 (Moser-Trudinger inequality). There exists a constant $C$, depending only on $(\Sigma, g)$ such that for all $u \in H_{g}^{1}(\Sigma)$

$$
\begin{equation*}
\int_{\Sigma} e^{\frac{4 \pi(u-\bar{u})^{2}}{\int_{\Sigma}\left|\nabla_{g} u\right|^{2} d V_{g}}} \leq C \tag{2.1}
\end{equation*}
$$

where $\bar{u}:=f_{\Sigma} u d V_{g}$. As a consequence one has for all $u \in H_{g}^{1}(\Sigma)$

$$
\begin{equation*}
\log \int_{\Sigma} e^{(u-\bar{u})} d V_{g} \leq \frac{1}{16 \pi} \int_{\Sigma}\left|\nabla_{g} u\right|^{2} d V_{g}+C \tag{2.2}
\end{equation*}
$$

Chen and $\mathrm{Li}[6]$ from this result showed that if $e^{u}$ has integral controlled from below (in terms of $\left.\int_{\Sigma} e^{u} d V_{g}\right)$ into $(l+1)$ distinct regions of $\Sigma$, the constant $\frac{1}{16 \pi}$ can be basically divided by $(l+1)$. Since we are interested in the behavior of the functional when $\rho \in(8 \pi, 16 \pi)$, it is sufficient to consider the case $l=1$.

Lemma 2.3. [6] Let $\Omega_{1}, \Omega_{2}$ be subsets of $\Sigma$ satisfying $\operatorname{dist}\left(\Omega_{1}, \Omega_{2}\right) \geq \delta_{0}$, where $\delta_{0}$ is a positive real number, and let $\gamma_{0} \in\left(0, \frac{1}{2}\right)$. Then, for any $\tilde{\varepsilon}>0$ there exists a constant $C=C\left(\tilde{\varepsilon}, \delta_{0}, \gamma_{0}\right)$ such that $\log \int_{\Sigma} e^{(u-\bar{u})} d V_{g} \leq C+\frac{1}{32 \pi-\tilde{\varepsilon}} \int_{\Sigma}\left|\nabla_{g} u\right|^{2} d V_{g}$ for all the functions satisfying $\frac{\int_{\Omega_{i}} e^{u} d V_{g}}{\int_{\Sigma} e^{u} d V_{g}} \geq \gamma_{0}$, for $i=1,2$.

Therefore if $\rho \in(8 \pi, 16 \pi)$ Lemma 2.3 implies that if " $e^{u}$ " is spread in at least two regions then the functional $I_{\rho}$ stays uniformly bounded from below. Qualitatively if $I_{\rho}$ attains large negative values, $\frac{e^{u}}{\int_{\Sigma} e^{u}}$ has to concentrate at a point of $\Sigma$. Indeed, using the previous Lemma and a covering argument, Ding, Jost, Li and Wang obtained (see [11] or [13]) the following result.
Lemma 2.4. Assuming $\rho \in(8 \pi, 16 \pi)$, the following property holds. For any $\varepsilon>0$ and any $r>0$ there exists a large positive constant $L=L(\varepsilon, r)$ such that for every $u \in H_{g}^{1}(\Sigma)$ with $I_{\rho}(u) \leq-L$, there exist a point $p_{u} \in \Sigma$ such that $\int_{\Sigma \backslash B_{r}\left(p_{u}\right)} e^{u} d V_{g} / \int_{\Sigma} e^{u} d V_{g}<\varepsilon$.

By means of Lemma 2.4 it is possible to map continuously low sublevels of the Euler functional into $\Sigma$, roughly speaking associating to $u$ the point $p_{u}$ (see [13] for details); in the following we will denote this map $\Psi: I_{\rho}^{-L} \rightarrow \Sigma$. Viceversa, one can map $\Sigma$ into arbitrarily low sublevels, associating to $x \in \Sigma$ the function $\varphi_{\lambda, x}:=\tilde{\varphi}_{\lambda, x}-\overline{\varphi_{\lambda, x}}$, where $\tilde{\varphi}_{\lambda, x}(y):=\log \left(\frac{\lambda}{1+\lambda^{2} \operatorname{dist}^{2}(x, y)}\right)^{2}$ and $\lambda$ is a sufficiently large positive real parameter. The composition of the former map with the latter can be taken to be homotopic to the identity on $\Sigma$, and hence the following result holds true.

