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1 Introduction

Given an ambient Riemannian manifold (N, g) of dimension n ≥ 3 (with or without boundary), a classical
problem in differential geometry is to find the smooth immersed m-dimensional submanifolds, 2 ≤ m ≤
n − 1, with null mean curvature vector, H = 0, or with null second fundamental form, A = 0, namely
the minimal (respectively, the totally geodesic) submanifolds of N (for more details about the existence
see Example 7.3, Example 7.4, Theorem 7.6, Theorem 7.7, Remark 7.8 and Remark 7.9).

In more generality, it is interesting to study the minimization problems associated to integral func-
tionals depending on the curvatures of the type

(1) EpH,m(M) :=
∫
M

|H|p or EpA,m(M) :=
∫
M

|A|p, p ≥ 1

where M is a smooth immersed m-dimensional submanifold with mean curvature H and second funda-
mental form A; of course the integrals are computed with respect to the m-dimensional measure of N
induced on M . A global minimizer, if it exists, of EpH,m (respectively of EpA,m) can be seen as a generalized
minimal (respectively totally geodesic) m-dimensional submanifold in a natural integral sense.

An important example of such functionals is given by the Willmore functional for surfaces E2
H,2

introduced by Willmore ( see [Will]) and studied in the euclidean space (see for instance the works of
Simon [SiL], Kuwert and Shatzle [KS], Rivière [Riv]) or in Riemannian manifolds (see, for example, [LM],
[Mon1] and [Mon2]).

The general integral functionals (1) depending on the curvatures of immersed submanifolds have been
studied, among others, by Allard [Al], Anzellotti-Serapioni-Tamanini [AST], Delladio [Del], Hutchinson
[Hu1], [Hu2], [Hu3], Mantegazza [MantCVB] and Moser [Mos].
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In order to get the existence of a minimizer, the technique adopted in the present paper (as well
as in most of the aforementioned ones) is the so called direct method in the calculus of variations. As
usual, it is necessary to enlarge the space where the functional is defined and to work out a compactness-
lowersemicontinuity theory in the enlarged domain.

In the present work, the enlarged domain is made of generalized m-dimensional submanifolds of
the fixed ambient Riemannian manifold (N, g): the integral rectifiable m-varifolds introduced by Alm-
gren in [Alm] and by Allard in [Al]. Using integration by parts formulas, Allard [Al] and Hutchinson
[Hu1]-Mantegazza [MantCVB] defined a weak notion of mean curvature and of second fundamental form
respectively (for more details about this part see Section 2). Moreover these objects have good compact-
ness and lower semicontinuity properties with respect to the integral functionals above.

The goal of this paper is to prove existence and partial regularity of an m-dimensional minimizer (in
the enlarged class of the rectifiable integral m-varifolds with weak mean curvature or with generalized
second fundamental form in the sense explained above) of functionals of the type (1). Actually we will
consider more general functionals modeled on this example, see Definition 2.2 for the expression of the
considered integrand F .

More precisely, given a compact subset N ⊂⊂ N̄ of an n-dimensional Riemannian manifold (N̄ , g)
(which, by Nash Embedding Theorem, can be assumed isometrically embedded in some RS) we will
denote

HVm(N) := {V integral rectifiable m-varifold of N with weak mean curvature HN relative to N̄}
CVm(N) := {V integral rectifiable m-varifold of N with generalized second fundamental form A};

for more details see Section 2; in any case, as written above, the non expert reader can think about the
elements of HVm(N) (respectively of CVm(N)) as generalized m-dimensional submanifolds with mean
curvature HN (respectively with second fundamental form A). Precisely, we consider the following two
minimization problems

(2)

βmN,F := inf

{∫
Gm(N)

F (x, P,HN )dV : V ∈ HVm(N), V 6= 0 with weak mean curvature HN relative to N̄

}

and
(3)

αmN,F := inf

{∫
Gm(N)

F (x, P,A)dV : V ∈ CVm(N), V 6= 0 with generalized second fundamental form A

}

where F is as in Definition 2.2 and satisfies (44) ( respectively (38)). As the reader may see, the
expressions

∫
Gm(N)

F (x, P,HN )dV (respectively
∫
Gm(N)

F (x, P,A)dV ) are the natural generalizations of
the functionals EpH,m (respectively EpA,m) in (1) with p > m in the context of varifolds.
Before stating the two main theorems, let us recall that an integral rectifiable m-varifold V on N is
associated with a “generalized m-dimensional subset” sptµV of N together with an integer valued density
function θ(x) ≥ 0 which carries the “multiplicity” of each point (for the precise definitions, as usual, see
Section 2).

At this point we can state the two main theorems of this work. Let us start with the mean curvature.

Theorem 1.1. Let N ⊂⊂ N̄ be a compact subset with non empty interior, int(N) 6= ∅, of the n-
dimensional Riemannian manifold (N̄ , g) isometrically embedded in some RS (by Nash Embedding The-
orem), fix m ≤ n− 1 and consider a function F : Gm(N)× RS → R+ satisfying (2.2) and (44), namely

F (x, P,H) ≥ C|H|p

for some C > 0 and p > m.
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Then, at least one of the following two statement is true:
a) the space (N, g) contains a non zero m-varifold with null weak mean curvature HN relative to N̄

(in other words, N contains a stationary m-varifold; see Remark 2.13 for the details),
b) the minimization problem (44) corresponding to F has a solution i.e. there exists a non null integral

m-varifold V ∈ HVm(N) with weak mean curvature HN relative to N̄ such that∫
Gm(N)

F (x, P,HN )dV = βmN,F = inf

{∫
Gm(N)

F (x, P, H̃N )dṼ : Ṽ ∈ HVm(N), Ṽ 6= 0

}
.

Moreover, in case b) is true, we have βmN,F > 0 and the minimizer V has the following properties:
b1)the support sptµV of the spatial measure µV associated to V is connected,
b2) the diameter of sptµV as a subset of the Riemannian manifold (N̄ , g) is strictly positive

diamN̄ (sptµV ) > 0.

Remark 1.2. It could be interesting to study the regularity of the minimizer V . Notice that if x ∈ sptµV ,
under the hypothesis that the density in x satisfies θ(x) = 1 plus other technical assumptions (see Theorem
8.19 in [Al]), Allard proved that sptµV is locally around x a graph of a C1,1−mp function since H ∈ Lp(V ),
p > m given by (44). Moreover, under similar assumptions, Duggan proved local W 2,p regularity in [Dug].
In the multiple density case the regularity problem is more difficult. For instance, in [Brak], is given an
example of a varifold Ṽ with bounded weak mean curvature whose spatial support contains a set C of
strictly positive measure such that if x ∈ C then sptµṼ does not correspond to the graph of even a
multiple-valued function in any neighborhood of x.

Now let us state the second main Theorem about the second fundamental form A.

Theorem 1.3. Let N ⊂⊂ N̄ be a compact subset with non empty interior, int(N) 6= ∅, of the n-
dimensional Riemannian manifold (N̄ , g) isometrically embedded in some RS (by Nash Embedding The-
orem), fix m ≤ n − 1 and consider a function F : Gm(N) × RS3 → R+ satisfying (2.2) and (38),
namely

F (x, P,A) ≥ C|A|p

for some C > 0 and p > m.
Then, at least one of the following two statements is true:
a) the space (N, g) contains a non zero m-varifold with null generalized second fundamental form,
b) the minimization problem (38) corresponding to F has a solution i.e. there exists a non null

curvature m-varifold V ∈ CVm(N) with generalized second fundamental form A such that∫
Gm(N)

F (x, P,A)dV = αmN,F = inf

{∫
Gm(N)

F (x, P, Ã)dṼ : Ṽ ∈ CVm(N), Ṽ 6= 0

}
.

Moreover, in case b) is true, we have αmN,F > 0 and the minimizer V has the following properties:
b1)the support sptµV of the spatial measure µV associated to V is connected,
b2) the diameter of sptµV as a subset of the Riemannian manifold (N̄ , g) is strictly positive

diamN̄ (sptµV ) > 0,

b3) For every x ∈ sptµV , V has a unique tangent cone at x and this tangent cone is a finite union of
m-dimensional subspaces Pi with integer multiplicities mi; moreover, in some neighbourhood of x we can
express V has a finite union of graphs of C1,1−mp , mi-valued functions defined on the respective affine
spaces x+ Pi (p given in (38)).

Remark 1.4. For the precise definitions and results concerning b3), the interested reader can look at the
original paper [Hu2] of Hutchinson. Notice that the boundary of N does not create problems since, by
our definitions, the minimizer V is a fortiori an integral m-varifold with generalized second fundamental
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form A ∈ Lp(V ), p > m, in the n-dimensional Riemannian manifold (N̄ , g) which has no boundary.
Moreover, by Nash Embedding Theorem, we can assume N̄ ⊂ RS; therefore V can be seen as an integral
m-varifold with generalized second fundamental form A ∈ Lp(V ), p > m, in RS and the regularity theorem
of Hutchinson can be applied.

It could be interesting to prove higher regularity of the minimizer V . About this point, notice that it is
not trivially true that V is locally a union of graphs of W 2,p (Sobolev) functions. Indeed in [AGP] there
is an example of a curvature m-varifold Ṽ ∈ CVm(RS), S ≥ 3, 2 ≤ m ≤ S − 1, with second fundamental
form in Lp, p > m, which is not a union of graphs of W 2,p functions.

In the spirit of proving higher regularity of the minimizer of such functionals we mention the preprint
of Moser [Mos] where the author proves smoothness of the minimizer of

∫
|A|2 in the particular case of

codimension 1 Lipschitz graphs in RS.

In both theorems, a delicate point is whether or not a) is satisfied (fact which trivializes the result);
we will study this problem in Section 7: we will recall two general classes of examples (given by White in
[Whi]) of Riemannian manifolds with boundary where a) is not satisfied in codimension 1, we will give
two new examples for higher codimensions (namely Theorem 7.6 and Theorem 7.7) and we will propose
a related open problem in Remark 7.9. Here, let us just remark that every compact subset N ⊂⊂ RS for
s > 1 does not satisfy a) (see Theorem 7.7).

The idea for proving the results is to consider a minimizing sequence {Vk}k∈N of varifolds, show that
it is compact (i.e. there exists a varifold V and a subsequence {Vk′} converging to V in an appropriate
sense) and it is non degenerating: if the masses decrease to 0 the limit would be the null varifold so
not a minimizer, and if the diameters decrease to 0 the limit would be a point which has no geometric
relevance.

In order to perform the analysis of the minimizing sequences, in Section 3 we prove monotonicity
formulas for integral rectifiable m-varifolds in RS with weak mean curvature in Lp, p > m. These
formulas are similar in spirit to the ones obtained by Simon in [SiL] for smooth surfaces in RS involving
the Willmore functional. These estimates are a fundamental tool for proving the non degeneracy of the
minimizing sequences and we think they might have other applications.

To show the compactness of the minimizing sequences it is crucial to have a uniform upper bound
on the masses (for the non expert reader: on the volumes of the generalized submanifolds). Inspired by
the paper of White [Whi], in Section 4 we prove some isoperimetric inequalities involving our integral
functionals which give the mass bound on the minimizing sequences in case a) in the main theorems is
not satisfied. The compactness follows and is proved in the same Section. Also in this case, we think
that the results may have other interesting applications.

The proofs of the two main theorems is contained in Section 5 and 6. Finally, as written above, Section
7 is devoted to examples and remarks: we will notice that a large class of manifold with boundary can
be seen as compact subset of manifold without boundary, we will give examples where the assumption
for the isoperimetric inequalities are satisfied and we will end with a related open problem.

The new features of the present paper relies, besides the main theorems, in the new tools introduced
in Section 3 and Section 4, and in the new examples presented in Section 7.
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2 Notations, conventions and basic concepts on varifolds

First of all, large positive constants are always denoted by C, and the value of C is allowed to vary
from formula to formula and also within the same line. When we want to stress the dependence of the
constants on some parameter (or parameters), we add subscripts to C, as CN , etc.. Also constants with
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subscripts are allowed to vary.

In this Section we review the concept of curvature varifold introduced by Hutchinson in [Hu1] giving
a slightly more general definition; namely Hutchinson defines the curvature varifolds as “special” integral
varifolds in a Riemannian manifold but, as a matter of facts, the same definition makes sense for an even
non rectifiable varifold in a subset of a Riemannian manifold. So we will define (a priori non rectifiable)
varifolds with curvature, which are endowed with a generalized second fundamental form.

