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abstract

We consider a scalar field equation on compact surfaces which has variational structure. When
the surface is a torus and a physical parameter ρ belongs to (8π, 4π2) we show under some extra
assumptions that, as conjectured in [9], the functional admits at least three saddle points other than
a local minimum.

Key Words: Scalar field equations, Geometric PDE’s, Multiplicity result.

1 Introduction

Let (Σ, g) be a compact Riemann surface (without boundary), h ∈ C2(Σ) be a positive function and
ρ a positive real parameter. We consider the equation

−4gu+ ρ = ρ
h(x)eu∫

Σ
h(x)eudVg

x ∈ Σ, u ∈ H1
g (Σ), (∗)

where 4g is the Laplace-Beltrami operator on Σ.
When (Σ, g) is a flat torus equation (∗) is related to the study of some Chern–Simons–Higgs

models; indeed via its solutions it is possible to describe the asymptotic behavior of a class of
condensates (or multivortex) solutions which are relevant in theoretical physics and which were
absent in the classical (Maxwell-Higgs) vortex theory (see [24], [27], [28] and references therein).
This PDE arises also in conformal geometry; when (Σ, g) is the standard sphere and ρ = 8π, the
geometric meaning of this problem is that from a solution u we can obtain a new conformal metric eug
which has curvature ρ

2h; the latter is known as the Kazdan-Warner problem, or as the Nirenberg
problem and has been studied for example in [3], [4] and [17]. Moreover this problem arises in
statistical mechanics. Indeed, when formulated on bounded domains of R2 with Dirichlet boundary
conditions, equation (∗) was considered in [1] and [16] as the mean field limit as point vortices for
the two–dimensional Euler equation.

Problem (∗) has a variational structure and solutions can be found as critical points of the
functional

Iρ(u) =
1
2

∫
Σ

|∇gu|2dVg + ρ

∫
Σ

u dVg − ρ log
∫

Σ

h(x)eudVg u ∈ H1
g (Σ). (1.1)

Since equation (∗) is invariant when adding constants to u, we can restrict ourselves to the subspace
of the functions with zero average H̄1

g (Σ) :=
{
u ∈ H1

g ( Σ) :
∫

Σ
u dvg = 0

}
.

By virtue of the Moser-Trudinger inequality (see Lemma 2.2) one can easily prove the compact-
ness and the coercivity of Iρ when ρ < 8π and thus one can find solutions of (∗) by minimization.
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If ρ = 8π the situation is more delicate since Iρ still has a lower bound but it is not coercive
anymore; in general when ρ is an integer multiple of 8π, the existence problem of (∗) is much harder
(a far from complete list of references on the subject includes works by Chang and Yang [4], Chang,
Gursky and Yang [3], Chen and Li [5], Nolasco and Tarantello [24], Ding, Jost, Li and Wang [12]
and Lucia [21]).

For ρ > 8π, as the functional Iρ is unbounded from below and from above, solutions have to be
found as saddle points.
In [11] Ding, Jost, Li and Wang proved that, assuming ρ ∈ (8π, 16π) and assuming that the genus
of the surface is greater or equal than 1, there exists a solution to (∗). In [19] Yan Yan Li initiated a
program to find solutions for ρ > 8π by using the topological degree theory. He proved an uniform
bound for solutions to equation (∗) whenever ρ is contained in a compact set of (8kπ, 8(k + 1)π),
where k ≥ 0 is an integer. Therefore, the Leray–Schauder degree for (∗) remains the same when ρ is
in the interval (8kπ, 8(k + 1)π). Few years ago this program was completed by Chen and Lin in [7]
using a finite-dimensional reduction to compute the jump values. The authors obtained a complete
degree-counting formula, extending the results in [20], where the case Σ = S2 and k = 1 was studied.
Finally, when ρ /∈ 8Nπ, Djadli [13] generalized these previous results establishing the existence of a
solution for any (Σ, g); to do that he deeply investigated the topology of low sublevels of Iρ in order
to perform a min-max scheme (already introduced in Djadli and Malchiodi [14]).