Proposition 2.5. [23] If $\rho \in(8 \pi, 16 \pi)$, there exists $L>0$ such that $\left\{I_{\rho} \leq-L\right\}$ has the same homology as $\Sigma$.

On the other hand in [23] Proposition 2.1 is used to prove that, since $I_{\rho}$ stays uniformly bounded on the solutions of $(*)$ (again by the compactness result due to Li ), it is possible to retract the whole Hilbert space $\bar{H}_{g}^{1}(\Sigma)$ onto a high sublevel $\left\{I_{\rho} \leq b\right\}, b \gg 0$. More precisely:
Proposition 2.6. [23] If $\rho \in(8 \pi, 16 \pi)$ for some $k \in \mathbb{N}$ and if $b$ is sufficiently large positive, the sublevel $\left\{I_{\rho} \leq b\right\}$ is a deformation retract of $X$, and hence it has the same homology of a point.

Remark 2.7. Let notice that, since $\Sigma$ is not contractible, Proposition 2.5 together with Proposition 2.6 and Proposition 2.1 permits to derive an alternative proof of the general existence result due to Djadli.

### 2.2 Notions in algebraic topology

Let now recall some well known definitions and results in algebraic topology. First, we recall the Kunneth Theorem for cohomology in a particular case.

Theorem 2.8. ([2], page 8) If $\left(X \times Y^{\prime}, Y \times X^{\prime}\right)$ is an excisive couple in $X \times X^{\prime}$ and $H^{*}(X, Y)$ is of finite type, i.e. $H^{q}(X, Y)$ is finitely generated for each $q$, then the map

$$
\begin{equation*}
\mu: H^{*}(X, Y) \otimes H^{*}\left(X^{\prime}, Y^{\prime}\right) \longrightarrow H^{*}\left((X, Y) \times\left(X^{\prime}, Y^{\prime}\right)\right) \tag{2.3}
\end{equation*}
$$

defined as $\mu(u \otimes v):=u \times v \in H^{p+q}\left((X, Y) \times\left(X^{\prime}, Y^{\prime}\right)\right)$, for any $u \in H^{p}(X, Y)$ and $v \in H^{q}\left(X^{\prime}, Y^{\prime}\right)$, is an isomorphism.

Cup product. We recall that it is possible to endow the direct sum of the cohomology groups, $H^{*}(X)=\bigoplus_{q} H^{q}(X)$, with an associative and graded multiplication, namely the cup product $\bigcup: H^{p}(X) \times H^{q}(X) \rightarrow H^{p+q}(X)$. This multiplication turns $H^{*}(X)$ into a ring; in fact it is naturally a $\mathbb{Z}$-graded ring with the integer $q$ serving as degree and the cup product respects this grading. This definition can be extended to topological pairs; in particular, if $\left(Y_{1}, Y_{2}\right)$ is an excisive couple in $X$, it is possible to define the cup product

$$
\cup: H^{p}\left(X, Y_{1}\right) \times H^{q}\left(X, Y_{2}\right) \longrightarrow H^{p+q}\left(X, Y_{1} \cup Y_{2}\right)
$$

In de Rham cohomology the cup product of differential forms is also known as the wedge product.

Proposition 2.9. ([25], page 253) Let $\left(X \times Y^{\prime}, Y \times X^{\prime}\right)$ be an excisive couple in $X \times X^{\prime}$, and let $p_{1}:(X, Y) \times X^{\prime} \rightarrow(X, Y)$ and $p_{2}: X \times\left(X^{\prime}, Y^{\prime}\right) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ be the projections. Given $u \in H^{p}(X, Y)$ and $v \in H^{q}\left(X^{\prime}, Y^{\prime}\right)$, then in $H^{p+q}\left((X, Y) \times\left(X^{\prime}, Y^{\prime}\right)\right)$ we have

$$
u \times v=p_{1}^{*}(u) \cup p_{2}^{*}(v)
$$

Cup-length. A numerical invariant derived from the cohomology ring is the cup-length, which for a topological space $X$ is defined as follows:

$$
\begin{gathered}
\mathrm{CL}(X)=\max \left\{l \in \mathbb{N} \mid \exists c_{1}, \ldots, c_{l} \in H^{*}(X), \text { with } \operatorname{dim}\left(c_{i}\right)>0, i=1,2, \ldots, l,\right. \\
\text { such that } \left.c_{1} \cup \ldots \cup c_{l} \neq 0\right\} .
\end{gathered}
$$