We start by recalling some basic facts about varifolds. For more details, the interested reader may look
at the standard references [Fed], [Mor], [SiGMT] or, for faster introductions, at [Mant] or the appendix
of [Whi].

Consider a (maybe non compact) n-dimensional Riemannian manifold (N̄ , g). Without loss of gene-
rality, by the Nash Theorem, we can assume that

(N̄ , g) ↪→ RS isometrically embedded for some S > 0.

We will be concerned with a subset N ⊂ N̄ which, a fortiori, is also embedded in RS : N ↪→ RS . Since
throughout the paper N ⊂⊂ N̄ is a compact subset (in the end of the article we will also assume that it
has non empty interior int(N) 6= ∅) also in this Section is assumed to be so, even if most of the following
definitions and properties are valid for more general subsets.

Let us denote with G(S,m) the Grassmaniann of unoriented m-dimensional linear subspaces of RS ,
with

Gm(N̄) := (RS ×G(S,m)) ∩ {(x, P ) : x ∈ N̄ , P ⊂ TxN̄ m-dimensional linear subspace}

and with
Gm(N) := Gm(N̄) ∩ {(x, P ) : x ∈ N}.

We recall that an m-varifold V on N is a Radon measure on Gm(N) and that the sequence of varifolds
{Vk}k∈N converges to the varifold V in varifold sense if Vk → V weak as Radon measures on Gm(N); i.e.∫

Gm(N)

φ dVk →
∫
Gm(N)

φ dV

as k → ∞, for all φ ∈ C0
c (Gm(N)). A special class of varifolds are the rectifiable varifolds: given

a countably m-rectifiable, Hm- measurable subset M of N ⊂ RS and θ a non negative locally Hm
integrable function on M , the rectifiable varifold V associated to M and θ is defined as

V (φ) :=
∫
M

θ(x)φ(x, TxM)dHm ∀φ ∈ C0
c (Gm(N))

and sometimes is denoted with V (M, θ). Recall that if M, θ are as above then the approximate tangent
space TxM exists for Hm-almost every x ∈M (Theorem 11.6 in [SiGMT], for the definitions see 11.4 of
the same book). If moreover θ is integer valued, then we say that V is an integral varifold ; the set of the
integral m-varifolds in N is denoted by IVm(N).

If V is a k-varifold, let |V | denote its mass:

|V | := V (Gm(N)).

Observe that we have a natural projection

(4) π : Gm(N)→ N (x, P ) 7→ x,

and pushing forward the measure V via the projection π, we have a positive Radon measure µV on N

µV (B) := V (π−1(B)) = V (Gm(B)) ∀B ⊂ N Borel set.

Since V is a measure on Gm(N), its support is a closed subset of Gm(N). If we project that closed set
on N by the projection π then we get the spatial support of V , which coincides with sptµV .

Now let us define the notion of measure-function pair.
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Definition 2.1. Let V be a Radon measure on Gm(N) (i.e. a varifold) and f : Gm(N)→ Rα be a well
defined V almost everywhere L1

loc(V ) function. Then we say that (V, f) is a measure-function pair over
Gm(N) with values in Rα.

Given {(Vk, fk)}k∈N and (V, f) measure-function pairs over Gm(N) with values in Rα, suppose Vk →
V weak as Radon measures in Gm(N) (or equivalently as varifolds in N). Then we say (Vk, fk) converges
to (V, f) in the weak sense and write

(Vk, fk) ⇀ (V, f)

if Vkbfk → V bf weak convergence of Radon vector valued measures. In other words, if∫
Gm(N)

〈fk, φ〉 dVk →
∫
Gm(N)

〈f, φ〉 dV

as k →∞, for all φ ∈ C0
c (Gm(N),Rα), where 〈., .〉 is the scalar product in Rα.

Definition 2.2. Suppose F : Gm(N)×Rα → R. We will denote the variables in Gm(N)×Rα by (x,P,q).
We say that F satisfies the condition (2.2) if the following statements are verified:
i) F is continuous,
ii) F is non negative ( i.e. F (x, P, q) ≥ 0 for all (x, P, q) ∈ Gm(N)×Rα) and F (x, P, q) = 0 if and only
if q = 0,
iii) F is convex in the q variables, i.e.

F (x, P, λq1 + (1− λ)q2) ≤ λF (x, P, q1) + (1− λ)F (x, P, q2)

for all λ ∈ (0, 1), (x, P ) ∈ Gm(N), q1 ∈ Rα, q2 ∈ Rα,
iv) F has non linear growth in the q variables, i.e. there exists a continuous function φ, where φ :
Gm(N)× [0,∞)→ [0,∞), 0 ≤ φ(x, P, s) ≤ φ(x, P, t) for 0 ≤ s ≤ t and (x, P ) ∈ Gm(N), φ(x, P, t)→∞
locally uniformly in (x, P ) as t→∞, such that

φ(x, P, |q|)|q| ≤ F (x, P, q)

for all (x, P, q) ∈ Gm(N)× Rα.

An example (trivial but fundamental for this paper) of such an F is F (x, P, q) := |q|p for any p > 1.

Remark 2.3. For simplicity, in Definition 2.2, we assumed the same conditions of Hutchinson ([Hu1]
Definition 4.1.2) on F but some hypotheses can be relaxed. For example, about the results in this paper,
if F = F (q) depends only on the q variables it is enough to assume (in place of i)) that F is lower
semicontinuous (see Theorem 6.1 in [MantCVB]).

In the aforementioned paper, Hutchinson proves the following useful compactness and lower semicon-
tinuity Theorem (see Theorem 4.4.2 in [Hu1]):

Theorem 2.4. Suppose {(Vk, fk)}k∈N are measure-function pairs over Gm(N) with values in Rα. Sup-
pose V is a Radon measure on Gm(N) (i.e a varifold in N) and Vk → V weak converges as Radon
measures (equivalently varifold converges in N). Suppose F : Gm(N) × Rα → R satisfies the condition
(2.2). Then the following are true:
i) If there exists C > 0 such that

(5)
∫
Gm(N)

F (x, P, fk(x, P ))dVk ≤ C ∀k ∈ N

then there exists a function f ∈ L1
loc(V ) such that, up to subsequences, (Vk, fk) ⇀ (V, f).

ii) if there exists C > 0 such that (5) is satisfied and (Vk, fk) ⇀ (V, f) then∫
Gm(N)

F (x, P, f(x, P ))dV ≤ lim inf
k

∫
Gm(N)

F (x, P, fk(x, P ))dVk.
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Now we want to define the varifolds of N with curvature. Observe that given (x, P ) ∈ Gm(N), the
m-dimensional linear subspace P ⊂ TxN̄ ⊂ RS can be identified with the orthogonal projection matrix
on Hom(RS ,RS) ∼= RS2

P ≡ [Pij ] ∈ RS2
.

Similarly, the tangent space of N̄ at x can be identified with its orthogonal projection matrix

TxN̄ ≡ Q(x) := [Qij(x)] ∈ RS2
.

Before defining the varifolds with curvature let us introduce a bit of notation: given φ = φ(x, P ) ∈
C1(RS × RS2) we call the partial derivatives of φ with respect to the variables xi and Pjk (freezing all
other variables) by

Diφ and D∗jkφ for i, j, k = 1, . . . , S

respectively. In the following definition we will consider the quantity

Pij
∂ψ

∂xj
(x) for ψ ∈ C1(N̄);

we mean that ψ is extended to a C1 function to some neighborhood of x ∈ RS and, since P is the
projection on a m-subspace of TxN̄ , the definition does not depend on the extension. Observe moreover
that the quantity depends on (x, P ) so it is a function on Gm(N̄).

Definition 2.5. Let V be an m-varifold on N ⊂ N̄ ↪→ RS, m ≤ n− 1. We say that V is a varifold with
(generalized) curvature or with (generalized) second fundamental form if there exist real-valued functions
Bijk, for 1 ≤ i, j, k ≤ S, defined V almost everywhere in Gm(N) such that on setting B = [Bijk] the
following are true:
i) (V,B) is a measure-function pair over Gm(N) with values in RS3

ii) For all functions φ = φ(x, P ) ∈ C1
c (RS × RS2) one has

(6) 0 =
∫
Gm(N)

[PijDjφ(x, P ) +Bijk(x, P )D∗jkφ(x, P ) +Bjij(x, P )φ(x, P )]dV (x, P ) for i = 1, . . . , S.

In this case B is called (generalized) curvature and we can also define the (generalized) second funda-
mental form of V (with respect to N̄) as the L1

loc(V ) function with values in RS3

A : Gm(N)→ RS3
,

Akij(x, P ) := PljBikl(x, P )− PljPiq
∂Qkl
∂xq

(x).(7)

We will denote the set of integral m-varifolds of N with generalized curvature as CVm(N) and we will
call them curvature m-varifolds.

Observe that we use different notation of [Hu1]: we call B what Hutchinson calls A and vice versa; this
is because we want to denote with A the second fundamental form with respect to N̄ . Moreover, as it is
shown in Section 5 of [Hu1], if V is the integral varifold associated to a smooth immersed m-submanifold
of N then A coincides with the classical second fundamental form with respect to N .

Remark 2.6. By definition, the generalized second fundamental form A is expressed in terms of B but,
as Hutchinson proved in [Hu1] Propositions 5.2.4 and 5.2.6, it is possible to express B in terms of A.
Indeed, choosing appropriate test functions, with some easy computations one can prove that

(8) Bijk = Akij +Ajik + PjlPiq
∂Qlk
∂xq

(x) + PklPiq
∂Qlj
∂xq

(x).

Now let us recall the fundamental compactness and lower semi continuity Theorem of Hutchinson
(Theorem 5.3.2 in [Hu1])
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Theorem 2.7. Consider {Vk}k∈N ⊂ CVm(N) with generalized second fundamental forms {Ak}k∈N, V
an integral m-varifold of N and suppose Vk → V in varifold sense. Let F : Gm(N) × RS3 → R be a
function satisfying the condition (2.2) and assume that∫

Gm(N)

F (x, P,Ak)dVk ≤ C

for some C > 0 independent on k. Then
i) V ∈ CVm(N) with generalized second fundamental form A,
ii) (Vk, Ak) ⇀ (V,A) in the weak sense of measure-function pairs,
iii)

∫
Gm(N)

F (x, P,A)dV ≤ lim infk
∫
Gm(N)

F (x, P,Ak)dVk.

Now we briefly recall the definition of first variation of an m-varifold V in RS ; the original definitions
are much more general, here we recall only the facts we need for this paper.

Definition 2.8. Let V be an m-varifold in RS and let X be a C1
c (RS) vector field. We define first

variation δV the linear functional on C1
c (RS) vector fields

δV (X) :=
∫
Gm(RS)

divPX(x)dV (x, P );

where for every P ∈ G(S,m),

divPX :=
S∑
i=1

∇Pi Xi =
S∑

i,j=1

PijDjX
i,

where ∇P f = P (∇f) is the projection on P of the gradient in RS of f and ∇Pi := ei · ∇P (where
{ei}i=1,...,S is an orthonormal basis of RS).

V is said to be of locally bounded first variation in RS if for every relatively compact open W ⊂⊂ RS
there exists a constant CW <∞ such that

|δV (X)| ≤ CW sup
W
|X|

for all X ∈ C1
c (RS) vector fields with support in W .

An interesting subclass of varifolds with locally bounded first variation are the varifolds with weak
mean curvature.

Definition 2.9. Let V be an m-varifold in RS and H : Gm(RS) → RS an L1
loc(V ) function (in the

previous notation we would say that (V,H) is a measure-function pair on Gm(RS) with values in RS);
then we say that V has weak mean curvature H if for any vector field X ∈ C1

c (RS) one has

(9) δV (X) :=
∫
Gm(RS)

divPX(x)dV (x, P ) = −
∫
Gm(RS)

H ·XdV (x, P ) .

Observe that if V = V (M, θ) is a rectifiable varifold with weak mean curvature H then with abuse of
notation we can write H(x) = H(x, TxM) and we get the following identities:

(10)
∫
M

divMXdµV =
∫
Gm(RS)

divTxMX(x)dV = −
∫
Gm(RS)

H(x, TxM) ·XdV = −
∫
M

H(x) ·XdµV ,

where divMX is the tangential divergence of the vector field X and is defined to be divMX(x) :=
divTxMX(x) where TxM is the approximate tangent space to M at x (which exists for µV -a.e. x).
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Remark 2.10. As Hutchinson observed in [Hu1], if V is an m-varifold on N ↪→ RS with generalized
curvature B = [Bijk]i,j,k=1,...,S then, as a varifold in RS, V has weak mean curvature Hi =

∑S
j=1Bjij for

i = 1, . . . , S. Indeed, for any relatively compact open subset W ⊂⊂ RS and any vector field X ∈ C1
c (RS)

with compact support in W , taking φ = Xi, i = 1, . . . , S in equation (6) and summing over i we get

0 =
∫
Gm(RS)

[PijDjX
i(x) +Bjij(x, P )Xi(x)]dV (x, P )

which implies

δV (X) :=
∫
Gm(RS)

divPX(x)dV (x, P ) = −
∫
Gm(RS)

Bjij(x, P )Xi(x) dV (x, P );

the conclusion follows from the fact that B ∈ L1
loc(V ).