Not much is known about multiplicity. Recently the author in [10], via Morse inequalities,
improved significantly the multiplicity estimate which can be deduced from the degree-counting
formula in [7].

Besides, the case of the flat torus, which is a relevant situation from the physical point of view,
has been treated by Struwe and Tarantello under the assumptions that h ≡ 1 and ρ ∈ (8π, 4π2). In
these hypotheses, u = 0 is clearly a critical point for Iρ. Moreover, u = 0 is a strict local minimum,
since the second variation in the direction v ∈ H̄1

g (T ) can be estimated as follows

D2Iρ(0)[v, v] = ‖v‖2 − ρ
∫

Σ

v2dx ≥
(

1− ρ

4π2

)
‖v‖2 . (1.2)

Under these conditions, the functional possesses a mountain pass geometry and by thanks to this
structure the existence of a saddle point of Iρ has been detected by Struwe and Tarantello.

Theorem 1.1. ([26]) Let Σ be the flat torus and h ≡ 1. Then, for any ρ ∈ (8π, 4π2), there exists a
non-trivial solution uρ of (∗) satisfying Iρ(uρ) ≥ (1−ρ/4π2)c0 for some constant c0 > 0 independent
of ρ.

As g is the flat metric and h is constant, if u is a solution of (∗), the functions ux0(x) := u(x−x0)
still solve (∗), for any x0 ∈ T ; so from Theorem 1.1 we can deduce the existence of an infinite number
of solutions of (∗).

Perturbing g and h there is still a local minimum, ū, close to u = 0 and the same procedure of
[26] ensures the presence of a saddle point, but on the other hand, if u is a non-trivial solution, the
criticality of the translated functions ux0 is not anymore guaranteed. In [9] the author improved this
result stating that apart from ū there are at least two critical points, see Theorem 3.1 in Section 3.

The strategy of the proof consists in defining a deformed functional Ĩρ, having the same saddle
points of Iρ but a greater topological complexity of its low sublevels, and in estimating from below
the number of saddle points of Ĩρ using the notion of Lusternik-Schnirelmann relative category
(roughly speaking a natural number measuring how a set is far from being contractible, when a
subset is fixed).

Always in [9] the author conjectured that apart from the minimum and the two saddle points
another critical point should exist. In fact this turns out to be true.

Theorem 1.2. If ρ ∈ (8π, 4π2) and Σ = T is the torus, if the metric g is sufficiently close in
C2(T ;S2×2) to dx2 and h is uniformly close to the constant 1, Iρ admits a point of strict local
minimum and at least three different saddle points.
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In the above statement S2×2 stands for the symmetric matrices on T . To prove Theorem 3.1 we
exploit the following inequality derived in [9]:

# {solutions of (∗)} ≥ CatX,∂X X,

where X is the topological cone over T . Next, applying a classical result we are able to estimate from
below the previous relative category by one plus the cup–length of the pair (T×[0, 1], T×({0}∪{1})).
The cup–length of a topological pair (Y,Z), denoted by CL(Y,Z), is the maximum number of
elements of the cohomology ring H∗(Y ) having positive dimensions and whose cup product do not
“annihilate” the ring H∗(Y,Z); we refer to the next section for a rigorous definition. Finally, to
obtain the thesis, we show that CL(T × [0, 1], T × ({0} ∪ {1})) ≥ CL(T ) = 2.

Remark 1.3. Since all the arguments only use the presence of a strict local minimum and the fact
that X is the topological cone over T , whenever on some (Σ, g) the functional Iρ possesses a strict
local minimum, the theorem holds true, more precisely Iρ has at least CL(Σ)+1 critical points other
than the minimum.

In section 2 we collect some useful material concerning the topological structure of Iρ and we
recall some definitions and some classical results in algebraic topology; besides, we focus on the
notion of Lusternik-Schnirelmann relative category and its relation with the cuplength. In section 3
we present briefly the result in [9] and prove our multiplicity result.
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2 Notation and preliminaries

In this section we collect some facts needed in order to obtain the multiplicity result.
First of all we consider some improvements of the Moser-Trudinger inequality which are useful to
study the topological structure of the sublevels of Iρ. Next, we collect some basic notions in algebraic
topology and we recall the definition of Lusternik-Schnirelmann relative category stating also some
results relating the category to both the cup-length and the existence of critical points.