For example the cup-length of the 2 -torus is equal to 2 ; too see it one can think to the volume form in de Rham cohomology.
More generally, we define the cup length for a topological pair $(X, Y)$.

$$
\begin{gathered}
\mathrm{CL}(X, Y)=\max \left\{l \in \mathbb{N} \mid \exists c_{0} \in H^{*}(X, Y), \exists c_{1}, \ldots, c_{l} \in H^{*}(X), \text { with } \operatorname{dim}\left(c_{i}\right)>0\right. \\
\text { for } \left.i=1,2, \ldots, l, \text { such that } c_{0} \cup c_{1} \cup \ldots \cup c_{l} \neq 0\right\} .
\end{gathered}
$$

In the case where $Y=\emptyset$, we just take $c_{0} \in H^{0}(X)$; thus the two definitions are the same.

### 2.3 Lusternik-Schnirelmann relative category

We recall the definition of Lusternik-Schnirelmann category (category, for short); then, following [15], we introduce a more powerful notion. In fact, to be precise, it is not a notion but rather a family of (Lusternik-Schnirelmann) relative categories. In this family we choose only two for their special properties, which are given in Proposition 2.12. We will see that the category is a useful tool in critical point theory to obtain multiplicity results.

Definition 2.10. Let $X$ be a topological space and $A$ a subset of $X$. The category of $A$ with respect to $X$, denoted by $\operatorname{Cat}_{X} A$, is the least integer $k$ such that $A \subset A_{1} \cup \ldots \cup A_{k}$, with $A_{i}(i=1, \ldots, k)$ closed and contractible in $X$. We set $\operatorname{Cat}_{X} \emptyset=0$ and $\operatorname{Cat}_{X} A=+\infty$ if there are no integers satisfying the demand.

Definition 2.11. Let $X$ be a topological space and $Y$ a closed subset of $X$. A closed subset $A$ of $X$ is of the $k$-th (strong) category relative to $Y$ (we write $\operatorname{Cat}_{X, Y} A=k$ ) if $k$ is the least positive integer such that there exist $A_{i} \subset A$ closed and $h_{i}: A_{i} \times[0,1] \rightarrow X, i=0, \ldots, k$, satisfying the following properties:
(i) $A=\cup_{i=0}^{k} A_{i}$,
(ii) $h_{i}(x, 0)=x \quad \forall x \in A_{i} \quad 0 \leq i \leq k$,
(iii) $h_{0}(x, 1) \in Y \quad \forall x \in A_{0}$ and $h_{0}(y, t)=y \quad \forall y \in Y \quad \forall t \in[0,1]$,
(iv) $\forall i \geq 1 \exists x_{i} \in X$ such that $h_{i}(x, 1)=x_{i}$,
(v) $\forall i \geq 1 h_{i}\left(A_{i} \times[0,1]\right) \cap Y=\emptyset$.

We say that $A$ is of the $k$-th weak category relative to $Y$, written cat ${ }_{X, Y} A=k$, if $k$ is minimal verifying conditions $(i)-(i v)$.
If one such $k$ does not exist, we set $\operatorname{Cat}_{X, Y} A=+\infty$ (respectively cat ${ }_{X, Y} A=+\infty$ ).
Starting from the above definition, it is easy to check that the following properties hold true.
Proposition 2.12. [15] Let $A, B$ and $Y$ be closed subsets of $X$ :

1. if $Y=\emptyset$, then $\operatorname{cat}_{X, \emptyset} A=\operatorname{Cat}_{X, \emptyset} A=\operatorname{Cat}_{X} A$;
2. $\operatorname{Cat}_{X, Y} A \geq \operatorname{cat}_{X, Y} A$;
3. if $A \subset B$, then $\operatorname{Cat}_{X, Y} A \leq \operatorname{Cat}_{X, Y} B$;
4. if there exists an homeomorphism $\phi: X \rightarrow X^{\prime}$ such that $Y^{\prime}=\phi(Y)$ and $A^{\prime}=\phi(A)$, then $\operatorname{Cat}_{X^{\prime}, Y^{\prime}} A^{\prime}=\operatorname{Cat}_{X, Y} A$;
5. if $X^{\prime} \supset X \supset A$ and $r: X^{\prime} \rightarrow X$ is a retraction such that $r^{-1}(Y)=Y$ and $r^{-1}(A) \supset A$, then $\operatorname{Cat}_{X^{\prime}, Y} A \geq \operatorname{Cat}_{X, Y} A$.