Now let us define the varifolds with weak mean curvature in a compact subset N ⊂⊂ N̄ of a Rieman-
nian manifold (N, g) isometrically embedded in RS .

Definition 2.11. Let V be an m-varifold on N ⊂ N̄ ↪→ RS, m ≤ n − 1. We say that V is a varifold
with weak mean curvature HN relative to N̄ if it has weak mean curvature HRS as varifold in RS. In
this case the value of (HN )i, i = 1, . . . , S is given by

(11) (HN )i = (HRS )i − Pjk
∂Qij
∂xk

.

Consistently with the notation introduced for the curvature varifolds, we denote with HVm(N) the set of
integral m-varifolds on N with weak mean curvature relative to N̄ ; the elements of HVm(N) are called
mean curvature varifolds.

Observe that in case V is the varifold associated to a smooth submanifold of N̄ then HN coincides
with the classical mean curvature relative to N̄ (it is enough to trace the identity (i) of Proposition 5.1.1
in [Hu1] recalling that we denote with A,Q what Hutchinson calls B,S). Moreover, as an exercise, the
reader may check that also in the general case the vector

(
Pjk

∂Qij
∂xk

)
i=1,...,S

of RS is orthogonal to N̄ (fix

a point x of N̄ and choose a base of TxN̄ in which the Christoffel symbols of N̄ vanish at x; write down
the orthogonal projection matrix Q with respect to this base and check the orthogonality condition).

Remark 2.12. If V is an m-varifold on N ⊂ N̄ ↪→ RS, m ≤ n − 1 with weak mean curvature HN

relative to N̄ then, for each compactly supported vector field X ∈ C1
c (N̄) tangent to N̄ ,

δV (X) =
∫
Gm(N)

divPX(x)dV (x, P ) = −
∫
Gm(N)

HN ·XdV (x, P ) .

This fact gives consistency to Definition 2.11 and follows from Definition 2.11, from formula (9) and
the orthogonality of

(
Pjk

∂Qij
∂xk

)
i=1,...,S

to N̄ .

Remark 2.13. If V is an m-varifold on N ⊂ N̄ ↪→ RS, m ≤ n − 1 with null weak mean curvature
HN = 0 relative to N̄ then, for each compactly supported vector field X ∈ C1

c (N̄) tangent to N̄ ,

δV (X) =
∫
Gm(N)

divPX(x)dV (x, P ) = 0.

In this case we say that V is an m-varifold in N with null weak mean curvature relative to N̄ or, using
more classical language, that V is a stationary m-varifold in N (where stationary as to be intended in
N̄).
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3 Monotonicity formulas for integral m-varifolds with weak mean
curvature in Lp, p > m

Let V = V (M, θ) be an integral varifold of RS (associated to the rectifiable set M ⊂ RS and with integer
multiplicity function θ) with weak mean curvature H (since throughout this section we consider only
varifolds in RS and there is no ambiguity, we adopt the easier notation H for HRS ). Let us write µ for
µV := π](V ) the push forward of the varifold measure V on Gm(N) to N via the standard projection
π : Gm(N)→ N, π(x, P ) = x (see Section 2 for more details); of course µV can also be seen as µV = Hmbθ,
the restriction of the m-dimensional Hausdorff measure to the multiplicity function θ.

The first Lemma is a known fact (see for example the book of Leon Simon [SiGMT] at page 82) of
which we report also the proof for completeness.

Lemma 3.1. Let V = V (M, θ) ∈ IVm(RS) be with weak mean curvature H as above and fix a point
x0 ∈M . For µ-a.e. x ∈M call r(x) := |x−x0| and D⊥r the orthogonal projection of the gradient vector
Dr onto (TxM)⊥. Consider a nonnegative function φ ∈ C1(R) such that

φ′(t) ≤ 0 ∀t ∈ R, φ(t) = 1 for t ≤ 1
2
, φ(t) = 0 for t ≥ 1.

For all ρ > 0 let us denote

I(ρ) :=
∫
M

φ(r/ρ)dµ,

L(ρ) :=
∫
M

φ(r/ρ)(x− x0) ·Hdµ,

J(ρ) :=
∫
M

φ(r/ρ)|D⊥r|2dµ;

then

(12)
d

dρ
[ρ−mI(ρ)] = ρ−mJ ′(ρ) + ρ−m−1L(ρ).

Proof. The idea is to use formula (10) and chose the vector field X in an appropriate way in order
to get informations about V . First of all let us recall that for any function f ∈ C1(RS) and any x ∈ M
where the approximate tangent space TxM exists (it exists for µ-a.e. x ∈M see [SiGMT] 11.4-11.6 ) one
can define the tangential gradient as the projection of the gradient in RS onto TxM :

∇Mf :=
S∑

j,l=1

P jlDlf(x)ej

where Dlf denotes the partial derivative ∂f
∂xl

of f , P jl is the matrix of the orthogonal projection of RS
onto TxM and {ej}j=1,...,S is an orthonormal basis of RS . Denoted ∇Mj := ej · ∇M , recall that the
tangential divergence is defined as

divMX :=
S∑
j=1

∇Mj Xj ;

moreover it is easy to check the Leibniz formula

divMfX := ∇Mf ·X + f divMX ∀f ∈ C1(RS) and ∀X ∈ C1(RS) vector field.

Now let us choose the vector field. Fix ρ > 0 and consider the function γ ∈ C1(R) defined as

γ(t) := φ(t/ρ);
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then of course we have the following properties:

γ′(t) ≤ 0 ∀t ∈ R, γ(t) = 1 for t ≤ ρ

2
, γ(t) = 0 for t ≥ ρ.

Call r(x) := |x− x0| and choose the vector field

X(x) := γ(r(x))(x− x0).

Using the Leibniz formula we get

divMX = ∇Mγ(r) · (x− x0) + γ(r)divM (x− x0)

= rγ′(r)
(x− x0)T

|x− x0|
(x− x0)T

|x− x0|
+mγ(r)

= rγ′(r)(1− |D⊥r|2) +mγ(r),(13)

where uT is the projection of the vector u ∈ RS onto TpM and D⊥r = (x−x0)⊥

|x−x0| is the orthogonal projection
of the gradient vector Dr onto (TxM)⊥. The equation (10) of the weak mean curvature thus yields

(14) m

∫
M

γ(r)dµ+
∫
M

rγ′(r)dµ =
∫
M

rγ′(r)|D⊥r|2dµ−
∫
M

H · (x− x0)γ(r)dµ.

Now recall that γ(r) = φ(r/ρ), so rγ′(r) = r
ρφ
′(r/ρ) = −ρ ∂

∂ρ [φ(r/ρ)]. Thus, combining (14) and the
definitions of I(ρ), J(ρ) and L(ρ) one gets

mI(ρ)− ρI ′(ρ) = −ρJ ′(ρ)− L(ρ).

Thus, multiplying both sides by ρ−m−1 and rearranging we obtain

d

dρ
[ρ−mI(ρ)] = ρ−mJ ′(ρ) + ρ−m−1L(ρ).

This concludes the proof

Estimating from below the right hand side of (12) and integrating, we get the following useful ine-
qualities.

Proposition 3.2. Let V = V (M, θ) ∈ IVm(RS) be with weak mean curvature H ∈ Lp(V ), p > m (we
mean that

∫
Gm(RS)

|H|pdV < ∞ or equivalently, denoted with an abuse of notation H(x) = H(x, TxM),∫
M
|H|pdµ <∞). Fixed a point x0 ∈M and 0 < σ < ρ <∞, then

(15)

[σ−mµ(Bσ(x0))]
1
p ≤ [ρ−mµ(Bρ(x0))]

1
p+

p2

p−m
ρ1−mp

(∫
Bρ(x0)

|H|pdµ
) 1
p− p2

p−m
σ1−mp

(∫
Bσ(x0)

|H|pdµ
) 1
p

.

Proof. Let us estimate from below the right hand side of equation (12). Observe that

J ′(ρ) =
d

dρ

∫
M

φ(r/ρ)|D⊥r|2dµ = −ρ−2

∫
M

rφ′(r/ρ)|D⊥r|2dµ ≥ 0

since φ′(t) ≤ 0 for all t ∈ R. Thus we can say that

(16)
d

dρ
[ρ−mI(ρ)] ≥ ρ−m−1L(ρ).

Let us estimate from below the right hand side by Schwartz inequality:

ρ−m−1L(ρ) = ρ−m−1

∫
M

φ(r/ρ)(x− x0) ·Hdµ

≥ −ρ−m−1

∫
M

(
φ(r/ρ)

1
p |H|

)
|x− x0|φ(r/ρ)

p−1
p dµ.

11



Now recalling that φ(t) = 0 for t ≥ 1 we get that φ(r/ρ) = 0 for r ≥ ρ so |x− x0| in the integral can be
estimated from above by ρ and we can say that

ρ−m−1L(ρ) ≥ −ρ−m
∫
M

(
φ(r/ρ)

1
p |H|

)
φ(r/ρ)

p−1
p dµ;

thus, by Holder inequality, for all p > 1

ρ−m−1L(ρ) ≥ −ρ−m
(∫

M

φ(r/ρ)|H|pdµ
) 1
p
(∫

M

φ(r/ρ)dµ
) p−1

p

= −ρ−m
(∫

M

φ(r/ρ)|H|pdµ
) 1
p

I(ρ)
p−1
p .(17)

Putting together inequalities (16) and (17) we get

d

dρ
[ρ−mI(ρ)] ≥ −ρ−m

(∫
M

φ(r/ρ)|H|pdµ
) 1
p

I(ρ)
p−1
p ;

multiplying both sides by ρm−
m
p I(ρ)

1
p−1 and rearranging we get

d

dρ
[ρ−mI(ρ)]

1
p ≥ −p ρ−

m
p

(∫
M

φ(r/ρ)|H|pdµ
) 1
p

.

Now, after choosing p > m, integrate the last inequality from σ to ρ (the same ρ chosen in the statement
of the Proposition) and get with an integration by parts of the right hand side

ρ−
m
p I(ρ)

1
p − σ−

m
p I(σ)

1
p ≥ −p

∫ ρ

σ

[ (
t−

m
p

)(∫
M

φ(r/t)|H|pdµ
) 1
p
]
dt

= −p
[(

1− m

p

)−1(
ρ1−mp

(∫
M

φ(r/ρ)|H|pdµ
) 1
p − σ1−mp

(∫
M

φ(r/σ)|H|pdµ
) 1
p
)]

+ p

∫ ρ

σ

[(
1− m

p

)−1

t1−
m
p

( d
dt

∫
M

φ(r/t)|H|pdµ
)]
dt(18)

Observe that, as before for J ′(ρ), since φ′(t) ≤ 0 for all t it follows

d

dt

∫
M

φ(r/t)|H|pdµ = −t−2

∫
M

rφ′(r/t)|H|pdµ ≥ 0

so the second integral in equation (18) is non negative and, recalling the definition of I, we can write(
ρ−m

∫
M

φ(r/ρ)dµ
) 1
p −

(
σ−m

∫
M

φ(r/σ)dµ
) 1
p ≥ p2

p−m

[
− ρ1−mp

(∫
M

φ(r/ρ)|H|pdµ
) 1
p

+σ1−mp
(∫

M

φ(r/σ)|H|pdµ
) 1
p
]
.(19)

Now observe that during all this proof and during all the proof of Lemma 3.1 the only used properties of
φ have been

φ ∈ C1(R), φ′(t) ≤ 0 ∀t ∈ R, φ(t) ≤ 1 ∀t ∈ R, φ(t) = 0 ∀t ≥ 1;

thus, for all such φ, the inequality (19) holds. Now taking a sequence φk of such functions pointwise
converging to the characteristic function of ] −∞, 1] and, using the Dominated Convergence Theorem,
passing to the limit on k in (19) we get

[
ρ−mµ(Bρ(x0))

] 1
p−
[
σ−mµ(Bσ(x0))

] 1
p ≥ p2

p−m

[
−ρ1−mp

(∫
Bρ(x0)

|H|pdµ
) 1
p

+σ1−mp
(∫

Bσ(x0)

|H|pdµ
) 1
p
]
.
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Rearranging we can conclude that[
σ−mµ(Bσ(x0))

] 1
p ≤

[
ρ−mµ(Bρ(x0))

] 1
p+

p2

p−m
ρ1−mp

(∫
Bρ(x0)

|H|pdµ
) 1
p− p2

p−m
σ1−mp

(∫
Bσ(x0)

|H|pdµ
) 1
p

From Corollary 17.8 page 86 of [SiGMT], if H ∈ Lp(V ) for some p > m, then the density θ(x) =
limρ↓0

µ(B̄ρ(x))
wmρm

exists at every point x ∈ RS and θ is an upper semicontinuous function. Hence, letting
σ → 0, one has

[ωmθ(x0)]
1
p ≤

[µ(Bρ(x0))
ρm

] 1
p

+
p2

p−m

[
ρp−m

∫
Bρ(x0)

|H|pdµ
] 1
p

.

