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abstract. The conformal Willmore functional (which is conformal invariant in general Riemannian
manifold (M, g)) is studied with a perturbative method: the Lyapunov-Schmidt reduction. Existence of
critical points is shown in ambient manifolds (R3, gε) -where gε is a metric close and asymptotic to the

euclidean one. With the same technique a non existence result is proved in general Riemannian
manifolds (M, g) of dimension three.
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1 Introduction

The aim of this paper is to study a (Riemannian) conformally invariant Willmore functional. The study
of Conformal Geometry was started by H. Weil and E. Cartan in the beginning of the XX century and
since its foundation it has been playing ever more a central role in Riemannian Geometry; its task is to
analyze how geometric quantities change under conformal transformations (i.e. diffeomorphisms which
preserves angles) and possibly find out conformal invariants (i.e. quantities which remain unchanged
under conformal transformations).

Let us first recall the definition of “standard” Willmore functional for immersions in R3 which is
a topic of great interest in the contemporary research (see for instance [BK], [KS] and [Riv]). Given
a compact orientable Riemannian surface (M̊, g̊) isometrically immersed in R3 endowed with euclidean
metric, the “standard” Willmore functional of M̊ is defined as

(1) W (M̊) =
∫

M̊

H2

4
dΣ

where H is the mean curvature and dΣ is the area form of (M̊, g̊) (we will always adopt the convention
that H is the sum of the principal curvatures: H := k1 + k2).
This functional satisfies two crucial properties:

a) W is invariant under conformal transformations of R3; that is, given Ψ : R3 → R3 a conformal
transformation, W (Ψ(M̊)) = W (M̊) (Blaschke 1929-White 1973).

b) W attains its strict global minimum on the standard spheres Sρ
p of R3 (hence they form a critical

manifold - i.e. a manifold made of critical points):

(2) W (M̊) :=
∫

M̊

H2

4
dΣ ≥ 4π; W (M̊) = 4π ⇔ M̊ = Sρ

p .
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The proofs of the last facts can be found in [Will] (pag. 271 and pag. 276-279).
Clearly the “standard” Willmore functional W can be defined in the same way for compact oriented

surfaces immersed in a general Riemannian manifold (M, g) of dimension three. Although this functional
has several interesting applications (see for instance the Introduction of [Mon]), it turns out that W is
not conformally invariant.

As proved by Bang-Yen Chen in [Chen] (see also [Wei] and for higher dimensional and codimensional
analogues [PW] ), the “correct” Willmore functional from the conformal point of view is defined as follows.
Given a compact orientable Riemannian surface (M̊, g̊) isometrically immersed in the three dimensional
Riemannian manifold (M, g), the conformal Willmore functional of M̊ is

(3) I(M̊) :=
∫

M̊

(
H2

4
−D

)
dΣ

where D := k1k2 is the product of the principal curvatures and as before H and dΣ are respectively
the mean curvature and the area form of (M̊, g̊). In the aforementioned papers it is proved that I is
conformally invariant (i.e. given Ψ : (M, g) → (M, g) a conformal transformation, I(Ψ(M̊)) = I(M̊)) so
in this sense it is the “correct” generalization of the standard Willmore functional which, as pointed out,
is conformally invariant in R3. We say that I generalizes W because if R3 is taken as ambient manifold,
the quantity D = k1k2 is nothing but the Gaussian curvature which, fixed the topology of the immersed
surface, gives a constant when integrated (by the Gauss-Bonnet Theorem) hence it does not influence
the variational properties of the functional.

A surface which makes the conformal Willmore functional I stationary with respect to normal varia-
tions is called conformal Willmore surface and it is well known ( the expression of the differential in full
generality is stated without proof in [PW] and the computations can be found in [HL], here we deal with
a particular case which will be computed in the proof of Proposition 3.9 ) that such a surface satisfies
the following PDE:

1
2
4M̊H + H

(
H2

4
−D

)
+

(λ1 − λ2)
2

[R(N̊ , e1, N̊ , e1)−R(N̊ , e2, N̊ , e2)] = 0

where 4M̊ is the Laplace Beltrami operator on M̊ , R is the Riemann tensor of the ambient manifold
(M, g) (for details see “notations and conventions”), N̊ is the inward unit normal vector, λ1 and λ2 are
the principal curvatures and e1, e2 are the normalized principal directions.

The goal of this paper is to study the existence of conformal Willmore surfaces.
The topic has been extensively studied in the last years: in [ZG] the author generalizes the conformal
Willmore functional to arbitrary dimension and codimension and studies the existence of critical points
in space forms; in [HL] the authors compute the differential of I in full generality and give examples of
conformal Willmore surfaces in the sphere and in complex space forms; other existence results in spheres
or in space forms are studied for instance in [GLW], [LU], [WG] and [MW].

The novelty of this paper is that the conformal Willmore functional is analyzed in an ambient manifold
with non constant sectional curvature: we will give existence (resp. non existence) results for curved
metrics in R3, close and asymptotic to the flat one (resp. in general Riemannian manifolds). More
precisely, taken hµν ∈ C∞

0 (R3) a smooth bilinear form with compact support (as we will remark later it
is sufficient that hµν decreases fast at infinity with its derivatives) we take as ambient manifold

(4) (R3, gε) with gε = δ + εh

where δ is the euclidean scalar product.
The test surfaces are perturbed standard spheres (resp. perturbed geodesic spheres), let us define

them. Let Sρ
p be a standard sphere of R3 parametrized by

Θ ∈ S2 7→ p + ρΘ
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and let w ∈ C4,α(S2) be a small function, then the perturbed standard sphere Sρ
p(w) is the surface

parametrized as
Θ ∈ S2 7→ p + ρ(1− w(Θ))Θ.

Analogously the perturbed geodesic sphere Sp,ρ(w) is the surface parametrized by

Θ ∈ S2 7→ Expp[ρ(1− w(Θ))Θ]

where S2 is the unit sphere of TpM , Expp is the exponential map centered at p and, as before, w is a
small function in C4,α(S2).

The main results of this paper are Theorem 1.1 and Theorem 1.2 below, which will be proved in
Subsection 4.3. Before stating them recall that given a three dimensional Riemannian manifold (M, g),
the traceless Ricci tensor S is defined as

(5) Sµν := Rµν −
1
3
gµνR

where Rµν is the Ricci tensor and R is the scalar curvature. Its squared norm at a point p is defined as
‖Sp‖2 =

∑3
µ,ν=1 Sµν(p)2 where Sµν(p) is the matrix of S at p in an orthonormal frame. Expanding in ε

the curvature tensors (see for example [And-Mal] pages 23-24) it is easy to see that the traceless Ricci
tensor corresponding to (R3, gε) (defined in (4) )is

(6) ‖Sp‖2 = ε2s̃p + o(ε2)

where s̃p is a nonnegative quadratic function in the second derivatives of hµν which does not depend on
ε. In the following Theorem, π will denote an affine plane in R3 and H1(π) will be the Sobolev space
of the L2 functions defined on π whose distributional gradient is a vector valued L2 integrable function.
H1(π) is equipped with the norm

‖f‖2H1(π) := ‖f‖2L2(π) + ‖∇f‖2L2(π) ∀f ∈ H1(π).

Now we can state the Theorems.

Theorem 1.1. Let h ∈ C∞
0 (R3) be a symmetric bilinear form with compact support and let c be such

that
c := sup{‖hµν‖H1(π) : π is an affine plane in R3, µ, ν = 1, 2, 3}.

Then there exists a constant Ac > 0 depending on c with the following property: if there exists a point p̄
such that

s̃p̄ > Ac

then, for ε small enough, there exists a perturbed standard sphere Sρε
pε

(wε) which is a critical point of the
conformal Willmore functional Iε converging to a standard sphere as ε → 0.