Usually, the notion of category is employed to find critical points of a functional $I$ on a manifold $X$, in connection with the topological structure of $X$. Moreover a classical theorem by LusternikSchnirelmann shows that either there are at least $\operatorname{Cat}_{X} X$ critical points of $I$ on $X$, or at some critical level of $I$ there is a continuum of critical points.

This result cannot directly help us because, since we look for critical points on $\bar{H}_{g}^{1}(T)$, we would take $X=\bar{H}_{g}^{1}(T)$ which, clearly, has category equal to 1 (being contractible).

So we will need a generalization of such a theorem which involves relative category of sublevels. In particular a Theorem in [15] can be adapted to our functional.

Theorem 2.13. If $-\infty<a<b<+\infty$ and $a, b$ are regular value for $I_{\rho}$, then

$$
\#\left\{\text { critical points of } I_{\rho} \text { in } a \leq I_{\rho} \leq b\right\} \geq \operatorname{Cat}_{\left\{I_{\rho} \leq b\right\},\left\{I_{\rho} \leq a\right\}}\left\{I_{\rho} \leq b\right\}
$$

In its original formulation the previous statement dealt with $C^{1}$ functionals verifying the PalaisSmale condition, but, as pointed out in [9], the $(P S)$-condition is used in the proof only twice to apply the classical deformation lemma (see for example [8]). Thus, it is not hard to understand that Proposition 2.1 allows to extend the result to $I_{\rho}$.

Besides, in a particular case the relative category can be estimated by means of the cup-length of a pair in the following way:

Theorem 2.14. [2] For any topological space $X$, if $Y$ is a closed subset of $X$, then:

$$
\operatorname{cat}_{X, Y} X \geq \mathrm{CL}(X, Y)+1
$$

## 3 Proof of Theorem 1.2

Before proving Theorem 1.2 we recall the previous result in [9] and we summarize its proof.
Theorem 3.1. [9] If $\rho \in\left(8 \pi, 4 \pi^{2}\right)$ and $\Sigma=T$ is the torus, if the metric $g$ is sufficiently close in $C^{2}\left(T ; S^{2 \times 2}\right)$ to $d x^{2}$ and $h$ is uniformly close to the constant $1, I_{\rho}$ admits a point of strict local minimum and at least two different saddle points.

Let consider a new functional $\tilde{I}_{\rho}$ which coincides with $I_{\rho}$ out of a small neighborhood of $\bar{u}$ and assumes large negative values near $\bar{u}$ (here we are exploiting the existence of a strict local minimum), then fix $b$ and $L$ conveniently, in particular such that $I_{\rho}^{b}=\tilde{I}_{\rho}^{b}$ and $\tilde{I}_{\rho}^{-L}=I_{\rho}^{-L} \amalg\{$ neighb. of $\bar{u}\}, I_{\rho}$ and $\tilde{I}_{\rho}$ have the same critical points of saddle type in $\tilde{I}_{\rho}^{b} \backslash \tilde{I}_{\rho}^{-L}$.

Let $X$ denote the contractible cone over $T$ and let $\partial X$ be its boundary; they can be represented as $X=\frac{T \times[0,1]}{T \times\{0\}}, \partial X=\frac{T \times(\{0\} \cup\{1\})}{T \times\{0\}}$. To get the thesis it is sufficient to establish the following chain of inequalities:

$$
\begin{align*}
\#\left\{\text { critical points of } \tilde{I}_{\rho} \text { in }-L \leq \tilde{I}_{\rho} \leq b\right\} & \geq \operatorname{Cat}_{\tilde{I}_{\rho}^{b}, \tilde{I}_{\rho}^{-L}} \tilde{I}_{\rho}^{b}{ }^{2} \operatorname{Cat}_{\tilde{I}_{\rho}^{b}, \phi(\partial X)} \tilde{I}_{\rho}^{b}  \tag{3.1}\\
& \geq \operatorname{Cat}_{\tilde{I}_{\rho}^{b}, \phi(\partial X)} \phi(X) \stackrel{4}{\geq} \operatorname{Cat}_{\phi(X), \phi(\partial X)} \phi(X) \\
& \geq \operatorname{Cat}_{X, \partial X} X \geq 2
\end{align*}
$$