Using the inequality a
1
p + b

1
p ≤ 2

p−1
p (a + b)

1
p given by the concavity of the function t 7→ t

1
p with p > 1

and t > 0, we get

ωmθ(x0) ≤ 2p−1
[µ(Bρ(x0))

ρm
+
( p2

p−m

)p
ρp−m

∫
Bρ(x0)

|H|pdµ
]
.

Since V ∈ IVm(RS), then θ is integer valued and by definition θ ≥ 1 µ-a.e. From the upper semicontinuity
of θ it follows that θ(x) ≥ 1 for all x ∈ sptµ (where, as before, µ is the spatial measure associated to V ).
Then the last formula can be written more simply getting the fundamental inequality

(20) 1 ≤ Cp,m
[µ(Bρ(x0))

ρm
+ ρp−m

∫
Bρ(x0)

|H|pdµ
]
∀x0 ∈ sptµ,

where Cp,m > 0 is a positive constant depending on p,m and such that Cp,m →∞ if p ↓ m.
Using the fundamental inequality now we can link through inequalities the mass of V , the diameter

of M and the Lp norm of the weak mean curvature H.

Lemma 3.3. Let V = V (M, θ) ∈ IVm(RS) be a non null integral m-varifold with compact spatial support
sptµ ⊂ RS and weak mean curvature H ∈ Lp(V ) for some p > m. Then, called d = diamRS (sptµ) the
diameter of sptµ as a subset of RS,

(21) |V | ≤
(
d

m

)p ∫
M

|H|pdµ.

Proof. In the same spirit of the proof of Lemma 3.1 we choose a suitable vector field X to plug in the
mean curvature equation (10) ∫

M

divMXdµ = −
∫
M

X ·Hdµ

in order to get informations about the varifold V = V (M, θ). Now fix a point x0 ∈ sptµ and simply let
X(x) = x− x0. Since divMX = m µ-a.e. (for more details see the proof of Lemma 3.1), observing that
|X| ≤ d µ-a.e. and estimating the right hand side by Holder inequality we get

m|V | ≤ d
(∫

M

|H|pdµ
) 1
p |V |

p−1
p .

Now multiply both sides by |V |
1
p−1 and raise to the power p in order to get the thesis.

Lemma 3.4. Let V = V (M, θ) ∈ IVm(RS) be a non null integral m-varifold with compact connected
spatial support sptµ ⊂ RS and weak mean curvature H ∈ Lp(V ) for some p > m. Then, called d =
diamRS (sptµ),

(22) d ≤ Cp,m
(∫

M

|H|pdµ
)m−1

p |V |1−
m−1
p

where Cp,m > 0 is a positive constant depending on p,m and such that Cp,m →∞ if p ↓ m.
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Proof. Since sptµ ⊂ RS is compact, then there exist x0, y0 ∈ sptµ such that

d = |x0 − y0|.

Let ρ ∈]0, d/2] and call N := bd/ρc the integer part of d/ρ. For j = 1, . . . , N − 1 take

yj ∈ ∂B(j+ 1
2 )ρ(y) ∩ sptµ

(observe that, since sptµ is connected, ∂B(j+ 1
2 )ρ(y0) ∩ sptµ 6= ∅ for j = 1, . . . , N − 1). For each ball

Bρ/2(yj), j = 0, . . . , N − 1 we have the fundamental inequality (20); since the balls Bρ/2(yj), j =
0, . . . , N − 1 are pairwise disjoint, summing up over j we get

N ≤ Cp,m
(
|V |
ρm

+ ρp−m
∫
M

|H|pdµ
)
.

Moreover, since N = bd/ρc ≥ d
2ρ , we have

(23) d ≤ 2ρN ≤ Cp,m
(
|V |
ρm−1

+ ρp−m+1

∫
M

|H|pdµ
)
.

Now let us choose ρ in an appropriate way; observe that taken

ρ =
m

2

(
|V |∫

M
|H|pdµ

) 1
p

,

in force of the estimate (21), the condition ρ ≤ d/2 is satisfied. Finally, plugging this value of ρ into
equation (23), after some trivial computation we conclude that

d ≤ Cp,m |V |
p−m+1

p

(∫
M

|H|pdµ
)m−1

p

.

Combining the Fundamental Inequality with the previous lemmas we are in position to prove a lower
diameter and mass bound.

Lemma 3.5. Let V = V (M, θ) ∈ IVm(RS) be a non null integral m-varifold with spatial support sptµ ⊂
RS and weak mean curvature H ∈ Lp(V ) for some p > m. Then, called d := diamRS (sptµ)

(24) d ≥ 1

Cp,m

( ∫
M
|H|pdµ

) 1
p−m

where Cp,m > 0 is a positive constant depending on p,m and such that Cp,m →∞ if p ↓ m.

Proof. If d = ∞, the inequality (24) is trivially satisfied; hence we can assume that sptµ ⊂ RS is
compact. It follows that there exist x0, y0 ∈ sptµ such that

d = |x0 − y0|.

Recall the Fundamental Inequality (20) and choose ρ = d obtaining

(25) 1 ≤ Cp,m
( |V |
dm

+ dp−m
∫
M

|H|pdµ
)
.

From Lemma 3.3,

|V | ≤ 1
mp

dp
∫
M

|Hp|dµ,
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hence the inequality (25) becomes

1 ≤ Cp,m dp−m
∫
M

|H|pdµ

and we can conclude.

Lemma 3.6. Let V = V (M, θ) ∈ IVm(RS) be a non null integral m-varifold with compact spatial support
sptµ ⊂ RS and weak mean curvature H ∈ Lp(V ) for some p > m. Then

(26) |V | ≥ 1

Cp,m

( ∫
M
|H|pdµ

) m
p−m

where Cp,m > 0 is a positive constant depending on p,m and such that Cp,m →∞ if p ↓ m.

Proof. First of all we remark that each connected component of sptµ is the support of an integral
varifold with weak mean curvature in Lp. Hence can assume that sptµ ⊂ RS is connected, otherwise just
argue on a non null connected component of sptµ and observe that the inequality (26) is well behaved
for bigger subsets.

Call as before d := diamRS (sptµ); from the inequality (22),

|V | ≥ d
p

p−m+1(∫
M
|H|pdµ

) m−1
p−m+1

.

But from the last inequality (24),

d
p

p−m+1 ≥ 1

Cp,m

( ∫
M
|H|pdµ

) p
(p−m)(p−m+1)

.

Combining the two estimates, with an easy computation we get the conclusion.

Proposition 3.7. Let {Vk = Vk(Mk, θk)}k∈N ⊂ IVm(RS) be a sequence of integral varifolds with weak
mean curvature Hk ∈ Lp(Vk) for some p > m and associated spatial measures µk. Assume a uniform
bound on the Lp norms of Hk:

∃C > 0 : ∀k ∈ N
∫
Mk

|Hk|pdµk =
∫
Gm(RS)

|Hk|pdVk ≤ C,

and assume a uniform bound on the spatial supports sptµk:

∃R > 0 : sptµk ⊂ BRS
R

where BRS
R is the ball of radius R centered in the origin in RS.

It follows that if there exists a Radon measure µ on RS such that

µk → µ weak as Radon measures,

then
sptµk → sptµ in Hausdorff distance sense.

Proof. First of all observe that the uniform bound on the spatial supports sptµk implies that sptµ is
compact. Since sptµ is compact, recall that sptµk → sptµ if and only if the set of the all possible limit
points of all possible sequences {xk}k∈N with xk ∈ sptµk coincides with sptµ. Let us prove it by double
inclusion.

15



i) since µk → µ weak as Radon measures of course ∀x ∈ spt µ there exists a sequence {xk}k∈N with
xk ∈ sptµk such that xk → x. Otherwise there would exist ε > 0 such that for infinitely many k′

Bε(x) ∩ sptµk′ = ∅.

This would imply that µk′(Bε(x)) = 0, but x ∈ sptµ so we reach the contradiction

0 < µ(Bε(x)) = lim
k′
µk′Bε(x) = 0.

ii) Let {xk}k∈N with xk ∈ sptµk be such that xk → x. We have to show that x ∈ sptµ. Let us argue
by contradiction:
if x /∈ sptµ then there exists ε0 > 0 such that

(27) 0 = µ(Bε0(x)) = lim
k
µk(Bε0(x)).

Since sptµk 3 xk → x, then for every ε ∈ (0, ε0/2) there exists Kε > 0 large enough such that

xk ∈ (sptµk ∩Bε(x)) ∀k > Kε.

Now consider the balls Bε(xk) for k > Kε: by the triangle inequality Bε(xk) ⊂ Bε0(x), moreover, since
by construction xk ∈ sptµk, we can apply the fundamental inequality (20) to each Bε(xk) and obtain

1 ≤ Cp,m

[µk(Bε(xk))
εm

+ εp−m
∫
Bε(xk)

|Hk|pdµk
]

≤ Cp,m

[µk(Bε0(x))
εm

+ εp−m
∫
Mk

|Hk|pdµk
]
∀k > Kε.(28)

Keeping in mind (27), for every fixed ε ∈ (0, ε0/2) we can pass to the limit on k in inequality (28) and
get

lim inf
k

∫
Mk

|Hk|pdµk ≥
1

Cp,m εp−m
.

But ε > 0 can be arbitrarily small, contradicting the uniform bound
∫
Mk
|Hk|pdµk ≤ C of the assumptions.

4 Isoperimetric inequalities and compactness results

4.1 An isoperimetric inequality involving the generalized second fundamental
form

The following Isoperimetric Inequality involving the generalized second fundamental form is inspired by
the paper of White [Whi] and uses the concept of varifold with second fundamental form introduced by
Hutchinson [Hu1]. Actually we need a slight generalization of the definition of curvature varifold given by
Hutchinson: in Definition 5.2.1 of [Hu1], the author considers only integral varifolds but, as a matter of
facts, a similar definition makes sense for a general varifold. In Section 2 we recalled the needed concepts.

Theorem 4.1. Let N ⊂⊂ N̄ be a compact subset of a (maybe non compact) n-dimensional Riemannian
manifold (N̄ , g) (which, by Nash Embedding Theorem we can assume isometrically embedded in some RS)
and let m ≤ n− 1. Then the following conditions are equivalent:

i) N contains no nonzero m-varifold with null generalized second fundamental form
ii) There is an increasing function Φ : R+ → R+ with Φ(0) = 0 and a function F : Gm(N)×RS3 → R+

satisfying (2.2) (see Section 2) such that for every m-varifold V in N with generalized second fundamental
form A

|V | ≤ Φ
(∫

Gm(N)

F (x, P,A(x, P ))dV
)
.
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iii) for every function F : Gm(N)×RS3 → R+ satisfying (2.2) (see Section 2) there exists a constant
CF > 0 such that for every m-varifold V in N with generalized second fundamental form A

|V | ≤ CF
∫
Gm(N)

F (x, P,A(x, P ))dV.

Proof. Of course iii) ⇒ ii) ⇒ i). It remains to prove that i) ⇒ iii). Let us argue by contradiction:
assume that iii) is not satisfied and prove that also i) cannot be satisfied.
First fix the function F . If iii) is not satisfied then there exists a sequence {(Vk, Ak)}k∈N of m-varifolds
in N with generalized second fundamental form (see Definition 2.5) such that

|Vk| ≥ k
∫
Gm(N)

F (x, P,Ak(x, P ))dVk.