It is well-known (see Remark 1.5 point 3) that if a three dimensional Riemannian Manifold has non
constant sectional curvature then the traceless Ricci tensor S cannot vanish everywhere. Clearly (R3, gε)
has non constant sectional curvature (the metric is asymptotically flat but not flat) hence it cannot
happen that ‖S‖2 ≡ 0; for the following existence result we ask that this non null quantity has non
degenerate expansion in ε: we assume

(7) M := max
p∈R3

s̃p > 0.

Actually it is a maximum and not only a supremum because the metric is asymptotically flat.
The following is like a mirror Theorem to the previous existence result: in the former we bounded c

and asked s̃ to be large enough at one point, in the latter we assume that s̃ is non null at one point (at
least) and we ask c to be small enough.

3



Theorem 1.2. Let h, c be as in Theorem 1.1 and M satisfying (7). There exists δM > 0 depending on
M such that if c < δM then, for ε small enough, there exists a perturbed standard sphere Sρε

pε
(wε) which

is a critical point of the conformal Willmore functional Iε converging to a standard sphere as ε → 0.

Remark 1.3. 1. As done in [Mon], the assumption h ∈ C∞
0 (R3) in Theorem 1.1 and Theorem 1.2

can be relaxed asking that h decreases fast enough at infinity with its derivatives.

2. The conditions of Theorem 1.1

sup{‖hµν‖H1(π) : π is an affine plane in R3, µ, ν = 1, 2, 3} ≤ c

and
s̃p̄ > Ac

are compatible. In fact the former involves only the first derivatives of h while the latter the second
derivatives (see for instance [And-Mal] page 24). Of course the same fact is true for the conditions
s̃p̄ ≥ M and c < δM of Theorem 1.2.

3. If the perturbation h satisfies some symmetries (invariance under reflections or rotations with respect
to planes, lines or points of R3), it is possible to prove multiplicity results (see Subsection 5.2 of
[Mon]).

4. If h is C∞ then a standard regularity argument (see the paper of Leon Simon [SiL] pag. 303 or
the book by Morrey [MCB]) shows that a C2,α conformal Willmore surface is actually C∞. It
follows that the conformal Willmore surfaces exhibited in the previous Theorems, which are C4,α by
construction, are C∞.

5. The critical points Sρε
pε

(wε) of Iε are of (maybe degenerate) saddle type. In fact from (2) the standard
spheres Sρ

p are strict global minima in the direction of variations in C4,α(S2)⊥ = Ker[I ′′0 (Sρ
p)]⊥ ∩

C4,α(S2), it is easy to see that for small ε the surfaces Sρε
pε

(wε) are still minima in the C4,α(S2)⊥

direction; but, since they are obtained as maximum points of the reduced functional, in the direction
of Ker[I ′′0 (Sρ

p)] they are (maybe degenerate) maximum points.

As we said before, the non existence result concerns perturbed geodesic spheres of small radius. Let
us state it:

Theorem 1.4. Let (M, g) be a Riemannian manifold. Assume that the traceless Ricci tensor of M at
the point p̄ is not null:

‖Sp̄‖ 6= 0.

Then there exist ρ0 > 0 and r > 0 such that for radius ρ < ρ0 and perturbation w ∈ C4,α(S2) with
‖w‖C4,α(S2) < r, the surfaces Sp̄,ρ(w) are not critical points of the conformal Willmore functional I.

Remark 1.5. 1. Observe the difference with the flat case: thanks to (2), in R3 the spheres of any
radius are critical points of the conformal Willmore functional I (has we noticed, the term D
does not influence the differential properties of the functional by Gauss-Bonnet Theorem); on the
contrary, in the case of ambient metric with non null traceless Ricci curvature we have just shown
that the geodesic spheres of small radius are not critical points.

2. The condition ‖Sp‖ 6= 0 is generic.

3. If (M, g) has not constant sectional curvature then there exists at least one point p̄ such that ‖Sp̄‖ 6=
0. In fact if ‖S‖ ≡ 0 then (M, g) is Einstein, but the Einstein manifolds of dimension three have
constant sectional curvature (for example see [Pet] pages 38-41).

The abstract method employed throughout the paper is similar to the one used in the previous article
[Mon]: the Lyapunov-Schmidt reduction (for more details about the abstract method see Section 2).
The main difficulty here is that, as we will see, the expansions are degenerate, and require more precision.
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We discuss next the structure of the article, but first let us explain (informally) the main idea (for
the details see Subsection 3.3 and Subsection 4.1).
As we remarked, (2) implies that the Willmore functional in the euclidean space R3 possesses a critical
manifold Z made of standard spheres Sρ

p . The tangent space to Z at Sρ
p is composed of constant and

affine functions on Sρ
p so, with a pull back via the parametrization, on S2. The second derivative of I0

at Sρ
p is

I ′′0 (Sρ
p)[w] =

1
2
4S2(4S2 + 2)w

(for explanations and details see Remark 4.1) which is a Fredholm operator of index zero and whose
Kernel is made of the constant and affine functions; exactly the tangent space to Z.
So, considered C4,α(S2) as a subspace of L2(S2) and called

C4,α(S2)⊥ := C4,α(S2) ∩Ker[4S2(4S2 + 2)]⊥,

it follows that I ′′0 |C4,α(S2)⊥ is invertible on its image and one can apply the Lyapunov-Schmidt reduction.
Thanks to this reduction, the critical points of Iε in a neighbourhood of Z are exactly the stationary
points of a function (called reduced functional) Φε : Z → R of finitely many variables (we remark that in
a neighbourhood of Z the condition is necessary and sufficient for the existence of critical points of Iε).

In order to study the function Φε, we will compute explicit formulas and estimates of the conformal
Willmore functional. More precisely for small radius ρ we will give an expansion of the functional on
small perturbed geodesic spheres, for large radius we will estimate the functional on perturbed standard
spheres and we will link the geodesic and standard spheres in a smooth way using a cut off function (for
details see Subsection 4.1).

The paper is organized as follows: in Section 3 we will start in the most general setting, the conformal
Willmore functional for small perturbed geodesic spheres in ambient manifold (M, g). Even in this case
the reduction method can be performed, using the small radius ρ as perturbation parameter (see Lemma
3.10).
Employing the geometric expansions of Subsection 3.1 and the expression of the constrained w given
in Subsection 3.3, in Subsection 3.4 we will compute the expansion of the reduced functional on small
perturbed geodesic spheres of (M, g). Explicitly, in Proposition 3.11, we will get

(8) Φ(p, ρ) =
π

5
‖Sp‖2ρ4 + Op(ρ5)

where Φ(., .) is the reduced functional and, as before, Sp is the traceless Ricci tensor evaluated at p.
Using this formula we will show that if ‖Sp̄‖ 6= 0 then Φ(p̄, .) is strictly increasing for small radius. The
non existence result will follow from the necessary condition.

Section 4 will be devoted to the conformal Willmore functional in ambient manifold (R3, gε). In
Subsection 4.1 we will treat the applicability of the abstract method and in the last Subsection 4.3 we
will bound the reduced functional Φε for large radius ρ using the computations of Subsection 4.2. We
remark that the expansion of Φε is degenerate in ε (i.e. the first term in the expansion is null and
Φε = O(ε2)), clearly this feature complicates the problem. Using the estimates on the reduced functional
Φε for large radius and the expansions for small radius (since for small radius we take geodesic spheres
it will be enough to specialize (8) in the setting (R3, gε)) we will force Φε to have a global maximum,
sufficient condition to conclude with the existence results.

Notations and conventions

1) R+ denotes the set of strictly positive real numbers.

2) As mentioned in the Introduction, the perturbed spheres will play a central role throughout this
paper.

· First, let us define the perturbed standard sphere Sρ
p(w) ⊂ R3 we will use to prove the existence

results. We denote with S2 the standard unit sphere in the euclidean 3-dimensional space , Θ ∈ S2 is the
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radial versor with components Θµ parametrized by the polar coordinates 0 < θ1 < π and 0 < θ2 < 2π
chosen in order to satisfy  Θ1 = sin θ1 cos θ2

Θ2 = sin θ1 sin θ2

Θ3 = cos θ1.