where $\phi$ is the homeomorphism on the image defined as follows:

$$
\begin{aligned}
\phi: X & \longrightarrow \bar{H}_{g}^{1}(T) \\
(x, t) & \longmapsto t \varphi_{\lambda, x},
\end{aligned}
$$

with $\varphi_{\lambda, x}$ defined in Section 2.1 and $L, \lambda, b$ suitable constants, clearly depending on $\rho$.
The first inequality follows immediately from Theorem 2.13, which as showed in [9] holds true also for $\tilde{I}_{\rho}$, while the third and the fifth can be easily derived from the properties of the relative category.
In order to prove 2 one has to construct a deformation retraction (in $\tilde{I}_{\rho}^{b}$ ) of $\tilde{I}_{\rho}^{-L}$ onto $\phi(\partial X)$. In particular, since $I_{\rho}^{-L}$ has two connected components, one can deal separately with these two different regions. For what concerns the neighborhood of the minimum point $\bar{u}$, it is enough to combine the steepest descent flow with a deformation sending $\bar{u}$ into 0 ; while, in $I_{\rho}^{-L}$, the map $\Psi: I_{\rho}^{-L} \rightarrow \Sigma$ has to be composed with the map which realizes the deformation of $\bar{H}_{g}^{1}(T)$ on $\tilde{I}_{\rho}^{b}$.
Moreover, just perturbing $\Psi$, it is possible to obtain a new continuous map $\tilde{\Psi}: \tilde{I}_{\rho}^{-L} \rightarrow \phi(\partial X)$ verifying $\tilde{\Psi}_{\mid \phi(\partial X)}=\operatorname{Id}_{\mid \phi(\partial X)}$. The key point is that applying again (2.1), one is able to extend $\tilde{\Psi}$ to $\tilde{I}_{\rho}^{b} \backslash B_{R}, R=R(\rho, b)$. Then by means of $\tilde{\Psi}$, one can construct a new map $r: \tilde{I}_{\rho}^{-L} \rightarrow \phi(X)$ such that $r_{\mid \phi(X)}=\operatorname{Id}_{\mid \phi(X)}$ and $r^{-1}(\phi(\partial X))=\phi(\partial X)$. Finally, category's properties allow to derive the fourth inequality from the existence of the latter map.
At last the sixth inequality has been tackled using a direct topological argument.
Proof of Theorem 1.2 Our aim will be to improve the last inequality of (3.1), proving that $\operatorname{Cat}_{X, \partial X} X \geq 3$.

To do that we are going to establish a new chain of inequalities, involving the notion of cup length.

$$
\begin{align*}
\operatorname{Cat}_{X, \partial X} X & \stackrel{a}{\geq} \operatorname{Cat}_{T \times[0,1], T \times(\{0\} \cup\{1\})}(T \times[0,1])  \tag{3.2}\\
& \stackrel{b}{\geq} \operatorname{cat}_{T \times[0,1], T \times(\{0\} \cup\{1\})}(T \times[0,1]) \\
& \geq \operatorname{CL}(T \times[0,1], T \times(\{0\} \cup\{1\}))+1 \\
& \geq \operatorname{CL}(T)+1 \stackrel{e}{=} 3 .
\end{align*}
$$

Let us first prove point $a$. Let consider the $A_{i}$ and $h_{i}$ verifying the conditions for Cat ${ }_{X, \partial X} X$.
First of all, in order to show that $A_{0}$ is disconnected, let us denote by $X_{0}:=T \times\{0\} / T \times\{0\}$ and $X_{1}:=T \times\{1\} / T \times\{0\}$ the two disconnected components of $\partial X$. By definition we know that $X_{0} \cup X_{1}=\partial X \subset A_{0}$ and that there exists $h_{0}: A_{0} \times[0,1] \rightarrow X$ continuous with the properties: $h_{0}\left(A_{0}, 1\right) \subset \partial X$ and $h_{0 \mid \partial X \times[0,1]} \equiv \operatorname{Id}_{\partial X}$. Now, if $A_{0}$ was connected we would get a contradiction because $h_{0}\left(A_{0}, 1\right)$ would be connected (by continuity of $h_{0}$ ) and disconnected being the union of $X_{0}$ and $X_{1}$.