We can assume that |Vk| = 1 otherwise replace Vk with the normalized varifold Ṽk := 1
|Vk|Vk (ob-

serve that the second fundamental form is invariant under this rescaling of the measure and that∫
Gm(N)

F (x, P,Ak)dVk = |Vk|
∫
Gm(N)

F (x, P,Ak)dṼk). Hence∫
Gm(N)

F (x, P,Ak(x, P ))dVk ≤
1
k
.

Recall that |Vk| = 1 so, from Banach-Alaoglu and Riestz Theorems, there exists a varifold V such that,
up to subsequences, Vk → V in varifold sense (i.e weak convergence of Radon measures on Gm(N)). Of
course |V | = limk |Vk| = 1.

Using the notation of [Hu1] (see the Section 2) we have that the measure-function pairs (Vk, Ak) over
Gm(N), up to subsequences, satisfy the assumptions of Theorem 2.4. From (i) of the mentioned Theorem
2.4, it follows that there exists a measure-function pair (V, Ã) with values in RS3 (i.e a Radon measure
V on Gm(N) and a matrix valued function Ã ∈ L1

loc(V ) ) such that (Vk, Ak) ⇀ (V, Ã) (i.e VkbAk → V bÃ
weak convergence of Radon vector valued measures).

From Remark 2.6 we can express the generalized curvatures Bk of the varifolds Vk in terms of the
second fundamental forms Ak. Moreover, calling B the corresponding quantity to Ã, from the explicit
expression (8) it is clear that the weak convergence (Vk, Ak) ⇀ (V, Ã) implies the weak convergence
(Vk, Bk) ⇀ (V,B).
Passing to the limit in k in (6) we see that (V,B) satisfies the equation, so V is an m-varifold with
generalized curvature B.

Now let us check that the corresponding generalized second fundamental form (in sense of equation
(7)) to B is Ã.
Call

Λlij(x, P ) := PpjBilp(x, P )− PpjPiq
∂Qlp
∂xq

(x)

the corresponding second fundamental form to B and Λk = Ak the corresponding to Bk (in a varifold
with generalized curvature, Bijl is uniquely determined by the integration by parts formula (6) and, by
definition, Alij = Λlij ; but for our limit varifold it is not a priori clear that Ã = Λ).

Since (Vk, Bk) ⇀ (V,B), from the definitions it is clear that (Vk,Λk) ⇀ (V,Λ); but, from the definition
of Ã, (Vk,Λk) = (Vk, Ak) ⇀ (V, Ã). It follows that Λ = Ã V -almost everywhere and that Ã is the
generalized second fundamental form of V .

Finally, the lower semicontinuity of the functional ( sentence (ii) of Theorem 2.4) implies∫
Gm(N)

F (x, P,A)dV ≤ lim inf
k

∫
Gm(N)

F (x, P,Ak)dVk = 0.

From the assumption ii) of condition (2.2) on F it follows that A = 0 V -almost everywhere; henceforth
we constructed a non null m-varifold V in N with null second fundamental form and this concludes the
proof.
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Remark 4.2. A trivial but fundamental example of F : Gm(N) × RS3 → R satisfying the assumptions
of Theorem 4.1 is F (x, P,A) = |A|p for any p > 1. Hence the Theorem implies that if a compact subset
N of a Riemannian n-dimensional manifold (N̄ , g) does not contain any non null k-varifold (k ≤ n− 1)
with null generalized second fundamental form then for every p > 1 there exists a constant Cp > 0 such
that

|V | ≤ Cp
∫
Gm(N)

|A|pdV

for every k-varifold V in N with generalized second fundamental form A.

Putting together the fundamental compactness and lower semicontinuity Theorem 2.7 of Hutchinson
and the Isoperimetric Theorem 4.1 we get the following useful compactness-lower semicontinuity result.

Theorem 4.3. Let N ⊂⊂ N̄ be a compact subset of a (maybe non compact) n-dimensional Riemannian
manifold (N̄ , g) (which, by Nash Embedding Theorem we can assume isometrically embedded in some
RS), fix m ≤ n− 1 and let F : Gm(N)× RS3 → R+ be a function satisfying (2.2).

Assume that, for some m ≤ n − 1, the space (N, g) does not contain any non zero m-varifold with
null generalized second fundamental form.

Consider a sequence {Vk}k∈N ⊂ CVm(N) of curvature varifolds with generalized second fundamental
forms {Ak}k∈N such that ∫

Gm(N)

F (x, P,Ak)dVk ≤ C

for some C > 0 independent on k.
Then there exists V ∈ CVm(N) with generalized second fundamental form A such that, up to subse-

quences,
i) (Vk, Ak) ⇀ (V,A) in the weak sense of measure-function pairs,
ii)
∫
Gm(N)

F (x, P,A)dV ≤ lim infk
∫
Gm(N)

F (x, P,Ak)dVk.

Proof. From Theorem 4.1 there exists a constant CF > 0 depending on the function F such that
|Vk| ≤ CF

∫
Gm(N)

F (x, P,Ak(x, P ))dVk, thus from the boudness of
∫
Gm(N)

F (x, P,Ak)dVk we have the
uniform mass bound

(29) |Vk| ≤ C

for some C > 0 independent on k. This mass bound, together with Banach Alaoglu and Riestz Theorems,
implies that there exists an m-varifold V on N such that, up to subsequences, Vk → V in varifold sense.

In order to apply Hutchinson compactness Theorem 2.7 we have to prove that V actually is an integral
m-varifold.
From assumption iv) on F of Definition 2.2, there exists a continuous function φ : Gm(N) × [0,∞) →
[0,∞), with 0 ≤ φ(x, P, s) ≤ φ(x, P, t) for 0 ≤ s ≤ t and (x, P ) ∈ Gm(N), φ(x, P, t) → ∞ locally
uniformly in (x, P ) as t→∞, such that

(30) φ(x, P, |A|)|A| ≤ F (x, P,A)

for all (x, P,A) ∈ Gm(N) × RS3
. Since N is compact, also Gm(N) is so and from the properties of φ

there exists C > 0 such that φ(x, P, |A|) ≥ 1 for |A| > C and any (x, P ) ∈ Gm(N). Thus for every k we
can split the computation of the L1(Vk) norm of Ak as∫

Gm(N)

|Ak|dVk =
∫
Gm(N)∩{|Ak|≤C}

|Ak|dVk +
∫
Gm(N)∩{|Ak|>C}

|Ak|dVk.

The first term is bounded above by the mass bound (29). About the second term observe that, for
|A| > C the inequality (30) implies that |A| ≤ F (x, P,A); then also the second term is bounded in virtue
on the assumption that

∫
Gm(N)

F (x, P,Ak)dVk is uniformly bounded.
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We have proved that there exists a constant C such that, for all k ∈ N,

(31)
∫
Gm(N)

|Ak|dVk ≤ C.

Now, change point of view and look at the varifolds Vk as curvature varifolds in RS . Recall (see Remark
2.6) that the curvature function B can be written in terms of the generalized second fundamental form A
relative to N̄ and of the extrinsic curvature of the manifold N̄ (as submanifold of RS) which is uniformly
bounded on N from the compactness assumption. Using the triangle inequality together with estimate
(31) and the mass bound (29) we obtain the uniform estimate of the L1(Vk) norms of the curvature
functions Bk

(32)
∫
Gm(RS)

|Bk|dVk ≤ C

for some C > 0 independent on k.
Estimate (32) and Remark 2.10 tell us that the integral varifolds Vk of RS have uniformly bounded

first variation: there exists a C > 0 independent on k such that

|δVk(X)| ≤ C sup
RS
|X|, ∀X ∈ C1

c (RS) vector field.

The uniform bound on the first variations and on the masses of the integral varifolds Vk allow us to apply
Allard’s integral compactness Theorem (see for example [SiGMT] Remark 42.8 or the original paper of
Allard [Al]) and say that the limit varifold V is actually integral.

The conclusions of the Theorem then follow from Hutchinson Theorem 2.7.

Corollary 4.4. Let N ⊂⊂ N̄ be a compact subset with non empty interior, int(N) 6= ∅, of a (maybe
non compact) n-dimensional Riemannian manifold (N̄ , g) (which, by Nash Embedding Theorem can be
assumed isometrically embedded in some RS) and let F : Gm(N) × RS3 → R+ be a function satisfying
(2.2).

Assume that, for some m ≤ n − 1, the space (N, g) does not contain any non zero m-varifold with
null generalized second fundamental form.

Call
(33)

αmN,F := inf

{∫
Gm(N)

F (x, P,A)dV : V ∈ CVm(N), V 6= 0 with generalized second fundamental form A

}
and consider a minimizing sequence {Vk}k∈N ⊂ CVm(N) of curvature varifolds with generalized second
fundamental forms {Ak}k∈N such that∫

Gm(N)

F (x, P,Ak)dVk ↓ αmN,F .

Then there exists V ∈ CVm(N) with generalized second fundamental form A such that, up to subse-
quences,

i) (Vk, Ak) ⇀ (V,A) in the weak sense of measure-function pairs,
ii)
∫
Gm(N)

F (x, P,A)dV ≤ αmF .

Proof. We only have to check that αmN,F < ∞, then the conclusion follows from Theorem 4.3. But
the fact is trivial since int(N) 6= ∅, indeed we can always construct a smooth compact m-dimensional
embedded submanifold of N , which of course is a curvature m-varifold with finite energy.

Remark 4.5. Notice that, a priori, Corollary 4.4 does not ensure the existence of a minimizer since it
can happen that the limit m-varifold V is null. In the next Section 5 we will see that, if F (x, P,A) ≥ C|A|p
for some C > 0 and p > m, then this is not the case and we have a non trivial minimizer.
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4.2 An isoperimetric inequality involving the weak mean curvature

In this Subsection we adapt to the context of varifolds with weak mean curvature the results of the previous
Subsection 4.1 about varifolds with generalized second fundamental form (for the basic definitions and
properties see Section 2). The following Isoperimetric Inequality involving the weak mean curvature can
be seen as a variant of Theorem 2.3 in [Whi].

Theorem 4.6. Let N ⊂⊂ N̄ be a compact subset of a (maybe non compact) n-dimensional Riemannian
manifold (N̄ , g) (which, by Nash Embedding Theorem we can assume isometrically embedded in some RS)
and let m ≤ n− 1. Then the following conditions are equivalent:

i) N contains no nonzero m-varifold with null weak mean curvature relative to N̄ (i.e N contains no
nonzero stationary m-varifold; see Remark 2.13).

ii) There is an increasing function Φ : R+ → R+ with Φ(0) = 0 and a function F : Gm(N)×RS → R+

satisfying (2.2) (see Section 2) such that for every m-varifold V in N with weak mean curvature HN

relative to N̄
|V | ≤ Φ

(∫
Gm(N)

F (x, P,HN (x, P ))dV
)
.

iii) for every function F : Gm(N)× RS → R+ satisfying (2.2) (see Section 2) there exists a constant
CF > 0 such that for every m-varifold V in N with weak mean curvature HN relative to N̄

|V | ≤ CF
∫
Gm(N)

F (x, P,HN (x, P ))dV.

Proof. The proof is similar to the proof of Theorem 4.1. Of course iii) ⇒ ii) ⇒ i). We prove by
contradiction that i) ⇒ iii): assume that iii) is not satisfied and show that also i) cannot be satisfied.
First fix the function F . If iii) is not satisfied then there exists a sequence {Vk}k∈N of m-varifolds in N
with weak mean curvatures HN

k relative to N̄ (see Definition 2.11) such that

|Vk| ≥ k
∫
Gm(N)

F (x, P,HN
k (x, P ))dVk.

We can assume that |Vk| = 1 otherwise replace Vk with the normalized varifold Ṽk := 1
|Vk|Vk (observe that

the weak mean curvature is invariant under this rescaling of the measure and that
∫
Gm(N)

F (x, P,HN
k )dVk =

|Vk|
∫
Gm(N)

F (x, P,HN
k )dṼk). Hence∫

Gm(N)

F (x, P,HN
k (x, P ))dVk ≤

1
k
.

Recall that |Vk| = 1 so, from Banach-Alaoglu and Riestz Theorems, there exists a varifold V such that,
up to subsequences, Vk → V in varifold sense (i.e weak convergence of Radon measures on Gm(N)). Of
course |V | = limk |Vk| = 1.

Now the measure-function pairs (Vk, HN
k ) over Gm(N), up to subsequences, satisfy the assumptions

of Theorem 2.4 and (i) (of the mentioned Theorem 2.4) implies that there exists a measure-function pair
(V, H̃N ) with values in RS such that (Vk, HN

k ) ⇀ (V, H̃N ) weak convergence of measure-function pairs
(see Definition 2.1).