We call Θi the coordinate vector fields on S2

Θ1 :=
∂Θ
∂θ1

, Θ2 :=
∂Θ
∂θ2

and θ̄i or Θ̄i the corresponding normalized ones

θ̄1 = Θ̄1 :=
Θ1

‖Θ1‖
, θ̄2 = Θ̄2 :=

Θ2

‖Θ2‖
.

The standard sphere in R3 with center p and radius ρ > 0 is denoted by Sρ
p ; we parametrize it as

(θ1, θ2) 7→ p + ρΘ(θ1, θ2) and call θi the coordinate vector fields

θ1 := ρ
∂Θ
∂θ1

, θ2 := ρ
∂Θ
∂θ2

.

The perturbed spheres will be normal graphs on standard spheres by a function w which belongs to a
suitable function space. Let us introduce the function space which has been chosen by technical reasons
(to apply Schauder estimates in Lemma 4.3).
Denote C4,α(S2) (or simply C4,α) the set of the C4 functions on S2 whose fourth derivatives, with respect
to the tangent vector fields, are α-Hölder (0 < α < 1). The Laplace-Beltrami operator on S2 is denoted
by 4S2 or, if there is no confusion, as 4. The fourth order elliptic operator 4(4+2) induces a splitting
of L2(S2):

L2(S2) = Ker[4(4+ 2)]⊕Ker[4(4+ 2)]⊥

(the splitting makes sense because the kernel is finite dimensional, so it is closed).
If we consider C4,α(S2) as a subspace of L2(S2), we can define

C4,α(S2)⊥ := C4,α(S2) ∩Ker[4(4+ 2)]⊥.

Of course C4,α(S2)⊥ is a Banach space with respect to the C4,α norm; it is the space from which we will
get the perturbations w. If there is no confusion C4,α(S2)⊥ will be called simply C4,α⊥.
Now we can define the perturbed spheres we will use to prove existence of critical points: fix ρ > 0 and
a small C4,α⊥ function w; the perturbed sphere Sρ

p(w) is the surface parametrized by

Θ ∈ S2 7→ p + ρ
(
1− w(Θ)

)
Θ.

· Now let us define the perturbed geodesic spheres Sp,ρ(w) in the three dimensional Riemannian
manifold (M, g); we will use them to prove the non-existence result.
Once a point p ∈ M is fixed we can consider the exponential map Expp with center p. For ρ > 0 small
enough, the sphere ρS2 ⊂ TpM is contained in the radius of injectivity of the exponential. We call Sp,ρ

the geodesic sphere of center p and radius ρ. This hypersurface can be parametrized by

Θ ∈ S2 ⊂ TpM 7→ Expp[ρΘ].

Analogously to the previous case, fix p ∈ M , ρ > 0 and a small C4,α(S2) function w; the perturbed
geodesic sphere Sp,ρ(w) is the surface parametrized by

Θ ∈ S2 7→ Expp[ρ
(
1− w(Θ)

)
Θ].

The tangent vector fields on Sp,ρ(w) induced by the canonical polar coordinates on S2 are denoted by
Zi.
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3) Let (M, g) be a 3-dimensional Riemannian manifold.
· First we make the following convention: the Greek index letters, such as µ, ν, ι, . . . , range from 1 to

3 while the Latin index letters, such as i, j, k, . . . , will run from 1 to 2.
· About the Riemann curvature tensor we adopt the convention of [Will]: denoting X(M) the set of

the vector fields on M , ∀X, Y, Z ∈ X(M)

R(X, Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

R(X, Y, Z,W ) := g(R(Z,W )Y,X);

chosen in p an orthonormal frame Eµ, the Ricci curvature tensor is

Ricp(v1, v2) :=
3∑

µ=1

R(Eµ, v1, Eµ, v2) =
3∑
1

g(Rp(Eµ, v2)v1, Eµ)

= −
3∑

µ=1

g(Rp(v2, Eµ)v1, Eµ) ∀v1, v2 ∈ TpM.(9)

· In order to keep formulas not too long, we introduce the following notation:

R(0i0j) := g(Rp(Θ,Θi)Θ,Θj)
∇0R(0i0j) := g(∇ΘRp(Θ,Θi)Θ,Θj)
∇00R(0i0j) := g(∇Θ∇ΘRp(Θ,Θi)Θ,Θj)

R(0i0µ) := g(Rp(Θ,Θi)Θ, Eµ).

In the following ambiguous cases we will mean:

R(0101) := g(Rp(Θ,Θ1)Θ,Θ1)
R(02̄02̄) := g(Rp(Θ, Θ̄2)Θ, Θ̄2)
R(0102̄) := g(Rp(Θ,Θ1)Θ, Θ̄2).

·Recall the definitions of the Hessian and the Laplace-Beltrami operator on a function w:

Hess(w)µν := ∇µ∇νw

4 := gµν∇µ∇νw.

4) Let (M̊, g̊) ↪→ (M, g) be an isometrically immersed surface. Recall the notion of second fundamental
form h̊: fix a point p and an orthonormal base Z1, Z2 of TpM̊ ; the (inward) normal unit vector is denoted
as N̊ . By the Weingarten equation h̊ij = −g(∇ZiN̊ , Zj).
Call k1 and k2 the principal curvatures (the eigenvalues of the second fundamental form with respect to
the first fundamental form of M̊ , i.e. the roots of det(̊hij − kg̊ij) = 0). We adopt the convention that the
mean curvature is defined as H := k1 + k2.
The product of the principal curvatures will be denoted with D:

(10) D := k1k2 =
det(̊h)
det(̊g)

.

5) · Following the notation of [PX], given a ∈ N, any expression of the form L
(a)
p (w) denotes a linear

combination of the function w together with its derivatives with respect to the tangent vector fields Θi

up to order a. The coefficients of L
(a)
p might depend on ρ and p but, for all k ∈ N, there exists a constant

C > 0 independent on ρ ∈ (0, 1) and p ∈ M such that

‖L(a)
p (w)‖Ck,α(S2) ≤ C‖w‖Ck+a,α(S2).
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· Similarly, given b ∈ N, any expression of the form Q
(b)(a)
p (w) denotes a nonlinear operator in the

function w together with its derivatives with respect to the tangent vector fields Θi up to order a such
that, for all p ∈ M , Q

(b)(a)
p (0) = 0. The coefficients of the Taylor expansion of Q

(b)(a)
p (w) in powers of

w and its partial derivatives might depend on ρ and p but, for all k ∈ N, there exists a constant C > 0
independent on ρ ∈ (0, 1) and p ∈ M such that

(11) ‖Q(b)(a)
p (w2)−Q(b)(a)

p (w1)‖Ck,α(S2) ≤ c
(
‖w2‖Ck+a,α(S2) +‖w1‖Ck+a,α(S2)

)b−1×‖w2−w1‖Ck+a,α(S2),

provided ‖wl‖Ca(S2) ≤ 1, l = 1, 2. If the numbers a or b are not specified, we intend that their value is 2.
· We also agree that any term denoted by Op(ρd) is a smooth function on S2 that might depend on

p but which is bounded by a constant (independent on p) times ρd in Ck topology, for all k ∈ N .

6) Large positive constants are always denoted by C, and the value of C is allowed to vary from formula
to formula and also within the same line. When we want to stress the dependence of the constants on
some parameter (or parameters), we add subscripts to C, as Cδ, etc.. Also constants with subscripts are
allowed to vary.
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2 A Preliminary result: the Lyapunov-Schmidt reduction

The technique used throughout this paper relies on an abstract perturbation method which first appeared
in [AB1], [AB2] and is extensively treated with proofs and examples in [AM]. Let us briefly summarize
it. Actually we present the abstract method in a form which permits to deal with degenerate expansions
(as the ones we will have to handle).