Thus we can consider the connected component $A_{00}$ of $A_{0}$ containing $X_{0}$ and its complementary in $A_{0}, A_{01}:=A_{0} \backslash A_{00}$. Then, we define

$$
\left.\tilde{A}_{0 j}:=\left\{(x, t) \mid x \in T, t \in[0,1],[(x, t)] \in A_{0 j}\right)\right\} \quad j=0,1,
$$

where $[(x, t)]$ stands for the equivalence class of $(x, t)$ in $X$.
Let us set $\tilde{A}_{0}:=\tilde{A}_{00} \cup \tilde{A}_{01}$.
Next, we construct a continuous map $\tilde{h}_{0}: \tilde{A}_{0} \times[0,1] \rightarrow T \times[0,1]$ in the following way:

$$
\tilde{h}_{0}((x, t), s):= \begin{cases}(x,(1-s) t) & (x, t) \in \tilde{A}_{00} \\ (x,(1-s) t+s) & (x, t) \in \tilde{A}_{01} .\end{cases}
$$

Just to be rigorous we also define the sets

$$
\left.\tilde{A}_{i}:=\left\{(x, t) \mid x \in T, t \in[0,1],[(x, t)] \in A_{i}\right)\right\} \quad i \geq 1,
$$

which are nothing but the $A_{i}$ 's seen as subsets of $T \times[0,1]$, without the equivalence relation. Analogously we define the maps

$$
\tilde{h}_{i}((x, t), s):=h_{i}([(x, t)], s)
$$

which turn out to be well defined, being $A_{i} \cap \partial X=\emptyset$, for any $i \geq 1$ (see point $(v)$ of Definition 2.11).

Now, it is easy to see that the sets $\tilde{A}_{i}$ 's, together with the continuous maps $\tilde{h}_{i}$ 's, satisfy the conditions of Definition 2.11 for $\operatorname{Cat}_{T \times[0,1], T \times(\{0\} \cup\{1\})}(T \times[0,1])$ and this concludes the proof of this first inequality.

Point $b$ follows directly from property 2 of Proposition 2.12 , while applying Theorem 2.14 we obtain inequality $c$.

To get step $d$, let us denote by $k$ the cup-length of $T$. By definition there exist $\alpha_{1}, \ldots, \alpha_{k} \in$ $H^{*}(T)$, with $\operatorname{dim}\left(\alpha_{i}\right)>0$ for any $i \in\{1, \ldots, k\}$, such that

$$
\alpha_{1} \cup \ldots \cup \alpha_{k} \neq 0 .
$$

Since $H^{1}([0,1],\{0\} \cup\{1\})=\mathbb{R}$, we can also choose $0 \neq \beta \in H^{1}([0,1],\{0\} \cup\{1\})$.
We are now in position to apply Theorem 2.8 with $X=[0,1], Y=\{0\} \cup\{1\}, X^{\prime}=T$ and $Y^{\prime}=\emptyset$. By definition of $\mu$, see (2.3), and its injectivity, we obtain

$$
\begin{equation*}
\beta \times\left(\alpha_{1} \cup \alpha_{k}\right)=\mu\left(\beta \otimes\left(\alpha_{1} \cup \alpha_{k}\right)\right) \neq 0 \tag{3.3}
\end{equation*}
$$

Consider now the projections $p_{1}: T \times([0,1],\{0\} \cup\{1\}) \rightarrow([0,1],\{0\} \cup\{1\})$ and $p_{2}: T \times[0,1] \rightarrow T$. Applying Proposition 2.9, we find:

$$
\begin{equation*}
\beta \times\left(\alpha_{1} \cup \alpha_{k}\right)=p_{1}^{*}(\beta) \cup p_{2}^{*}\left(\alpha_{1} \cup \alpha_{k}\right)=p_{1}^{*}(\beta) \cup p_{2}^{*}\left(\alpha_{1}\right) \cup \ldots \cup p_{2}^{*}\left(\alpha_{k}\right) \tag{3.4}
\end{equation*}
$$

Notice that $p_{1}^{*}(\beta) \in H^{*}(T \times[0,1], T \times(\{0\} \cup\{1\}))$ and, for any $i \in\{1, \ldots, k\}, p_{2}^{*}\left(\alpha_{i}\right) \in H^{*}(T \times[0,1])$, with $\operatorname{dim}\left(p_{2}^{*}\left(\alpha_{i}\right)\right)>0$.