At this point we have to check that V is an m-varifold of N with weak mean curvature H̃N relative
to N̄ . Recall that N ↪→ RS , so the varifolds Vk can be seen as varifolds with weak mean curvatures
HRS
k in RS ; from equation (11), the measure-function pair convergence (Vk, HN

k ) ⇀ (V, H̃N ) implies
the measure-function pair convergence (Vk, HRS

k ) ⇀ (V, H̃N + Pjk
∂Qij
∂xk

) which says ( pass to the limit
in Definition 2.9) that V is an m-varifold in RS with weak mean curvature H̃N + Pjk

∂Qij
∂xk

. Thus, by
Definition 2.11, V is an m-varifold of N with weak mean curvature HN := H̃N relative to N̄ .

Finally, the lower semicontinuity of the functional ( sentence (ii) of Theorem 2.4) implies∫
Gm(N)

F (x, P,HN )dV ≤ lim inf
k

∫
Gm(N)

F (x, P,HN
k )dVk = 0.
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From the assumption ii) of condition (2.2) on F it follows that HN = 0 V -almost everywhere; henceforth
we constructed a non null m-varifold V in N with null weak mean curvature relative to N̄ and this
concludes the proof.

We also have a counterpart of Theorem 4.3 concerning the weak mean curvature:

Theorem 4.7. Let N ⊂⊂ N̄ be a compact subset of a (maybe non compact) n-dimensional Riemannian
manifold (N̄ , g) (which, by Nash Embedding Theorem we can assume isometrically embedded in some
RS), fix m ≤ n− 1 and let F : Gm(N)× RS → R+ be a function satisfying (2.2).

Assume that, for some m ≤ n − 1, the space (N, g) does not contain any non zero m-varifold with
null weak mean curvature relative to N̄ .

Consider a sequence {Vk}k∈N ⊂ HVm(N) of integral m-varifolds with weak mean curvatures {HN
k }k∈N

relative to N̄ such that ∫
Gm(N)

F (x, P,HN
k )dVk ≤ C

for some C > 0 independent on k.
Then there exists V ∈ HVm(N) integral varifold with weak mean curvature HN relative to N̄ such

that, up to subsequences,
i) (Vk, HN

k ) ⇀ (V,HN ) in the weak sense of measure-function pairs,
ii)
∫
Gm(N)

F (x, P,HN )dV ≤ lim infk
∫
Gm(N)

F (x, P,HN
k )dVk.

Proof. The proof is analogous to the proof of Theorem 4.3. From Theorem 4.6 there exists a constant
CF > 0 depending on the function F such that |Vk| ≤ CF

∫
Gm(N)

F (x, P,HN
k (x, P ))dVk, thus from the

boudness of
∫
Gm(N)

F (x, P,HN
k )dVk we have the uniform mass bound

(34) |Vk| ≤ C

for some C > 0 independent on k. This mass bound, together with Banach Alaoglu and Riestz Theorems,
implies that there exists an m-varifold V on N such that, up to subsequences, Vk → V in varifold sense.

The proof that V actually is an integral m-varifold is completely analogous to the same statement in
the proof of Theorem 4.3: formally substituting HN

k to Ak in the mentioned proof we arrive to

(35)
∫
Gm(N)

|HN
k |dVk ≤ C.

Now, change point of view and look at the varifolds Vk as integral varifolds in RS . From Definition 2.11
the weak mean curvature HRS

k in RS can be written in terms of HN
k and of the extrinsic curvature of the

manifold N̄ (as submanifold of RS) which is uniformly bounded on N from the compactness assumption.
Using the triangle inequality together with estimate (35) and the mass bound (34) we obtain the uniform
estimate of the L1(Vk) norms of the weak mean curvatures HRS

k

(36)
∫
Gm(RS)

|HRS
k |dVk ≤ C

for some C > 0 independent on k. It follows (see Definition 2.9) that the integral varifolds Vk of RS have
uniformly bounded first variation: there exists a constant C > 0 independent on k such that

|δVk(X)| ≤ C sup
RS
|X|, ∀X ∈ C1

c (RS) vector field.

The uniform bound on the first variations and on the masses of the integral varifolds Vk allow us to apply
Allard’s integral compactness Theorem (see for example [SiGMT] Remark 42.8 or the original paper of
Allard [Al]) and say that the limit varifold V is actually integral.

With the same arguments in the end of the proof of Theorem 4.6, one can show that the varifold
convergence of a subsequence Vk → V and the uniform energy bound

∫
Gm(N)

F (x, P,HN
k )dVk < C implies

21



the existence of a measure-function pair converging subsequence (Vk, HN
k ) ⇀ (V,HN ) for some RS -valued

function HN ∈ L1
loc(V ) which actually is the weak mean curvature of V relative to N̄ .

We conclude that V ∈ HVm(N) is an integral m-varifold of N with weak mean curvature HN

relative to N̄ and i) holds; property ii) follows from the general Theorem 2.7 about measure-function pair
convergence (specifically see sentence ii) of the mentioned Theorem).

Finally we have a counterpart of Corollary 4.4

Corollary 4.8. Let N ⊂⊂ N̄ be a compact subset with non empty interior, int(N) 6= ∅, of a (maybe
non compact) n-dimensional Riemannian manifold (N̄ , g) (which, by Nash Embedding Theorem can be
assumed isometrically embedded in some RS) and let F : Gm(N) × RS → R+ be a function satisfying
(2.2).

Assume that, for some m ≤ n − 1, the space (N, g) does not contain any non zero m-varifold with
null weak mean curvature relative to N̄ .

Call
(37)

βmN,F := inf

{∫
Gm(N)

F (x, P,HN )dV : V ∈ HVm(N), V 6= 0 with weak wean curvature HN relative to N̄

}

and consider a minimizing sequence {Vk}k∈N ⊂ HVm(N) of integral varifolds with weak mean curvatures
{HN

k }k∈N such that ∫
Gm(N)

F (x, P,HN
k )dVk ↓ βmN,F .

Then there exists an integral m-varifold V ∈ HVm(N) with weak mean curvature HN relative to N̄
such that, up to subsequences,

i) (Vk, HN
k ) ⇀ (V,HN ) in the weak sense of measure-function pairs,

ii)
∫
Gm(N)

F (x, P,HN )dV ≤ βmN,F .

Proof. As in Corollary 4.4 we have that βmN,F <∞, then the conclusion follows from Theorem 4.7.

Remark 4.9. As for the generalized second fundamental form, a priori, Corollary 4.4 does not ensure
the existence of a minimizer since it can happen that the limit m-varifold V is null. In Section 6 we will
see that, if F (x, P,HN ) ≥ C|HN |p for some C > 0 and p > m, then this is not the case and we have a
non trivial minimizer.

5 Case F (x, P, A) ≥ C|A|p with p > m: non degeneracy of the
minimizing sequence and existence of a C1,α minimizer

Throughout this Section, (N̄ , g) stands for a compact n-dimensional Riemannian manifold isometrically
embedded in some RS (by Nash Embedding Theorem) and N ⊂⊂ N̄ is a compact subset with non empty
interior (as subset of N). Fix m ≤ n−1; we will focus our attention and specialize the previous techniques
to the case

F : Gm(N)× RS3 → R+ is a function satisfying (2.2)
F (x, P,A) ≥ C|A|p for some p > m and C > 0.(38)

Recall that we are considering the minimization problem

αmN,F := inf

{∫
Gm(N)

F (x, P,A)dV : V ∈ CVm(N), V 6= 0 with generalized second fundamental form A

}
.

Our goal is to prove the existence of a minimizer for αmN,F , F as in (38).
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Let {Vk}k∈N ⊂ CVm(N) be a minimizing sequence of curvature varifolds with generalized second
fundamental forms {Ak}k∈N such that∫

Gm(N)

F (x, P,Ak)dVk ↓ αmN,F ;

from Corollary 4.4 we already know that there exists V ∈ CVm(N) with generalized second fundamental
form A such that, up to subsequences,

i) (Vk, Ak) ⇀ (V,A) in the weak sense of measure-function pairs,
ii)
∫
Gm(N)

F (x, P,A)dV ≤ αmN,F .
In order to have the existence of a minimizer we only have to check that V is not the zero varifold;

this will be done in the next Subsection 5.1 using the estimates of Section 3.

5.1 Non degeneracy properties of the minimizing sequence

First of all, since N ⊂ RS , a curvature m-varifold V of N can be seen as a curvature varifold in RS (for the
precise value of the curvature function B in RS see Remark 2.6); as before we write V = V (M, θ) where
M is a rectifiable set and θ is the integer multiplicity function. Let us call HRs the weak mean curvature
of V as integral m-varifold in RS and, as in Section 3, let us denote with µ = µV = Hmbθ = π]V the
spatial measure associated to V and with sptµ its support.

Lemma 5.1. Let N ⊂⊂ N̄ be a compact subset of the n-dimensional Riemannian manifold (N, g)
isometrically embedded in some RS (by Nash Embedding Theorem) and fix p > 1. Then there exists a
constant CN,p > 0 depending only on p and N such that for every V = V (M, θ) ∈ CVm(N) curvature
m-varifold of N ∫

M

∣∣∣HRS
∣∣∣p dµ ≤ CN,p(|V |+ ∫

Gm(N)

|A|pdV

)
.

Proof. Recall (see Remark 2.6) that it is possible to write the curvature function B of V seen as
curvature m-varifold of RS in terms of the second fundamental form A relative to N̄ and the curvature
of the manifold N̄ seen as submanifold of RS (the terms involving derivatives of Q):

Bijk = Akij +Ajik + PjlPiq
∂Qlk
∂xq

(x) + PklPiq
∂Qlj
∂xq

(x).

From Remark 2.10 the weak mean curvature HRS , which is a vector of RS , can be written in terms of B
as

(
HRS

)
i

=
S∑
j=1

Bjij =
S∑
j=1

(
Ajji +Aijj + PilPjq

∂Qlj
∂xq

(x) + PjlPjq
∂Qli
∂xq

(x)
)

i = 1 . . . , S.

Notice that, sinceN ⊂⊂ N̄ is a compact subset of the manifold N̄ smoothly embedded in RS , the functions
∂Qlj
∂xm

are uniformly bounded by a constant CN depending on the embedding N ↪→ RS ; moreover the Pjm
are projection matrices so they are also uniformly bounded and we can say that∣∣∣∣∣∣

 S∑
j,l,m=1

PilPjq
∂Qlj
∂xq

+ PjlPjq
∂Qli
∂xq


i=1,...,S

∣∣∣∣∣∣ ≤ CN
as vector of RS .
About the first term observe that, from the triangle inequality applied to the RS-vectors (Ajji)i=1,...,S (j
is fixed for each single vector),∣∣∣∣∣∣

 S∑
j=1

Ajji


i=1,...,S

∣∣∣∣∣∣ ≤
S∑
j=1

∣∣∣(Ajji)i=1,...,S

∣∣∣ ≤ S|A|
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where, of course |A| :=
√∑S

i,j,k=1(Aijk)2 ≥ |(Ajji)i=1,...,S | for all j = 1, . . . , S. The second adding term is
analogous.
Putting together the two last estimates, by a triangle inequality, we have∣∣∣HRS

∣∣∣ ≤ 2S|A|+ CN .

Using the standard inequality (a + b)p ≤ 2p−1(ap + bp) for a, b ≥ 0 and p > 1 given by the convexity of
the function t 7→ tp for t ≥ 0, p > 1 we can write

(39)
∣∣∣HRS

∣∣∣p ≤ CN,p (|A|p + 1) .

With an integration we get the conclusion.

Using the estimates of Section 3 and the last Lemma we have uniform lower bounds on the mass
and on the diameter of the spatial support of a curvature m-varifold V ∈ CVm(N) of N with bounded∫
Gm(N)

|A|pdV , p > m.

Theorem 5.2. Let N ⊂⊂ N̄ be a compact subset of the n-dimensional Riemannian manifold (N, g)
isometrically embedded in some RS (by Nash Embedding Theorem) and fix m ≤ n− 1, p > m.