Given an Hilbert space H, let Iε : H → R be a C2 functional of the form

Iε(u) = I0(u) + εG1(u) + ε2G2(u) + o(ε2),

where I0 ∈ C2(H, R) plays the role of the unperturbed functional and G1, G2 ∈ C2(H, R) are the
perturbations.

We first assume that there exists a finite dimensional smooth manifold Z made of critical points of
I0: I ′0(z) = 0 for all z ∈ Z. The set Z will be called critical manifold (of I0). The critical manifold is
supposed to satisfy the following non degeneracy conditions:

(ND) for all z ∈ Z, TzZ = Ker[I ′′0 (z)],
(Fr) for all z ∈ Z, I ′′0 (z) is a Fredholm operator of index zero.

Under these assumptions it is known that near Z there exists a perturbed manifold Zε such that the
critical points of Iε constrained on Zε give rise to stationary points of Iε.
More precisely, the key result is the following Theorem.

Theorem 2.1. Suppose I0 possesses a non degenerate (satisfying (ND) and (Fr)) critical manifold Z of
dimension d.
Given a compact subset Zc of Z, there exists ε0 > 0 such that for all |ε| < ε0 there is a smooth function

wε(z) : Zc → H

such that
(i) for ε = 0 it results wε(z) = 0, ∀z ∈ Zc;
(ii) wε(z) is orthogonal to TzZ, ∀z ∈ Zc;
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(iii) the manifold
Zε = {z + wε(z) : z ∈ Zc}

is a natural constraint for I ′ε. Namely, denoting

Φε(z) = Iε(z + wε(z)) : Zc → R

the constriction of Iε to Zε, if zε is a critical point of Φε then uε = zε + wε(zε) is a critical point of Iε.

Thanks to this fundamental tool, in order to find critical points of Iε, we can reduce ourselves to study
Φε which is a function of finitely many variables.

If we are slightly more accurate, it can be shown that the function wε(z) is of order O(ε) as ε → 0
uniformly in z varying in the compact Zc. In our application, the expansion is degenerate in the sense
that

G1(z) = 0 ∀z ∈ Z.

Using the previous facts, by a Taylor expansion it is easy to see that (we will prove it in full detail in
Lemma 4.7)

Φε(z) = ε2
[
G2(z)− 1

2
(
G′

1(z)|I ′′0 (z)−1G′
1(z)

)]
+ o(ε2).

In Section 4 we will give sense to this formula, which will be crucial for the estimates involved in the
existence result.

3 The conformal Willmore functional on perturbed geodesic
spheres Sp,ρ(w) of a general Riemannian Manifold (M, g)

3.1 Geometric expansions

In this subsection we give accurate expansions of the geometric quantities appearing in the conformal
Willmore functional. First we recall and refine the well-known expansions of the first and second fun-
damental form and the mean curvature for the geodesic perturbed spheres Sp,ρ(w) introduced in the
previous “notations and conventions”. Recall that Θi are the coordinate vector fields on S2 (induced by
polar coordinates) and Zi are the corresponding coordinate vector fields on Sp,ρ(w). The derivatives of
w with respect to Θi are denoted by wi.

Let g̊ denote the first fundamental form on Sp,ρ(w) induced by the immersion in (M, g). The next
Lemma, whose proof can be found in [PX] (Lemma 2.1), gives an expansion of the components g̊ij :=
gp(Zi, Zj):

Lemma 3.1. The first fundamental form on Sp,ρ(w) has the following expansion:

(1− w)−2ρ−2g̊ij = g(Θi,Θj) + (1− w)−2wiwj +
1
3
R(0i0j)ρ2(1− w)2 +

1
6
∇0R(0i0j)ρ3(1− w)3

+
[ 1
20
∇00R(0i0j) +

2
45

R(0i0µ)R(0j0µ)
]
ρ4(1− w)4 + Op(ρ5) + ρ5Lp(w) + ρ5Q(2)

p (w)

where all curvature terms and scalar products are evaluated at p (since we are in normal coordinates, at
p the metric is euclidean).

Let h̊ denote the second fundamental form on Sp,ρ(w) induced by the immersion in (M, g) and N̊ the
inward normal unit vector to Sp,ρ(w); by the Weingarten equation h̊ij = −g(∇Zi

N̊ , Zj).

Lemma 3.2. The second fundamental form on Sp,ρ(w) has the following expansion:

h̊ij = ρ(1− w)g(Θi,Θj) + ρ(HessS2w)ij +
2
3
R(0i0j)ρ3(1− w)3 +

5
12
∇0R(0i0j)ρ4(1− w)4

+
[ 3
20
∇00Rp(0i0j) +

2
15

R(0i0µ)R(0j0µ)
]
ρ5(1− w)5 − ρBk

ijwk + Op(ρ6) + ρ5Lp(w) + ρ2Q(2)
p (w)

9



where Bk
ij are functions on S2 of the form Bk

ij = O(ρ2) + Lp(w) + Q
(2)
p (w) and, as usual, all curvature

terms and scalar products are evaluated at p.

Proof. In [PX] the authors consider ˚̃N such that the normal unit vector N̊ has the form N̊ = ˚̃N(1 −
ρ2g̊ijwiwj)−1/2. They set

˚̃
hij = −g(∇Zi

˚̃N,Zj)

and they derive the following formula

˚̃
hij =

1
2(1− w)

∂ρg̊ −
1

1− w
ρdw ⊗ dw + ρHessg̊w.

Using Lemma 3.1 the first summand is:

1
2(1− w)

∂ρg̊ = g(Θi,Θj)ρ(1− w) +
ρ

1− w
wiwj +

2
3
R(0i0j)ρ3(1− w)3 +

5
12
∇0R(0i0j)ρ4(1− w)4

+
3
20

[
∇00R(0i0j) +

2
15

R(0i0µ)R(0j0µ)
]
ρ5(1− w)5 + Op(ρ6) + ρ6Lp(w) + ρ6Q(2)

p (w)

The third summand is:

ρ(Hessg̊w)ij = ρ(wij − Γ̊k
ijwk).

With a direct computation it is easy to check that

(12) Γ̊k
ij = Γk

ij + Bk
ij

where Γk
ij are the Christoffel symbols of S2 in polar coordinates and Bk

ij are functions on S2 of the
form

Bk
ij = O(ρ2) + Lp(w) + Q(2)

p (w).

Hence
ρ(Hessg̊w)ij = ρ(HessS2w)ij − ρBk

ijwk.

Observing that the second summand simplifies with an adding of the first summand and that

h̊ij = −g(∇Zi
N̊ , Zj) = −g(∇Zi

˚̃N(1− ρ2g̊ijwiwj)−1/2, Zj) = ˚̃
hij + ρ2Q(2)

p (w)

we get the desired formula.

Recall that the mean curvature H is the trace of h̊ with respect to the metric g̊: H = h̊ij g̊
ij . Collecting

the two previous Lemmas we obtain the following

Lemma 3.3. The mean curvature of the hypersurface Sp,ρ(w) can be expanded as

H =
2
ρ

+
1
ρ
(2 +4S2)w +

1
ρ

[
2w(w +4S2w)− gij

S2wiwj

]
− 1

ρ
gij

S2B
k
ijwk

−1
3
[
gil

S2R(0l0k)gkj
S2(HessS2w)ij + Ricp(Θ,Θ)(1− w)

]
ρ +

1
4
gij

S2∇0R(0i0j)ρ2(1− w)2

+
[ 1
10

gij
S2∇00R(0i0j) +

4
45

gij
S2R(0i0µ)R(0j0µ)− 1

9
gil

S2R(0l0k)gkn
S2 R(0n0i)

]
ρ3(1− w)3

+Op(ρ4) + ρ2Lp(w) + Q(2)
p (w) +

1
ρ
Lp(w)Q(2)

p (w)

where Ricp is the Ricci tensor computed at p.
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Proof. First let us find an expansion of g̊ij . Given an invertible matrix A,

(A+Bρ2+Cρ3+Dρ4)−1 = A−1−A−1BA−1ρ2−A−1CA−1ρ3−A−1DA−1ρ4+A−1BA−1BA−1ρ4+O(ρ5)

so we get

g̊ij =
1

ρ2(1− w)2
{

gij
S2 − gil

S2(1− w)−2wlwkgkj
S2 −

1
3
gil

S2R(0l0k)gkj
S2ρ

2(1− w)2 − 1
6
gil

S2∇0R(0l0k)gkj
S2ρ

3(1− w)3

−gil
S2

[ 1
20
∇00R(0l0k) +

2
45

R(0l0µ)R(0k0µ)
]
gkj

S2ρ
4(1− w)4 +

1
9
gil

S2R(0l0k)gkn
S2 R(0n0q)gqj

S2ρ
4(1− w)4

}
+Op(ρ3) + ρ3Lp(w) + ρ2Q(2)

p (w) +
1
ρ2

(Dw)4.