Let now fix our notation. The symbol Br(p) denotes the metric ball of radius r and center p.
As already specified we set H̄1

g (Σ) :=
{
u ∈ H1

g (Σ) :
∫

Σ
u dvg = 0

}
.

Large positive constants are always denoted by C, and the value of C is allowed to vary from
formula to formula. Moreover, given a smooth functional I : H1

g (Σ) → R and a real number c, we
set Ic := {u ∈ H1

g (Σ) | I(u) ≤ c}.
Finally, given a pair of topological spaces (X,A) we will denote by Hq(X,A) the relative q-th
cohomology group with coefficients in R and by H∗(X,A) the direct sum of the cohomology groups,⊕∞

q=0 Hq(X,A).

2.1 Variational Structure

Even though the Palais-Smale is not known to hold for our functional, employing together a deforma-
tion lemma proved by Lucia in [22] and a compactness result due to Li and Shafrir [18] it is possible
to establish for Iρ a strong result through and through analogous to the classical deformation lemma.

Proposition 2.1. If ρ 6= 8kπ and if Iρ has no critical levels inside some interval [a, b], then {Iρ ≤ a}
is a deformation retract of {Iρ ≤ b}.

To understand the topology of sublevels of Iρ it is useful to recall the well-known Moser-Trudinger
inequality on compact surfaces.
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Lemma 2.2 (Moser-Trudinger inequality). There exists a constant C, depending only on (Σ, g)
such that for all u ∈ H1

g (Σ) ∫
Σ

e
4π(u−ū)2∫

Σ |∇gu|
2dVg ≤ C. (2.1)

where ū := −
∫

Σ
udVg. As a consequence one has for all u ∈ H1

g (Σ)

log
∫

Σ

e(u−ū)dVg ≤
1

16π

∫
Σ

|∇gu|2dVg + C. (2.2)

Chen and Li [6] from this result showed that if eu has integral controlled from below (in terms of∫
Σ
eudVg) into (l+1) distinct regions of Σ, the constant 1

16π can be basically divided by (l+1). Since
we are interested in the behavior of the functional when ρ ∈ (8π, 16π), it is sufficient to consider the
case l = 1.

Lemma 2.3. [6] Let Ω1, Ω2 be subsets of Σ satisfying dist(Ω1,Ω2) ≥ δ0, where δ0 is a positive
real number, and let γ0 ∈ (0, 1

2 ). Then, for any ε̃ > 0 there exists a constant C = C(ε̃, δ0, γ0) such

that log
∫

Σ
e(u−ū)dVg ≤ C + 1

32π−ε̃
∫

Σ
|∇gu|2dVg for all the functions satisfying

∫
Ωi
eudVg∫

Σ e
udVg

≥ γ0, for
i = 1, 2.

Therefore if ρ ∈ (8π, 16π) Lemma 2.3 implies that if “eu” is spread in at least two regions then
the functional Iρ stays uniformly bounded from below. Qualitatively if Iρ attains large negative
values, eu∫

Σ e
u has to concentrate at a point of Σ. Indeed, using the previous Lemma and a covering

argument, Ding, Jost, Li and Wang obtained (see [11] or [13]) the following result.

Lemma 2.4. Assuming ρ ∈ (8π, 16π), the following property holds. For any ε > 0 and any r > 0
there exists a large positive constant L = L(ε, r) such that for every u ∈ H1

g (Σ) with Iρ(u) ≤ −L,
there exist a point pu ∈ Σ such that

∫
Σ\Br(pu)

eudVg/
∫

Σ
eudVg < ε.