Then there exists a constant CN,p,m > 0 depending only on p,m and on the embedding of N into RS
such that CN,p,m ↑ +∞ as p ↓ m and such that for every V = V (M, θ) ∈ CVm(N) curvature m-varifold
of N with spatial measure µ

i) diamN̄ (sptµ) ≥ 1

CN,p,m

(
|V |+

∫
Gm(N)

|A|pdV
) 1
p−m

(40)

where diamN̄ (sptµ) is the diameter of sptµ as a subset of the Riemannian manifold N̄ ;

ii) CN,p,m |V |

(
|V |+

∫
Gm(N)

|A|pdV

) m
p−m

≥ 1.(41)

Notice that ii) implies the existence of a constant aN,m,p,∫ |A|p > 0 depending only on p,m, on
∫
Gm(N)

|A|pdV
and on the embedding of N into RS, with aN,p,m,∫ |A|p ↓ 0 if p ↓ m or if

∫
Gm(N)

|A|pdV ↑ +∞ such that

|V | ≥ aN,p,m,∫ |A|p > 0.

Proof.
i) From Lemma 3.5

diamN̄ (sptµ) ≥ diamRS (sptµ) ≥ 1

Cp,m

( ∫
M
|H|pdµ

) 1
p−m

where Cp,m > 0 is a positive constant depending on p,m and such that Cp,m → ∞ if p ↓ m. The
conclusion follows plugging into the last inequality the estimate of Lemma 5.1.

ii) From Lemma 3.6,

|V | ≥ 1

Cp,m

( ∫
M
|H|pdµ

) m
p−m

with Cp,m > 0 as above. The conclusion, again, follows plugging into the last inequality the estimate of
Lemma 5.1 and rearranging.
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Corollary 5.3. Let N ⊂⊂ N̄ be a compact subset with non empty interior, int(N) 6= ∅, of the n-
dimensional Riemannian manifold (N, g) isometrically embedded in some RS (by Nash Embedding The-
orem) and fix m ≤ n− 1.

Assume that the space (N, g) does not contain any non zero m-varifold with null generalized second
fundamental form and consider a function F : Gm(N) × RS3 → R+ satisfying (2.2), (38) and a cor-
responding minimizing sequence of curvature m-varifolds {Vk}k∈N ⊂ CVm(N) with generalized second
fundamental forms {Ak}k∈N such that∫

Gm(N)

F (x, P,Ak)dVk ↓ αmN,F

( for the definition of αmN,F see (33)). Then, called µk the spatial measures associated to Vk, there exists
a constant aN,F,m > 0 depending only on N ,F and m such that

i) diamN̄ (sptµk) ≥ aN,F,m(42)
ii) |Vk| ≥ aN,F,m.(43)

Proof. From Theorem 4.1 and the finiteness of αmN,F , since (N, g) does not contain any non zero
m-varifold with null generalized second fundamental form,

|Vk| ≤ CN,F,m
∫
Gm(N)

F (x, P,Ak)dVk ≤ CN,F,m

for some CN,F,m > 0 depending only on N,F and m.
Moreover, since (by assumption (38)) F (x, P,A) ≥ C|A|p for some p > m and C > 0, the boundness of∫
Gm(N)

F (x, P,Ak)dVk implies that ∫
Gm(N)

|Ak|pdVk ≤ CN,F,m

for some CN,F,m>0 depending only on N,F and m.
The conclusion follows putting the last two inequalities into Theorem 5.2.

5.2 Existence and regularity of the minimizer

Collecting Corollary 4.4 and Corollary 5.3 we can finally state and prove the first main Theorem 1.3.

Proof of Theorem 1.3
If a) is true we are done, so we can assume that a) is not satisfied.
Let {Vk}k∈N ⊂ CVm(N) with generalized second fundamental forms {Ak}k∈N be a minimizing se-

quence of αmN,F : ∫
Gm(N)

F (x, P,Ak)dVk ↓ αmN,F .

Called µk the spatial measures associated to Vk notice that, since the integrand F is non negative, we can
assume that the spatial supports sptµk are connected (indeed, from Definition 2.5, using cut off functions
it is clear that every connected component of sptµk is the spatial support of a curvature varifold). From
Corollary 5.3 we have the lower bounds:

i) diamN̄ (sptµk) ≥ aN,F,m
ii) |Vk| ≥ aN,F,m,

for a constant aN,F,m > 0 depending only on N ,F and m. Corollary 4.4 implies the existence of a
curvature m-varifold V = V (M, θ) ∈ CVm(N) with generalized second fundamental form A such that,
up to subsequences,
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i) (Vk, Ak) ⇀ (V,A) in the weak sense of measure-function pairs of N ,
ii)
∫
Gm(N)

F (x, P,A)dV ≤ αmN,F .
The measure-function pair convergence implies the varifold convergence of Vk → V and the convergence
of the associated spatial measures

π]Vk =: µk → µ := π]V weak convergence of Radon measures on N .

It follows that
0 < aN,F,m ≤ |Vk| = µk(N)→ µ(N) = |V |,

thus V 6= 0 is a minimizer for αmN,F .
Notice that, since N ↪→ RS is properly embedded, the weak convergence µk → µ on N implies the

weak convergence of µk → µ as Radon measures on RS . From mass bound on the Vk and the bound on∫
Gm(N)

|Ak|pdVk given by the assumption (38) on F , Lemma 5.1 allows us to apply Proposition 3.7 and
we can say that the spatial supports

sptµk → sptµ Hausdorff convergence as subsets of RS .

Notice that, since N̄ ↪→ RS is embedded, the Hausdorff convergence of Mk →M as subsets of RS implies

sptµk → sptµ Hausdorff convergence as subsets of N̄ ,

and this implies that
0 < aN,F,m ≤ lim

k
diamN̄ (sptµk) = diamN̄ (sptµ),

hence b2). Moreover the Hausdorff limit of connected subsets is connected thus also b1) is proved.
Now the minimizer V ∈ CV (N) is a non null curvature varifold on N with generalized second

fundamental form A (relative to N̄) in Lp(V ) for some p > m. Since N ↪→ RS , V can also be seen as
a varifold in RS and Remark 2.6 tell that V is actually a varifold with generalized curvature function B
given by

Bijk = Akij +Ajik + PjlPiq
∂Qlk
∂xq

(x) + PklPiq
∂Qlj
∂xq

(x)

where the terms of the type PjlPiq ∂Qlk∂xq
(x) represent the extrinsic curvature of N̄ as a submanifold of RS

and, of course, are bounded on N from the compactness:

sup
x∈N

∣∣∣∣PjlPiq ∂Qlk∂xq
(x) + PklPiq

∂Qlj
∂xq

(x)
∣∣∣∣ ≤ CN .

Hence, from triangle inequality,
|B| ≤ 2|A|+ CN

and
|B|p ≤ CN,p (|A|p + 1).

Using the mass bound |V | = limk |Vk| ≤ C <∞, with an integration we get∫
Gm(RS)

|B|pdV <∞.

Under this conditions Hutchinson shows in [Hu2] that V is a locally a graph of multivalued C1,α functions
and that b3) holds.
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6 Existence of an integral m-varifold with weak mean curvature
minimizing

∫
|H|p for p > m

As before, throughout this Section (N̄ , g) stands for a compact n-dimensional Riemannian manifold
isometrically embedded in some RS (by Nash Embedding Theorem) and N ⊂⊂ N̄ is a compact subset
with non empty interior (as subset of N). Fix m ≤ n − 1; analogously to Section 5 we will focus our
attention to the case

F : Gm(N)× RS → R+ is a function satisfying (2.2)
F (x, P,H) ≥ C|H|p for some p > m and C > 0.(44)

Recall that we are considering the minimization problem

βmN,F := inf

{∫
Gm(N)

F (x, P,HN )dV : V ∈ HVm(N), V 6= 0 with weak mean curvature HN relative to N̄

}
.

Our goal is to prove the existence of a minimizer for βmN,F , F as in (44).
As in Section 5 we consider a minimizing sequence {Vk}k∈N ⊂ HVm(N) of integral m-varifolds with

weak mean curvatures {HN
k }k∈N relative to N̄ such that∫

Gm(N)

F (x, P,HN
k )dVk ↓ βmN,F ;

from Corollary 4.8 we already know that there exists V ∈ HVm(N) with with weak mean curvature HN

relative to N̄ such that, up to subsequences,
i) (Vk, HN

k ) ⇀ (V,HN ) in the weak sense of measure-function pairs,
ii)
∫
Gm(N)

F (x, P,HN )dV ≤ βmN,F .
In order to have the existence of a minimizer we only have to check that V is not the zero varifold;

this will be done analogously to Subsection 5.1 using the estimates of Section 3.
As before, since N ⊂ RS , an integral m-varifold V of N with weak mean curvature HN relative to N̄

can be seen as integral m-varifold of RS with weak mean curvature HRS . We write V = V (M, θ) where
M is a rectifiable set and θ is the integer multiplicity function; finally, as in Section 3, let us denote with
µ = µV = Hmbθ = π]V the spatial measure associated to V and with sptµ the spatial support of V .

Lemma 6.1. Let N ⊂⊂ N̄ be a compact subset of the n-dimensional Riemannian manifold (N, g)
isometrically embedded in some RS (by Nash Embedding Theorem) and fix p > 1. Then there exists a
constant CN,p > 0 depending only on p and N such that for every V = V (M, θ) ∈ HVm(N) integral
m-varifold of N with weak mean curvature HN relative to N̄∫

M

∣∣∣HRS
∣∣∣p dµ ≤ CN,p(|V |+ ∫

Gm(N)

|HN |pdV

)
.

Proof. By Definition 2.11 we can express

(HRS )i = (HN )i + Pjk
∂Qij
∂xk

and from the triangle inequality

(45)
∣∣∣HRS

∣∣∣ ≤ ∣∣HN
∣∣+
∣∣∣∣Pjk ∂Qij∂xk

∣∣∣∣ ;
as vectors in RS . The second summand of the right hand side is a smooth function on the compact set
Gm(N) hence bounded by a constant CN depending on N :∣∣∣∣Pjk ∂Qij∂xk

∣∣∣∣ ≤ CN .
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Using the standard inequality (a+ b)p ≤ 2p−1(ap + bp) for a, b ≥ 0 and p > 1 we get∣∣∣HRS
∣∣∣p ≤ CN,p(1 +

∣∣HN
∣∣p )

which gives the thesis with an integration.

Remark 6.2. An analogous result to Theorem 5.2 holds, just replace V = V (M, θ) ∈ CVm(N) with
V = V (M, θ) ∈ HVm(N) and

∫
Gm(N)

|A|pdV with
∫
Gm(N)

|HN |pdV .

Now we can show the non degeneracy of the minimizing sequence for βmN,F , F as in 2.2, (44).

Lemma 6.3. Let N ⊂⊂ N̄ be a compact subset with non empty interior, int(N) 6= ∅, of the n-dimensional
Riemannian manifold (N, g) isometrically embedded in some RS (by Nash Embedding Theorem) and fix
m ≤ n− 1.

Assume that the space (N, g) does not contain any non zero m-varifold with null weak mean curvature
HN relative to N̄ and consider a function F : Gm(N) × RS → R+ satisfying (2.2), (44) and a corre-
sponding minimizing sequence of integral m-varifolds {Vk}k∈N ⊂ HVm(N) with weak mean curvatures
{HN

k }k∈N relative to N̄ such that ∫
Gm(N)

F (x, P,HN
k )dVk ↓ βmN,F

( for the definition of βmN,F see (37)). Then, called µk the spatial measures of Vk, there exists a constant
bN,F,m > 0 depending only on N ,F and m such that

i) diamN̄ (sptµk) ≥ bN,F,m(46)
ii) |Vk| ≥ bN,F,m.(47)

Proof. From Theorem 4.6 and the finiteness of βmN,F , since (N, g) does not contain any non zero
m-varifold with null weak mean curvature HN relative to N̄ ,

|Vk| ≤ CN,F,m
∫
Gm(N)

F (x, P,HN
k )dVk ≤ CN,F,m

for some CN,F,m > 0 depending only on N,F and m.
Moreover, since (by assumption (44)) F (x, P,HN ) ≥ C|HN |p for some p > m and C > 0, the boundness
of
∫
Gm(N)

F (x, P,HN
k )dVk implies that∫

Gm(N)

|HN
k |pdVk ≤ CN,F,m

for some CN,F,m>0 depending only on N,F and m.
The conclusion follows from the last two inequalities and Remark 6.2.

Now, collecting Corollary 4.8 and Lemma 6.3 we can finally state and prove Theorem 1.1, namely the
existence of a non trivial minimizer for βmN,F , F as in 2.2, (44).