(13)

Where (Dw)4 is an homogeneous polynomial in the first derivatives wi of order four. Putting together
(13) and Lemma 3.2 it is easy to evaluate H = h̊ij g̊

ij just using the following observations:

•ρ̊gij(HessS2w)ij =
(1
ρ
(1 + 2w)gij

S2 −
ρ

3
gil

S2R(0l0k)gkj
S2 +

1
ρ
Q(w) + O(ρ2) + ρL(w)

)
(HessS2w)ij

=
1
ρ
(1 + 2w)4S2w − ρ

3
gil

S2R(0l0k)gkj
S2(HessS2w)ij + ρ2L(w) + ρQ(w) +

1
ρ
L(w)Q(w)

• with a Taylor expansion
2

ρ(1− w)
=

2(1 + w + w2)
ρ

+
1
ρ
wQ(w),

1
ρ(1− w)3

gij
S2wiwj =

1
ρ
gij

S2wiwj +
1
ρ
wQ(w)

• finally, recalling our notations, (9) and that {Θ, Θ1
‖Θ1‖ ,

Θ2
‖Θ2‖} form an orthonormal base of TpM

(14) g(Θi,Θj)gil
S2R(0l0k)gkj

S2 = δl
jg(Rp(Θ,Θl)Θ,Θk)gkj

S2 = g(Rp(Θ,Θi)Θ,Θj)g
ij
S2 = −Ricp(Θ,Θ).

Now we compute H2:

Lemma 3.4. The square of the mean curvature H2 on Sp,ρ(w) can be expanded as

H2 =
4
ρ2

+
4
ρ2

(2 +4S2)w +
1
ρ2

(12w2 + 12w4S2 w + (4S2w)2 − 4gij
S2wiwj)−

4
ρ2

gij
S2B

k
ijwk

−4
3
gil

S2R(0l0k)gkj
S2(HessS2w)ij −

2
3
Ricp(Θ,Θ)(2 +4S2w) + [gij

S2∇0R(0i0j)]ρ

+
[2
5
gij

S2∇00R(0i0j) +
16
45

gij
S2R(0i0µ)R(0j0µ)− 4

9
gil

S2R(0l0k)gkn
S2 R(0n0i) +

1
9
Ricp(Θ,Θ)Ricp(Θ,Θ)

]
ρ2

+Op(ρ3) + ρLp(w) +
1
ρ
Q(2)

p (w) +
1
ρ2

Lp(w)Q(2)
p (w).

Proof. Just compute the square of H expressed as in Lemma 3.3.

Lemma 3.5. The determinant of the first fundamental form of Sp,ρ(w) can be expanded as

det[̊g] = ‖Θ2‖2ρ4
{

(1− w)4 + (gij
S2wiwj)−

1
3
Ricp(Θ,Θ)ρ2(1− w)6 +

1
6
gij

S2∇0R(0i0j)ρ3(1− w)7

+
[ 1
20

gij
S2∇00R(0i0j) +

2
45

gij
S2R(0i0µ)R(0j0µ) +

1
9
R(0101)R(02̄02̄)−R(0102̄)2

]
ρ4(1− w)8

}
+Op(ρ9) + ρ9Lp(w) + ρ6Q(2)

p (w) + ρ4Lp(w)Q(2)
p (w)

where recall that R(0101) = g(Rp(Θ,Θ1)Θ,Θ1), R(02̄02̄) = g(Rp(Θ, Θ̄2)Θ, Θ̄2), R(0102̄) = −g(Rp(Θ,Θ1)Θ, Θ̄2)
and Θ̄2 is Θ2 normalized: Θ̄2 := Θ2

|Θ2| .
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Proof. Just compute det[̊g] using Lemma 3.1, formula (14) and observing that gij
S2 = diag(1, 1/‖Θ2‖2)

Lemma 3.6. The determinant of the second fundamental form of Sp,ρ(w) has the following expansion:

det[̊h] = ρ2(1− w)2‖Θ2‖2 + ρ2‖Θ2‖24S2w(1− w) + ρ2
[
(HessS2w)11(HessS2w)22 − (HessS2w)212

]
+

2
3
ρ4
[
R(0101)(HessS2w)22 + R(0202)(HessS2w)11 − 2R(0102)(HessS2w)12 −Ricp(Θ,Θ)(1− w)4‖Θ2‖2

]
+‖Θ2‖2

[ 5
12

gij
S2∇0R(0i0j)ρ5(1− w)5 +

3
20

gij
S2∇00R(0i0j)ρ6(1− w)6 +

2
15

gij
S2R(0i0µ)R(0j0µ)ρ6(1− w)6

]
+

4
9
ρ6(1− w)6‖Θ2‖2

[
R(0101)R(02̄02̄)−R(0102̄)2

]
− ‖Θ2‖2ρ2gij

S2B
k
ijwk + Op(ρ7) + ρ5Lp(w) + ρ3Q(2)

p (w).

Proof. Just compute the determinant of h̊ij expressed as in Lemma 3.2 using the same tricks of the
previous Lemmas.

Lemma 3.7. The product of the principal curvatures of Sp,ρ(w)

D = k1k2 =
det(̊h)
det(̊g)

has the following expansion:

D =
1
ρ2

(1 + 2w +4S2w + 3w4S2w + 3w2)− 1
ρ2

gij
S2wiwj +

1
‖Θ2‖2ρ2

[
(HessS2w)11(HessS2w)22 − (HessS2w)212

]
+

2
3‖Θ2‖2

[
R(0101)(HessS2w)22 + R(0202)(HessS2w)11 − 2R(0102)(HessS2w)12

]
+

1
3
Ricp(Θ,Θ)(4S2w − 1) +

1
4
gij

S2∇0R(0i0j)ρ(1− w)− 1
ρ2

gij
S2B

k
ijwk

+
[ 1
10

gij
S2∇00R(0i0j) +

4
45

gij
S2R(0i0µ)R(0j0µ) +

1
3
[R(0101)R(02̄02̄)−R(0102̄)2]− 1

9
Ricp(Θ,Θ)2

]
ρ2(1− w)2

+Op(ρ3) + ρLp(w) +
1
ρ
Q(2)

p (w) +
1
ρ2

Lp(w)Q(2)
p (w).

Proof. Recalling the expansion 1
1+x = 1− x + x2 + O(x3) and Lemma 3.5 we get

1
det[̊g]

=
1

‖Θ2‖2(1− w)4ρ4
{1− (gij

S2wiwj) +
1
3
Ricp(Θ,Θ)ρ2(1− w)2 − 1

6
gij

S2∇0R(0i0j)ρ3(1− w)3

−
[ 1
20

gij
S2∇00R(0i0j) +

2
45

gij
S2R(0i0µ)R(0j0µ) +

1
9
R(0101)R(02̄02̄)−R(0102̄)2

]
ρ4(1− w)8

+
1
9
Ricp(Θ,Θ)2ρ4(1− w)4 + Op(ρ5) + ρ5Lp(w) + ρ2Q(2)

p (w) + Lp(w)Q(2)
p (w)}.

Gathering together this formula and the expansion of det(̊h) of Lemma 3.6 we can conclude.