By means of Lemma 2.4 it is possible to map continuously low sublevels of the Euler functional
into Σ, roughly speaking associating to u the point pu (see [13] for details); in the following we will
denote this map Ψ : I−Lρ → Σ. Viceversa, one can map Σ into arbitrarily low sublevels, associating to

x ∈ Σ the function ϕλ,x := ϕ̃λ,x− ϕ̃λ,x, where ϕ̃λ,x(y) := log
(

λ
1+λ2 dist2(x,y)

)2

and λ is a sufficiently
large positive real parameter. The composition of the former map with the latter can be taken to
be homotopic to the identity on Σ, and hence the following result holds true.

Proposition 2.5. [23] If ρ ∈ (8π, 16π), there exists L > 0 such that {Iρ ≤ −L} has the same
homology as Σ.

On the other hand in [23] Proposition 2.1 is used to prove that, since Iρ stays uniformly bounded
on the solutions of (∗) (again by the compactness result due to Li), it is possible to retract the whole
Hilbert space H̄1

g (Σ) onto a high sublevel {Iρ ≤ b}, b� 0. More precisely:

Proposition 2.6. [23] If ρ ∈ (8π, 16π) for some k ∈ N and if b is sufficiently large positive, the
sublevel {Iρ ≤ b} is a deformation retract of X, and hence it has the same homology of a point.

Remark 2.7. Let notice that, since Σ is not contractible, Proposition 2.5 together with Proposition
2.6 and Proposition 2.1 permits to derive an alternative proof of the general existence result due to
Djadli.

2.2 Notions in algebraic topology

Let now recall some well known definitions and results in algebraic topology.
First, we recall the Kunneth Theorem for cohomology in a particular case.
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Theorem 2.8. ([2], page 8) If (X × Y ′, Y ×X ′) is an excisive couple in X ×X ′ and H∗(X,Y ) is
of finite type, i.e. Hq(X,Y ) is finitely generated for each q, then the map

µ : H∗(X,Y )⊗H∗(X ′, Y ′) −→ H∗((X,Y )× (X ′, Y ′)), (2.3)

defined as µ(u⊗ v) := u× v ∈ Hp+q((X,Y )× (X ′, Y ′)), for any u ∈ Hp(X,Y ) and v ∈ Hq(X ′, Y ′),
is an isomorphism.

Cup product. We recall that it is possible to endow the direct sum of the cohomology groups,
H∗(X) =

⊕
qH

q(X), with an associative and graded multiplication, namely the cup product⋃
: Hp(X) × Hq(X) → Hp+q(X). This multiplication turns H∗(X) into a ring; in fact it is

naturally a Z-graded ring with the integer q serving as degree and the cup product respects this
grading. This definition can be extended to topological pairs; in particular, if (Y1, Y2) is an excisive
couple in X, it is possible to define the cup product

∪ : Hp(X,Y1)×Hq(X,Y2) −→ Hp+q(X,Y1 ∪ Y2)

In de Rham cohomology the cup product of differential forms is also known as the wedge product.

Proposition 2.9. ([25], page 253) Let (X × Y ′, Y ×X ′) be an excisive couple in X ×X ′, and let
p1 : (X,Y )×X ′ → (X,Y ) and p2 : X× (X ′, Y ′)→ (X ′, Y ′) be the projections. Given u ∈ Hp(X,Y )
and v ∈ Hq(X ′, Y ′), then in Hp+q((X,Y )× (X ′, Y ′)) we have

u× v = p∗1(u) ∪ p∗2(v).

Cup–length. A numerical invariant derived from the cohomology ring is the cup-length, which for
a topological space X is defined as follows:

CL(X) = max { l ∈ N | ∃ c1, . . . , cl ∈ H∗(X), with dim(ci) > 0, i = 1, 2, . . . , l,
such that c1 ∪ . . . ∪ cl 6= 0}.

For example the cup–length of the 2-torus is equal to 2; too see it one can think to the volume form
in de Rham cohomology.
More generally, we define the cup length for a topological pair (X,Y ).

CL(X,Y ) = max { l ∈ N | ∃ c0 ∈ H∗(X,Y ), ∃ c1, . . . , cl ∈ H∗(X), with dim(ci) > 0
for i = 1, 2, . . . , l, such that c0 ∪ c1 ∪ . . . ∪ cl 6= 0}.