Proof of Theorem 1.1
If a) is true we are done, so we can assume that a) is not satisfied.
Let {Vk}k∈N ⊂ HVm(N) with weak mean curvatures {HN

k }k∈N be a minimizing sequence of βmN,F :∫
Gm(N)

F (x, P,HN
k )dVk ↓ βmN,F .
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Called µk the spatial measures of Vk notice that, since the integrand F is non negative, we can assume
that the spatial supports sptµk are connected (indeed, as for the curvature varifolds, every connected
component of sptµk is the spatial support of a mean curvature varifold). From Lemma 6.3 we have the
lower bounds:

i) diamN̄ (sptµk) ≥ bN,F,m > 0
ii) |Vk| ≥ bN,F,m > 0,

for a constant bN,F,m > 0 depending only on N ,F and m. Corollary 4.8 implies the existence of an integral
m-varifold V ∈ HVm(N) with weak mean curvature HN relative to N̄ such that, up to subsequences,

i) (Vk, HN
k ) ⇀ (V,HN ) in the weak sense of measure-function pairs of N ,

ii)
∫
Gm(N)

F (x, P,HN )dV ≤ βmN,F .
Analogously to the proof of Theorem 1.3, one shows that

0 < bN,F,m ≤ |Vk| = µk(N)→ µ(N) = |V |,

thus V 6= 0 is a minimizer for βmN,F . The proof of b1) and b2) are again analogous to the proof of the corre-
sponding sentences in Theorem 1.3: from the mass bound on the Vk and the bound on

∫
Gm(N)

|HN
k |pdVk

given by the assumption (44) on F , Lemma 6.1 allows us to apply Proposition 3.7 and, using the same
tricks of Theorem 1.3 we can say that the spatial supports

sptµk → sptµ Hausdorff convergence as subsets of N̄ ,

and this implies that
0 < bN,F,m ≤ lim

k
diamN̄ (sptµk) = diamN̄ (sptµ),

hence b2). Moreover the Hausdorff limit of connected subsets is connected thus also b1) is proved.

7 Examples and Remarks

First of all let us point out that our setting includes, speaking about ambient manifolds, a large class of
Riemannian manifolds with boundary.

Remark 7.1. Notice that if N is a compact n-dimensional manifold with boundary then there exists an
n-dimensional (a priori non compact) manifold N̄ without boundary such that N is a compact subset of
N̄ (to define N̄ just extend N a little beyond ∂N in the local boundary charts). Hence, given a compact
n-dimensional Riemannian manifold (N, g) with boundary such that the metric g can be extended in a
smooth and non degenerate way (i.e. g positive definite) up to the boundary ∂N , then N is isometric to
a compact subset of an n-dimensional Riemannian manifold (N̄ , ḡ) without boundary.

Thus all the Lemmas, Propositions and Theorems apply to the case in which the ambient space is a
Riemannian manifold with boundary with the described non degeneracy property at ∂N .

Now let us show that the main results Theorem 1.3 and Theorem 1.1 are non empty, i.e we have
examples of compact subsets of Riemannian manifolds where do not exist non zero varifolds with null
weak mean curvature relative to N̄ and a fortiori there exists no non zero varifold with null generalized
second fundamental form. Let us start with an easy Lemma:

Lemma 7.2. Let N ⊂⊂ N̄ be a compact subset of the n-dimensional Riemannian manifold (N, g)
isometrically embedded in some RS (by Nash Embedding Theorem), fix m ≤ n − 1 and assume that N
contains no non zero m-varifold with null weak mean curvature relative to N̄ . Then N does not contain
any non zero m-varifold with null generalized second fundamental form.
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Proof. We show that if the varifold V has null generalized second fundamental form relative to N̄ then
V also has null weak mean curvature relative to N̄ . Indeed let V be a varifold on N with generalized
curvature function B and second fundamental form A relative to N̄ , then, from Remark 2.6,

Bijk = Akij +Ajik + PjlPip
∂Qlk
∂xp

(x) + PklPip
∂Qlj
∂xp

(x)

where P and Q(x) are the projection matrices on P ∈ Gm(N) and TxN̄ . Moreover, from Remark 2.10,
V has weak mean curvature as a varifold in RS

(HRS )i = Bjij ;

hence, if the generalized second fundamental form A is null, then

(HRS )i = PilPjk
∂Qlj
∂xk

(x) + PjlPjk
∂Qli
∂xk

(x).

It is not hard to check that the first summand of the right hand side is null (fix a point x of N̄ and choose
a base of TxN̄ in which the Christoffel symbols of N̄ vanish at x; write down the orthogonal projection
matrix Q with respect to this base and check the condition in this frame). Thus HRS

i = Pjk
∂Qij
∂xk

and
Definition 2.11 gives

(HN )i = (HRS )i − Pjk
∂Qij
∂xk

(x) = 0.

Collecting Lemma 7.2 and Remark 2.12 we can say that if a compact subset N ⊂⊂ N̄ has a non
zero m-varifold with null generalized second fundamental form, then a fortiori N contains a non zero
m-varifold with null weak mean curvature relative to N̄ , then a fortiori N contains a non zero m-varifold
with null first variation relative to N̄ (recall, see Remark 2.13, that a varifold with null first variation is
also called stationary varifold). Hence it is enough to give examples of compact subsets of Riemannian
manifolds which do not contain any non zero m-varifold with null first variation relative to N̄ .

First, we mention two examples given by White in [Whi] (for the proofs we refer to the original paper)
next we will propose a couple of new examples which can be seen as a sort of generalization of White’s
ones. Recall that if N is a compact Riemannian manifold with smooth boundary, N is said to be mean
convex provided that the mean curvature vector at each point of ∂N is an nonnegative multiple of the
inward-pointing unit normal.

Example 7.3. Suppose that N is a compact, connected, mean convex Riemannian manifold with smooth,
nonempty boundary, and that no component of ∂N is a minimal surface. Suppose also that the dimension
n of N is at most 7 and that the Ricci curvature of N is everywhere positive. Then N contains no non
zero n− 1-varifold with null first variation relative to N (i.e. stationary n− 1-varifold).

More generally, if N has nonnegative Ricci curvature, then the same conclusion holds unless N con-
tains a closed, embedded, totally geodesic hypersurface M such that Ric(ν, ν) = 0 for every unit normal
ν to M (where Ric is the Ricci tensor of N).

Minimal surfaces in ambient manifolds of the form M × R have been deeply studied in recent years
(see for example [MeRo04], [MeRo05] and [NeRo02]); notice that M × R is foliated by the minimal
surfaces M ×{z}. In the second example we can see that very general compact subsets of ambient spaces
admitting such foliations do not contain non zero codimension 1 varifolds with null first variation.

Example 7.4. Let N̄ be an n-dimensional Riemannian manifold. Let f : N̄ → R be a smooth function
with nowhere vanishing gradient such that the level sets of f are minimal hypersurfaces or, more generally,
such that the sublevel sets {x : f(x) ≤ z} are mean convex. Let N be a compact subset of N̄ such that
for each z ∈ R, no connected component of f−1(z) is a minimal hypersurface lying entirely in N . Then
N contains no non zero n− 1-varifold with null first variation relative to N̄ .
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Observe that both examples concern the non-existence of codimension 1 stationary varifolds: next
we propose a couple of new examples in higher codimension. We need the following maximum principle
for stationary (i.e. with null first variation) varifolds given by White, for the proof see [Whi2], Theorem
1. Before stating it recall that if N is an n-dimensional Riemannian manifold with boundary ∂N , N is
said strongly m-convex at a point p ∈ ∂N provided

k1 + k2 + . . .+ km > 0

where k1 ≤ k2 ≤ . . . ≤ kn−1 are the principal curvatures of ∂N at p with respect to the unit normal νN
that points into N .

Theorem 7.5. Let N̄ be a smooth Riemannian manifold of dimension n, let N ⊂ N̄ be a smooth
Riemannian n-dimensional manifold with boundary, and assume p to be a point in ∂N at which N is
strongly m-convex. Then p is not contained in the support of any m-varifold in N with null first variation
relative to N̄ .

Actually the Theorem of White is more general and precise, but for our purposes this weaker version
is sufficient.

Now are ready to state and prove the two examples.

Theorem 7.6. Let N̄ be an n-dimensional Riemannian manifold and consider as ambient manifold
N̄ × RS , s > 1 with the product metric. Then any compact subset N ⊂⊂ N̄ × RS does not contain any
non null stationary n+ k-varifold, k = 1, . . . , s− 1 (i.e. n+ k-varifold with null first variation relative to
N̄ × RS).

Proof. Assume by contradiction that V is a non null n + k-varifold in N with null first variation in
N̄ × RS for some 1 ≤ k ≤ s− 1. Consider the function ρ : N̄ × RS → R+ defined as

N̄ × RS 3 (x, y) 7→ ρ(x, y) := |y|RS

where of course |y|RS is the norm of y as vector of RS . With abuse of notation, call M ⊂ N the spatial
support of V (now M may not be rectifiable, it is just compact); observe that, since M is compact, then
the function ρ restricted to M has a maximum r > 0 at the point (x0, y0) ∈ M ⊂ N̄ × RS (observe
that the maximum r has to be strictly positive otherwise we would have a non null n + k-varifold in
an n-dimensional space, which clearly is not possible by the very definition of varifold). It follows that,
called N̄r the tube of center N̄ and radius r

N̄r := {(x, y) : x ∈ N̄ , |y|RS ≤ r},

the spatial support of V is contained in N̄r:

(48) M ⊂ N̄r.

Moreover M is tangent to the hypersurface Cr := ∂N̄r = {(x, y) : x ∈ N̄ , |y|RS = r} at the point (x0, y0).
Observe that Cr is diffeomorphic to N̄ × rSs−1

RS , where of course rSs−1
RS is the s− 1-dimensional sphere of

RS of radius r centered in the origin.
Using normal coordinates in N̄ × RS it is a simple exercise to observe that the principal curvatures

of Cr with respect to the inward pointing unit normal are constantly

k1 = k2 = . . . = kn = 0, kn+1 = kn+2 = . . . = ks−1 =
1
r

(just observe that the inward unit normal is −Θ, where Θ is the radial vector which parametrizes Ss−1
RS ; of

course −Θ is constant respect to the x coordinates; using normal coordinates one checks that the second
fundamental form is made of two blocks: the one corresponding to N̄ is null and the other one coincides
with the second fundamental form of Ss−1

RS as hypersurface in RS).
It follows that Cr = ∂N̄r is strongly n + k-convex in all of its points, for all 1 ≤ k ≤ n − 1; but V

is a non null n + k-varifold in N̄r with null first variation relative to N̄ and tangent to Cr at the point
(x0, y0) ∈ Cr ∩M . Fact which contradicts the maximum principle, Theorem 7.5.

As a corollary we have an example in all the codimensions in RS :
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Theorem 7.7. Let N ⊂⊂ RS be a compact subset of RS, s > 1. Then, for all 1 ≤ m ≤ s−1, N contains
no non zero m-varifold with null first variation relative to RS.

Proof. Just take N̄ := {x} in the previous example, Theorem 7.6, and observe that {x} × RS is
isometric to RS .

Otherwise argue by contradiction as in the proof of Theorem 7.6 and observe that the support of the
non zero m-varifold with null first variation is contained in a ball of RS and tangent to its boundary,
namely a sphere. Of course the sphere is strongly m-convex; it follows a contradiction with the maximum
principle, Theorem 7.5.

Remark 7.8. Recall that if the ambient n-dimensional Riemannian manifold N is compact without
boundary, then Almgren proved in [Alm] that for every 1 ≤ m < n there exists an integral m-varifold
with null first variation relative to N . Moreover, in the same setting of compact N and ∂N = ∅, Schoen
and Simon [ShSim81], using the work of Pitts [Pit81], proved that N must contain a closed, embedded
hypersurface with singular set of dimension at most n− 7. Hence, the isoperimetric inequality Theorem
4.6 fails for such N and the Theorem 1.1 is trivially true. However, as written above, there are many
interesting examples of ambient manifolds with boundary where the Theorem is non trivial.

Remark 7.9. It is known that the ambient Riemannian n-manifolds, n ≥ 3 (with or without boundary)
which contain a smooth m-dimensional submanifold, m ≥ 2, with null second fundamental form (i.e a
totally geodesic submanifold) are quite rare. It could be interesting to show the same in the context of
varifolds, that is to prove that the ambient compact Riemannian n-manifolds, n ≥ 3 (with or without
boundary) which contain a non zero (a priori non rectifiable) m-varifold, m ≥ 2, with null second fun-
damental form relative to N (see Definition 2.5) are quite rare. This fact would imply the existence of a
larger class of ambient Riemannian manifolds where the isoperimetric inequality Theorem 4.1 holds and
the main Theorem 1.3 is non trivial.
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