The quantity we have to integrate is H2

4 − D; collecting the previous Lemmas we finally get the
following

Proposition 3.8. The integrand of the conformal Willmore functional has the following expansion:

H2

4
−D =

1
ρ2

[1
4
(4S2w)2 − 1

‖Θ2‖2
(HessS2w)11(HessS2w)22 +

1
‖Θ2‖2

(HessS2w)212
]

+
1

3‖Θ2‖2
[
2R(0102)(HessS2w)12 −R(0101)(HessS2w)22 −R(02̄02̄)(HessS2w)11

]
+

1
9
ρ2
[1
4
Ricp(Θ,Θ)2 −R(0101)R(02̄02̄) + R(0102̄)2

]
− 1

6
Ricp(Θ,Θ)4S2 w

+Op(ρ3) + ρLp(w) +
1
ρ
Q(2)

p (w) +
1
ρ2

Lp(w)Q(2)
p (w)
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Proof. Putting together the formulas of Lemma 3.4 and Lemma 3.7, we get

H2

4
−D =

1
4ρ2

(4S2w)2 +
1

‖Θ2‖2ρ2

[
(HessS2w)212 − (HessS2w)11(HessS2w)22

]
−1

3
gil

S2R(0l0k)gkj
Sm(HessS2w)ij −

1
2
Ricp(Θ,Θ)4S2 w

+
2

3‖Θ2‖2
[
2R(0102)(HessS2w)12 −R(0101)(HessS2w)22 −R(0202)(HessS2w)11

]
−1

9
ρ2
[
gik

S2g
jl
S2R(0i0l)R(0j0k)

]
− 1

3
ρ2
[
R(0101)R(02̄02̄)−R(0102̄)2

]
+

5
36

Ricp(Θ,Θ)2ρ2 + Op(ρ3) + ρLp(w) +
1
ρ
Q(2)

p (w) +
1
ρ2

Lp(w)Q(2)
p (w)

Let us simplify the second and the third lines; they can be rewritten as

−1
3
R(0101)(HessS2w)11 −

1
3
R(02̄02̄)

1
‖Θ2‖2

(HessS2w)22 +
2

3‖Θ2‖2
R(0102)(HessS2w)12

−2
3
R(0101)

1
‖Θ2‖2

(HessS2w)22 −
2
3
R(02̄02̄)(HessS2w)11 −

1
2
Ricp(Θ,Θ)4S2 w

=
2

3‖Θ2‖2
R(0102)(HessS2w)12 +

1
3
Ricp(Θ,Θ)4S2 w

−1
3
R(0101)

1
‖Θ2‖2

(HessS2w)22 −
1
3
R(02̄02̄)(HessS2w)11 −

1
2
Ricp(Θ,Θ)4S2 w

= −1
6
Ricp(Θ,Θ)4S2 w +

1
3‖Θ2‖2

[
2R(0102)(HessS2w)12 −R(0101)(HessS2w)22 −R(02̄02̄)(HessS2w)11

]
Finally we have to simplify the forth and the fifth lines; they can be rewritten as

{
− 1

9
R(0101)2 − 1

9
R(02̄02̄)2 − 2

9
R(0102̄)2 +

5
36

Ricp(Θ,Θ)2 − 1
3
R(0101)R(02̄02̄) +

1
3
R(0102̄)2

}
ρ2

=
{
− 1

9
[R(0101) + R(02̄02̄)]2 − 1

9
R(0101)R(02̄02̄) +

1
9
R(0102̄)2 +

5
36

Ricp(Θ,Θ)2
}

ρ2

=
{ 1

36
Ricp(Θ,Θ)2 − 1

9
R(0101)R(02̄02̄) +

1
9
R(0102̄)2

}
ρ2

where, in the last equality, we used the usual identity R(0101) + R(02̄02̄) = −Ricp(Θ,Θ).
Collecting the formulas we get the desired expansion.

3.2 The differential of the conformal Willmore functional on perturbed geo-
desic spheres Sp,ρ(w)

Proposition 3.9. On the perturbed geodesic sphere Sp,ρ(w) the differential of the conformal Willmore
functional has the following form:

I ′(Sp,ρ(w)) =
1

2ρ3
4S2(4S2 + 2)w − 1

6ρ
4S2Ricp(Θ,Θ) + Op(ρ0) +

1
ρ2

L(4)
p (w) +

1
ρ3

Q(2)(4)
p (w)

Proof. Let us recall the general expression of the differential of the conformal Willmore functional com-
puted in [HL] (Theorem 3.1 plus an easy computation).

Given a compact Riemannian surface (M̊, g̊) isometrically immersed in the three dimensional Rie-
mannian manifold (M, g) and called N̊ the inward normal unit vector, the differential of the conformal
Willmore functional

I(M̊) =
∫

M̊

(
H2

4
−D

)
dΣ
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is

I ′(M̊) =
1
2
4M̊H + H

(
H2

4
−D

)
+
∑
ij

R(N̊ , ei, N̊ , ej )̊hij −
1
2

∑
i

HR(N̊ , ei, N̊ , ei)

where e1, e2 is a local orthonormal frame of TpM̊ which diagonalizes the second fundamental form h̊ij .
Since e1, e2 are principal directions we get∑

ij

R(N̊ , ei, N̊ , ej )̊hij −
1
2

∑
i

HR(N̊ , ei, N̊ , ei) =
(λ1 − λ2)

2
[R(N̊ , e1, N̊ , e1)−R(N̊ , e2, N̊ , e2)]

where λ1, λ2 are the principal curvatures. So in this frame the differential is

(15) I ′(M̊) =
1
2
4M̊H + H

(
H2

4
−D

)
+

(λ1 − λ2)
2

[R(N̊ , e1, N̊ , e1)−R(N̊ , e2, N̊ , e2)].

Now we want to compute the differential on the perturbed geodesic sphere Sp,ρ(w).
Recall that

4g̊u = g̊ij
(
uij − Γ̊k

ijuk

)
=

1
ρ2

gij
S2

(
uij − Γk

ijuk

)
+ O(ρ0)L(u) +

1
ρ2

Lp(w)L(u) +
1
ρ2

Q(2)
p (w)L(u)

=
1
ρ2
4S2 u + O(ρ0)L(u) +

1
ρ2

Lp(w)L(u) +
1
ρ2

Q(2)
p (w)L(u)

where L(u) is a linear function depending on u and on its derivatives up to order two. From the above
computation of H we have

H =
2
ρ

+
1
ρ
(2 +4S2)w − 1

3
Ricp(Θ,Θ)ρ + O(ρ2) + ρLp(w) +

1
ρ
Q(2)

p (w),

hence

4g̊H =
1
ρ3
4S2(4S2 + 2)w − 1

3ρ
4S2Ricp(Θ,Θ) + Op(ρ0) +

1
ρ2

L(4)
p (w) +

1
ρ3

Q(2)(4)
p (w).

Now let us show that the other summands are negligible.
First we find an expansion for the principal directions λ1 and λ2. From the definitions, they are the roots
of the polynomial equation

x2 −Hx + D = 0

so

λ1,2 =
H

2
±
√

H2 − 4D

2
=

1
ρ

+ O(ρ) +
1
ρ
Lp(w) +

1
ρ
Q(2)

p (w)

and the third summand is negligible:

(λ1 − λ2)[R(N̊ , e1, N̊ , e1)−R(N̊ , e2, N̊ , e2)] = O(ρ) +
1
ρ
Lp(w) +

1
ρ
Q(2)

p (w).

From the above computation of H2

4 −D, we have

H2

4
−D = Op(ρ2) + Lp(w) +

1
ρ2

Q(2)
p (w)

hence we get

H

(
H2

4
−D

)
= Op(ρ) +

1
ρ
Lp(w) +

1
ρ3

Q(2)
p (w).

Therefore also this term is negligible and we can conclude.
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3.3 The finite dimensional reduction

NOTATION. In this subsection, the functional space will be C4,α(S2)⊥: the perturbation w will be an
element of C4,α(S2)⊥ and B(0, r) will denote the ball of center 0 and radius r in C4,α(S2)⊥.