In the case where Y = ∅, we just take c0 ∈ H0(X); thus the two definitions are the same.

2.3 Lusternik-Schnirelmann relative category

We recall the definition of Lusternik-Schnirelmann category (category, for short); then, following
[15], we introduce a more powerful notion. In fact, to be precise, it is not a notion but rather a
family of (Lusternik-Schnirelmann) relative categories. In this family we choose only two for their
special properties, which are given in Proposition 2.12. We will see that the category is a useful tool
in critical point theory to obtain multiplicity results.

Definition 2.10. Let X be a topological space and A a subset of X. The category of A with respect
to X, denoted by CatX A, is the least integer k such that A ⊂ A1 ∪ . . . ∪Ak, with Ai (i = 1, . . . , k)
closed and contractible in X. We set CatX ∅ = 0 and CatX A = +∞ if there are no integers satisfying
the demand.
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Definition 2.11. Let X be a topological space and Y a closed subset of X. A closed subset A of
X is of the k-th (strong) category relative to Y (we write CatX,Y A = k) if k is the least positive
integer such that there exist Ai ⊂ A closed and hi : Ai × [0, 1] → X, i = 0, . . . , k, satisfying the
following properties:

(i) A = ∪ki=0Ai,

(ii) hi(x, 0) = x ∀x ∈ Ai 0 ≤ i ≤ k,

(iii) h0(x, 1) ∈ Y ∀x ∈ A0 and h0(y, t) = y ∀y ∈ Y ∀t ∈ [0, 1],

(iv) ∀ i ≥ 1 ∃xi ∈ X such that hi(x, 1) = xi,

(v) ∀ i ≥ 1 hi(Ai × [0, 1]) ∩ Y = ∅.

We say that A is of the k-th weak category relative to Y , written catX,Y A = k, if k is minimal
verifying conditions (i)− (iv).
If one such k does not exist, we set CatX,Y A = +∞ (respectively catX,Y A = +∞).

Starting from the above definition, it is easy to check that the following properties hold true.

Proposition 2.12. [15] Let A, B and Y be closed subsets of X:

1. if Y = ∅, then catX,∅A = CatX,∅A = CatX A;

2. CatX,Y A ≥ catX,Y A;

3. if A ⊂ B, then CatX,Y A ≤ CatX,Y B;

4. if there exists an homeomorphism φ : X → X ′ such that Y ′ = φ(Y ) and A′ = φ(A), then
CatX′,Y ′ A′ = CatX,Y A;

5. if X ′ ⊃ X ⊃ A and r : X ′ → X is a retraction such that r−1(Y ) = Y and r−1(A) ⊃ A, then
CatX′,Y A ≥ CatX,Y A.

Usually, the notion of category is employed to find critical points of a functional I on a manifold
X, in connection with the topological structure of X. Moreover a classical theorem by Lusternik-
Schnirelmann shows that either there are at least CatX X critical points of I on X, or at some
critical level of I there is a continuum of critical points.

This result cannot directly help us because, since we look for critical points on H̄1
g (T ), we would

take X = H̄1
g (T ) which, clearly, has category equal to 1 (being contractible).

So we will need a generalization of such a theorem which involves relative category of sublevels.
In particular a Theorem in [15] can be adapted to our functional.

Theorem 2.13. If −∞ < a < b < +∞ and a, b are regular value for Iρ, then

# {critical points of Iρ in a ≤ Iρ ≤ b} ≥ Cat{Iρ≤b},{Iρ≤a} {Iρ ≤ b}.

In its original formulation the previous statement dealt with C1 functionals verifying the Palais-
Smale condition, but, as pointed out in [9], the (PS)-condition is used in the proof only twice to
apply the classical deformation lemma (see for example [8]). Thus, it is not hard to understand that
Proposition 2.1 allows to extend the result to Iρ.

Besides, in a particular case the relative category can be estimated by means of the cup-length
of a pair in the following way:

Theorem 2.14. [2] For any topological space X, if Y is a closed subset of X, then:

catX,Y X ≥ CL(X,Y ) + 1.