In conclusion, by virtue of (3.3) and (3.4), we proved exactly that $\mathrm{CL}(T) \leq \mathrm{CL}(T \times[0,1], T \times$ $(\{0\} \cup\{1\}))$.

Finally, the equality named $e$ is just due to the well known fact that $\mathrm{CL}(T)=2$. The proof is thereby complete.

## References

[1] E.P. Caglioti, P.L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two dimensional Euler equations: a statistical mechanics description, Commun. Math. Phys. 143 (1995), 229-260.
[2] K.C. Chang, Infinite dimensional Morse theory and multiple solution problems, PNLDE 6, Birkhäuser, Boston, 1993.
[3] S.Y.A. Chang, M.J. Gursky and P.C. Yang, The scalar curvature equation on 2- and 3- spheres, Calc. Var. and Partial Diff. Eq. 1 (1993), 205-229.
[4] S.Y.A. Chang and P.C. Yang, Prescribing Gaussian curvature on $S^{2}$, Acta Math. 159 (1987), 215-259.
[5] W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), 615-622.
[6] W. Chen and C. Li, Prescribing Gaussian curvatures on surfaces with conical singularities, J. Geom. Anal. 1-4 (1991), 359-372.
[7] C.C. Chen and C.S. Lin, Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math. 56 (2003), 1667-1727.
[8] D.C. Clark, A variant of the Lusternick-Schnirelman theory, Indiana J. Math 22 (1972), 65-74.
[9] F. De Marchis, Multiplicity result for a scalar field equation on compact surfaces, Comm. Partial Differential Equations, 33 (2008), 2208-2224.
[10] F. De Marchis, Generic multiplicity for a scalar field equation on compact surfaces, J. Funct. Anal., 259 (2010), 2165-2192.
[11] W. Ding, J. Jost, J. Li and G. Wang, Existence result for mean field equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 16 (1999), 653-666.
[12] W. Ding, J. Jost, J. Li and G. Wang, The differential equation $\triangle u=8 \pi-8 \pi h e^{u}$ on a compact Riemann surface, Asian J. Math. 1 (1997), 230-248.
[13] Z. Djadli, Existence result for the mean field problem on Riemann surfaces of all genuses, Commun. Contemp. Math. 10 (2008), 205-220.
[14] Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant $Q$-curvature, Ann. of Math. 168 (2008), 813-858.
[15] G. Fournier and M. Willem, Multiple solutions of the forced double pendulum equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 6 (1989), 259-281.
[16] M.K.H. Kiessling, Statistical mechanics approach to some problems in conformal geometry. Statistical mechanics: from rigorous results to applications, Phys. A 279 (2000), 353-368.
[17] J.L. Kazdan e F.W. Warner, Curvature functions for compact 2-manifolds, Ann. of Math. 99 (1974), 14-47.
[18] Y.Y. Li and I. Shafrir, Blow-up analysis for solutions of $-\Delta u=V e^{u}$ in dimension two, Ind. Univ. Math. J. 43 (1994), 1225-1270.
[19] Y.Y. Li, Harnack type inequality: the methods of moving planes, Comm. Math. Phys. 200 (1999), 421-444.
[20] C.S. Lin, Topological degree for mean field equations on $S^{2}$, Duke Math. J. 104 (2000), 501-536.
[21] M. Lucia, A blowing-up branch of solutions for a mean field equation, Calc. Var. 26 (2006), 313-330.
[22] M. Lucia, A deformation lemma with an application with a mean field equation, Topol. Methods Nonlinear Anal. 30 (2007), 113-138. .
[23] A. Malchiodi, Morse theory and a scalar field equation on compact surfaces, Adv. Diff. Eq. 13 (2008), 1109-1129.
[24] M. Nolasco and G. Tarantello, On a sharp type-Sobolev inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal. 145 (1998), 165-195.
[25] E.H. Spanier, Algebraic topology, Springer-Verlag, New-York, 1966.
[26] M. Struwe and G. Tarantello, On multivortex solutions in Chern-Simons gauge theory, Boll. Unione Mat. Ital. 8 (1998), 109-121.
[27] G. Tarantello, Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys. 37 (1996), 3769-3796.
[28] Y. Yang, Solitons in field theory and nonlinear analysis, Springer, 2001.