Lemma 3.10. Fixed a compact subset Zc ⊆ M, there exist ρ0 > 0, r > 0 and a map w(.,.) : Zc× [0, ρ0] →
C4,α(S2)⊥, (p, ρ) 7→ wp,ρ such that if Sp,ρ(w) is a critical point of the conformal Willmore functional I
with (p, ρ, w) ∈ Zc × [0, ρ0]×B(0, r) then w = wp,ρ.
Moreover the map w(.,.) satisfies the following properties:
(i) the map (p, ρ) 7→ wp,ρ is C1,
(ii) ‖wp,ρ‖C4,α(S2) = O(ρ2) as ρ → 0 uniformly for p ∈ Zc,
(iii) ‖ ∂

∂ρwp,ρ‖L2(S2) = O(ρ) as ρ → 0 uniformly for p ∈ Zc,
(iv) we have the following explicit expansion of wp,ρ:

(16) wp,ρ = − 1
12

ρ2Ricp(Θ,Θ) +
1
36

ρ2R(p) + O(ρ3)

where the remainder O(ρ3) has to be intended in C4,α(S2) norm.

Proof. For the proof of (i), (ii) and (iii) we refer to Lemma 4.4 of [Mon], here we only give a sketch of
the idea. Fixed a compact subset Zc ⊆ M and p ∈ Zc, if

I ′(Sp,ρ(w)) = 0 (equality in L2(S2)),

then, setting P : L2(S2) → Ker[4S2(4S2 + 2)]⊥ the orthogonal projection, a fortiori we have

PI ′(Sp,ρ(w)) = 0;

that is, using the expansion of Proposition 3.9,

(17) P
[
4S2(4S2 + 2)w + Op(ρ2) + ρL(4)

p (w) + Q(2)(4)
p (w)

]
= 0.

Since4S2(4S2+2) is invertible on the space orthogonal to the Kernel and w ∈ C4,α(S2)⊥ := Ker[4S2(4S2+
2)]⊥ ∩ C4,α(S2), setting

K := [4S2(4S2 + 2)]−1 : Ker[4S2(4S2 + 2)]⊥ ⊆ L2(S2) → Ker[4S2(4S2 + 2)]⊥,

the equation (17) is equivalent to the fixed point problem

(18) w = K[Op(ρ2) + ρL(4)
p (w) + Q(2)(4)

p (w)] = Fp,ρ(w).

The projection in the right hand side is intended. In the aforementioned paper (using Schauder estimates)
it is proved that once the compact Zc ⊂ M is fixed, there exist ρ0 > 0 and r > 0 such that for all p ∈ Zc

and ρ < ρ0 the map
Fp,ρ : B(0, r) ⊂ C4,α(S2)⊥ → C4,α(S2)⊥

is a contraction. In the same paper the regularity and the decay properties are shown.

Now let us prove the expansion (iv).
Using the formula of Proposition 3.9, the unique solution w ∈ B(0, r) to the fixed point problem will
have to satisfy the following fourth order elliptic PDE:

4S2(4S2 + 2)w =
1
3
ρ24S2Ricp(Θ,Θ) + Op(ρ3) + ρL(4)

p (w) + Q(2)(4)
p (w).

Clearly the unique solution w has the form w = ρ2w̄ + O(ρ3) where the remainder has to be intended in
C4,α(S2) norm and w̄ ∈ C4,α(S2) is independent on ρ. Now we want to find an explicit formula for w̄.
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Writing the radial unit vector in normal coordinates on TpM , we have Θ = xi ∂
∂xi and the Ricci tensor

can be written as
Ricp(Θ,Θ) =

∑
i 6=j

Rijx
ixj +

∑
i

Rii(xi)2.

Recall that the eigenfunctions of 4S2 relative to the second eigenvalue λ2 = −6 are xixj , i 6= j and
(xi)2 − (xj)2, i 6= j and notice that

2(x1)2 − 1 = (x1)2 − (x2)2 + (x1)2 − (x3)2 − (x1)2

so

(x1)2 − 1
3

=
1
3

{
[(x1)2 − (x2)2] + [(x1)2 − (x3)2]

}
is an element of the eigenspace relative to λ2 = −6 (analogously for the others (xi)2). So

Ricp(Θ,Θ) =
∑
i 6=j

Rij(p)xixj +
∑

i

Rii(p)[(xi)2 − 1
3
] +

1
3

∑
i

Rii(p)

=
∑
i 6=j

Rij(p)xixj +
∑

i

Rii(p)[(xi)2 − 1
3
] +

1
3
R(p)

and Ricp(Θ,Θ)− 1
3R(p) is an element of the second eigenspace of 4S2 .

Recalling that w = ρ2w̄ + O(ρ3), then w̄ has to solve the following linear elliptic PDE

4S2(4S2 + 2)w̄ =
1
3
4S2

[
Ricp(Θ,Θ)− 1

3
R(p)

]
.

Since the right hand side is an eigenfunction of 4S2 with eigenvalue −6 the equation is easily solved as

w̄ = − 1
12

Ric(Θ,Θ) +
1
36

R(p).

3.4 The expansion of the reduced functional I(Sp,ρ(wp,ρ))

In this subsection we want to evaluate the reduced functional I(Sp,ρ(wp,ρ)), that is the conformal Willmore
functional on perturbed geodesic spheres with perturbation w in the constraint given by Proposition 3.10.

Proposition 3.11. The conformal Willmore functional on perturbed geodesic spheres Sp,ρ(wp,ρ) with
perturbation wp,ρ lying in the constraint given by Proposition 3.10 can be expanded in ρ as follows

I(Sp,ρ(wp,ρ)) =
π

5
‖Sp‖2ρ4 + Op(ρ5),

where Sp is the Traceless Ricci tensor defined in (5).

Proof. In the sequel we fix a point p ∈ M and we want to evaluate I(Sp,ρ(wp,ρ)) for small ρ. For simplicity
of notation, let us denote w = wp,ρ; from Proposition 3.10 we know that w = ρ2w̄ + O(ρ3). Notice that
the leading part of H2/4−D is homogeneous of degree two in ρ, so in order to evaluate I(Sp,ρ(wp,ρ)) it
is sufficient to multiply H2/4−D by the first term of

√
det[̊g] (that is ρ2‖Θ2‖). Using the expansion of

Proposition 3.8 we get

I(Sp,ρ(w)) = ρ4

∫
S2

[
1
4
(4S2w̄)2 − 1

‖Θ2‖2
(HessS2w̄)11(HessS2w̄)22 +

1
‖Θ2‖2

(HessS2w̄)212 −
1
6
Ricp(Θ,Θ)4S2 w̄

+
2

3‖Θ2‖2
R(0102)(HessS2w̄)12 −

1
3‖Θ2‖2

R(0101)(HessS2w̄)22 −
1
3
R(02̄02̄)(HessS2w̄)11

+
1
9

(1
4
Ricp(Θ,Θ)2 −R(0101)R(02̄02̄) + R(0102̄)2

)]
dΣ0 + Op(ρ5).(19)
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From (iv) of Proposition 3.10 it follows that

4S2w̄ = −6w̄ =
1
2
Ricp(Θ,Θ)− 1

6
R(p)

so, after some easy computation, one can write
(20)
1
4
(4S2w̄)2 − 1

6
Ricp(Θ,Θ)4S2 w̄ +

1
36

Ricp(Θ,Θ)2 =
1

144
Ricp(Θ,Θ)2 − 1

72
Ricp(Θ,Θ)R(p) +

1
144

R(p)2.

In order to simplify the other integrands of (19) we compute (HessS2w̄)ij . The nonvanishing Christoffel
symbols of S2 in polar coordinates θ1, θ2 are

Γ2
12 = Γ2

21 = cotanθ1

Γ1
22 = − sin θ1 cos θ1.