6



3 Proof of Theorem 1.2

Before proving Theorem 1.2 we recall the previous result in [9] and we summarize its proof.

Theorem 3.1. [9] If ρ ∈ (8π, 4π2) and Σ = T is the torus, if the metric g is sufficiently close
in C2(T ;S2×2) to dx2 and h is uniformly close to the constant 1, Iρ admits a point of strict local
minimum and at least two different saddle points.

Let consider a new functional Ĩρ which coincides with Iρ out of a small neighborhood of ū and
assumes large negative values near ū (here we are exploiting the existence of a strict local minimum),
then fix b and L conveniently, in particular such that Ibρ = Ĩbρ and Ĩ−Lρ = I−Lρ q{neighb. of ū}, Iρ and
Ĩρ have the same critical points of saddle type in Ĩbρ \ Ĩ−Lρ .

Let X denote the contractible cone over T and let ∂X be its boundary; they can be represented
as X = T×[0,1]

T×{0} , ∂X = T×({0}∪{1})
T×{0} . To get the thesis it is sufficient to establish the following chain

of inequalities:

#{critical points of Ĩρ in −L ≤ Ĩρ ≤ b}
1
≥ CatĨbρ,Ĩ−Lρ Ĩbρ

2
≥ CatĨbρ,φ(∂X) Ĩ

b
ρ (3.1)

3
≥ CatĨbρ,φ(∂X) φ(X)

4
≥ Catφ(X),φ(∂X) φ(X)

5
≥ CatX,∂X X

6
≥ 2,

where φ is the homeomorphism on the image defined as follows:

φ : X −→ H̄1
g (T )

(x, t) 7−→ t ϕλ,x,

with ϕλ,x defined in Section 2.1 and L, λ, b suitable constants, clearly depending on ρ.
The first inequality follows immediately from Theorem 2.13, which as showed in [9] holds true

also for Ĩρ, while the third and the fifth can be easily derived from the properties of the relative
category.
In order to prove 2 one has to construct a deformation retraction (in Ĩbρ) of Ĩ−Lρ onto φ(∂X). In
particular, since I−Lρ has two connected components, one can deal separately with these two different
regions. For what concerns the neighborhood of the minimum point ū, it is enough to combine the
steepest descent flow with a deformation sending ū into 0; while, in I−Lρ , the map Ψ : I−Lρ → Σ has
to be composed with the map which realizes the deformation of H̄1

g (T ) on Ĩbρ.
Moreover, just perturbing Ψ, it is possible to obtain a new continuous map Ψ̃ : Ĩ−Lρ → φ(∂X)
verifying Ψ̃|φ(∂X) = Id|φ(∂X). The key point is that applying again (2.1), one is able to extend Ψ̃ to
Ĩbρ \BR, R = R(ρ, b). Then by means of Ψ̃, one can construct a new map r : Ĩ−Lρ → φ(X) such that
r|φ(X) = Id|φ(X) and r−1(φ(∂X)) = φ(∂X). Finally, category’s properties allow to derive the fourth
inequality from the existence of the latter map.
At last the sixth inequality has been tackled using a direct topological argument.

Proof of Theorem 1.2 Our aim will be to improve the last inequality of (3.1), proving that
CatX,∂X X ≥ 3.

To do that we are going to establish a new chain of inequalities, involving the notion of cup
length.

CatX,∂X X
a
≥ CatT×[0,1],T×({0}∪{1})(T × [0, 1]) (3.2)
b
≥ catT×[0,1],T×({0}∪{1})(T × [0, 1])
c
≥ CL(T × [0, 1], T × ({0} ∪ {1})) + 1
d
≥ CL(T ) + 1 e= 3.
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Let us first prove point a. Let consider the Ai and hi verifying the conditions for CatX,∂X X.
First of all, in order to show that A0 is disconnected, let us denote by

X0 := T × {0}/T × {0} and X1 := T × {1}/T × {0} the two disconnected components of ∂X.
By definition we know that X0 ∪X1 = ∂X ⊂ A0 and that there exists h0 : A0 × [0, 1]→ X continu-
ous with the properties: h0(A0, 1) ⊂ ∂X and h0|∂X×[0,1] ≡ Id∂X . Now, if A0 was connected we would
get a contradiction because h0(A0, 1) would be connected (by continuity of h0) and disconnected
being the union of X0 and X1.

Thus we can consider the connected component A00 of A0 containing X0 and its complementary
in A0, A01 := A0 \A00. Then, we define

Ã0j := {(x, t) |x ∈ T, t ∈ [0, 1], [(x, t)] ∈ A0j)} j = 0, 1,

where [(x, t)] stands for the equivalence class of (x, t) in X.
Let us set Ã0 := Ã00 ∪ Ã01.
Next, we construct a continuous map h̃0 : Ã0 × [0, 1]→ T × [0, 1] in the following way:

h̃0((x, t), s) :=
{

(x, (1− s)t) (x, t) ∈ Ã00

(x, (1− s)t+ s) (x, t) ∈ Ã01.

Just to be rigorous we also define the sets

Ãi := {(x, t) |x ∈ T, t ∈ [0, 1], [(x, t)] ∈ Ai)} i ≥ 1,

which are nothing but the Ai’s seen as subsets of T × [0, 1], without the equivalence relation.
Analogously we define the maps

h̃i((x, t), s) := hi([(x, t)], s)

which turn out to be well defined, being Ai ∩ ∂X = ∅, for any i ≥ 1 (see point (v) of Definition
2.11).

Now, it is easy to see that the sets Ãi’s, together with the continuous maps h̃i’s, satisfy the
conditions of Definition 2.11 for CatT×[0,1],T×({0}∪{1})(T × [0, 1]) and this concludes the proof of this
first inequality.

Point b follows directly from property 2 of Proposition 2.12, while applying Theorem 2.14 we
obtain inequality c.

To get step d, let us denote by k the cup–length of T . By definition there exist α1, . . . , αk ∈
H∗(T ), with dim(αi) > 0 for any i ∈ {1, . . . , k}, such that

α1 ∪ . . . ∪ αk 6= 0.

Since H1([0, 1], {0} ∪ {1}) = R, we can also choose 0 6= β ∈ H1([0, 1], {0} ∪ {1}).
We are now in position to apply Theorem 2.8 with X = [0, 1], Y = {0} ∪ {1}, X ′ = T and Y ′ = ∅.
By definition of µ, see (2.3), and its injectivity, we obtain

β × (α1 ∪ αk) = µ(β ⊗ (α1 ∪ αk)) 6= 0. (3.3)

Consider now the projections p1 : T × ([0, 1], {0} ∪ {1})→ ([0, 1], {0} ∪ {1}) and p2 : T × [0, 1]→ T .
Applying Proposition 2.9, we find:

β × (α1 ∪ αk) = p∗1(β) ∪ p∗2(α1 ∪ αk) = p∗1(β) ∪ p∗2(α1) ∪ . . . ∪ p∗2(αk). (3.4)

Notice that p∗1(β) ∈ H∗(T×[0, 1], T×({0}∪{1})) and, for any i ∈ {1, . . . , k}, p∗2(αi) ∈ H∗(T×[0, 1]),
with dim(p∗2(αi)) > 0.

In conclusion, by virtue of (3.3) and (3.4), we proved exactly that CL(T ) ≤ CL(T × [0, 1], T ×
({0} ∪ {1})).

Finally, the equality named e is just due to the well known fact that CL(T ) = 2. The proof is
thereby complete.
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Poincaré, Anal. Non Linéaire 16 (1999), 653-666.

[12] W. Ding, J. Jost, J. Li and G. Wang, The differential equation 4u = 8π− 8πheu on a compact
Riemann surface, Asian J. Math. 1 (1997), 230-248.

[13] Z. Djadli, Existence result for the mean field problem on Riemann surfaces of all genuses,
Commun. Contemp. Math. 10 (2008), 205–220.

[14] Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant Q-curvature, Ann. of
Math. 168 (2008), 813–858.

[15] G. Fournier and M. Willem, Multiple solutions of the forced double pendulum equation, Ann.
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