Hence, recalling that (Hessw)ij = wij − Γk
ijwk and the expression of w given in (iv), we get

(HessS2w̄)11 = w̄11 = −1
6
∂θ1(Ricp(Θ,Θ1))

= −1
6
Ricp(Θ1,Θ1)−

1
6
Ricp(Θ,Θ11) but Θ11 = −Θ

= −1
6
Ricp(Θ1,Θ1) +

1
6
Ricp(Θ,Θ)

(HessS2w̄)12 = w̄12 − Γ2
12w̄2 = −1

6
∂θ1(Ricp(Θ,Θ2)) +

1
6
Γ2

12Ricp(Θ,Θ2)

= −1
6
Ricp(Θ1,Θ2)−

1
6
Ricp(Θ,Θ12) +

1
6
Γ2

12Ricp(Θ,Θ2) but Θ12 = cotanθ1Θ2

= −1
6
Ricp(Θ1,Θ2)

(HessS2w̄)22 = w̄22 − Γ1
22w̄1

= −1
6
Ricp(Θ2,Θ2)−

1
6
Ricp(Θ,Θ22) +

1
6
Γ1

22Ricp(Θ,Θ1) but Θ22 = − sin θ1 cos θ1Θ1 − sin2 θ1Θ

= −1
6
Ricp(Θ2,Θ2) +

1
6
‖Θ2‖2Ricp(Θ,Θ).

Therefore the other part of the integrand can be written as

− 1
‖Θ2‖2

(HessS2w̄)11(HessS2w̄)22 +
1

‖Θ2‖2
(HessS2w̄)212 +

2
3‖Θ2‖2

R(0102)(HessS2w̄)12

−1
3
R(0101)

1
‖Θ2‖2

(HessS2w̄)22 −
1
3
R(02̄02̄)(HessS2w̄)11 −

1
9
R(0101)R(02̄02̄) +

1
9
R(0102̄)2

= − 1
36

Ric(Θ,Θ)2 +
1
36

Ric(Θ,Θ)[Ric(Θ̄2, Θ̄2) + Ric(Θ1,Θ1)]−
1
36

Ric(Θ̄2, Θ̄2)Ric(Θ1,Θ1)

+
1
36

Ric(Θ1, Θ̄2)2 −
1
9
R(0102̄)Ric(Θ1, Θ̄2) +

1
18

R(0101)(Ric(Θ̄2, Θ̄2)−Ric(Θ,Θ))

+
1
18

R(02̄02̄)(Ric(Θ1,Θ1)−Ric(Θ,Θ))− 1
9
R(0101)R(02̄02̄) +

1
9
R(0102̄)2.(21)

Using the following three identities (which follow from the orthogonality of {Θ,Θ1, Θ̄2}, from the defini-
tions and the symmetries of the curvature tensors)

− 1
18

(
R(0101) + R(02̄02̄)

)
Ricp(Θ,Θ) =

1
18

Ricp(Θ,Θ)2

Ricp(Θ1,Θ1) + Ricp(Θ̄2, Θ̄2) = R(p)−Ricp(Θ,Θ)(22)
R(0102̄) = −Ricp(Θ1, Θ̄2),
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after some easy computations we can say that (21) equals

=
1
36

Ric(Θ,Θ)R(p)− 1
36

Ric(Θ̄2, Θ̄2)Ric(Θ1,Θ1) +
1
4
Ric(Θ1, Θ̄2)2

+
1
18

R(0101)Ric(Θ̄2, Θ̄2) +
1
18

R(02̄02̄)Ric(Θ1,Θ1)−
1
9
R(0101)R(02̄02̄).(23)

Let us try to simplify the last line using that R(0101) + R(2̄12̄1) = −Ric(Θ1,Θ1) and identity (22):

1
18

R(0101)Ric(Θ̄2, Θ̄2) +
1
18

R(02̄02̄)Ric(Θ1,Θ1)−
1
9
R(0101)R(02̄02̄)

= − 1
18
[
Ricp(Θ1,Θ1) + R(12̄12̄)

]
Ricp(Θ̄2, Θ̄2)−

1
18
[
Ric(Θ̄2, Θ̄2) + R(12̄12̄)

]
Ricp(Θ1,Θ1)

−1
9
[
Ricp(Θ1,Θ1) + R(12̄12̄)

][
Ric(Θ̄2, Θ̄2) + R(12̄12̄)

]
= −2

9
Ricp(Θ1,Θ1)Ricp(Θ̄2, Θ̄2) +

1
6
R(12̄12̄)Ricp(Θ,Θ)− 1

6
R(12̄12̄)R(p)− 1

9
R(12̄12̄)2.(24)

Since {Θ,Θ1, Θ̄2} is an orthonormal base of TpM we have the following useful identity

R(12̄12̄) = R(12̄12̄)−Ricp(Θ,Θ) + Ricp(Θ,Θ)
=

[
R(12̄12̄) + R(02̄02̄) + R(0101)

]
+ Ricp(Θ,Θ)

= −1
2
[
Ricp(Θ1,Θ1) + Ricp(Θ̄2, Θ̄2) + Ricp(Θ,Θ)

]
+ Ricp(Θ,Θ)

= −1
2
R(p) + Ricp(Θ,Θ).(25)

Plugging the last identity (25) into formula (24), we get that (24) equals

(26) = −2
9
Ricp(Θ1,Θ1)Ricp(Θ̄2, Θ̄2)−

5
36

Ricp(Θ,Θ)R(p) +
1
18

Ricp(Θ,Θ)2 +
1
18

R(p)2.

Therefore the last line of (21) equals (26) and the integrands (21) become

=
1
18

Ric(Θ,Θ)2 − 1
9
Ric(Θ,Θ)R(p) +

1
18

R(p)2 +
1
4
Ric(Θ1, Θ̄2)2 −

1
4
Ricp(Θ1,Θ1)Ricp(Θ̄2, Θ̄2);

hence the conformal Willmore functional expressed as in (19), using the last formula and (20), becomes

I(Sp,ρ(w)) = ρ4

∫
S2

[
1
16

Ricp(Θ,Θ)2 − 1
8
Ricp(Θ,Θ)R(p) +

1
16

R(p)2 +
1
4
Ric(Θ1, Θ̄2)2 −

1
4
Ricp(Θ1,Θ1)Ricp(Θ̄2, Θ̄2)

]
dΣ0

+Op(ρ5).(27)

The integral of the first three summands is well-known (see for example the appendix of [PX]), let us
compute the integral of the last two summands.

Claim. ∫
S2

[
Ricp(Θ1, Θ̄2)2 −Ricp(Θ1,Θ1)Ricp(Θ̄2, Θ̄2)

]
dΣ0 =

2π

3
(
‖Ricp‖2 −R(p)2

)
Proof of the Claim:

As before let us denote with Eµ, µ = 1, 2, 3 an orthonormal base of TpM and with xµ the induced
coordinates. Under this notation the radial unit vector is

S2 3 Θ = xµEµ.
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Recall that the polar coordinates 0 < θ1 < π, 0 < θ2 < 2π have been chosen such that S2 is parame-
trized as follows  x1 = sin θ1 cos θ2

x2 = sin θ1 sin θ2

x3 = cos θ1.

The normalized tangent vectors Θ̄i := Θi

‖Θi‖ have coordinates

Θ̄1 = Θ1 = (cos θ1 cos θ2, cos θ1 sin θ2,− sin θ1)

=

(
x1x3√

(x1)2 + (x2)2
,

x2x3√
(x1)2 + (x2)2

,−
√

(x1)2 + (x2)2
)

(28)

Θ̄2 = (− sin θ2, cos θ2, 0)

=

(
− x2√

(x1)2 + (x2)2
,

x1√
(x1)2 + (x2)2

, 0

)
.(29)

Using this expressions for Θ̄i we get the following formulas for Ricp(Θ̄i, Θ̄j):

Ricp(Θ1,Θ1) = R11
(x1)2(x3)2

(x1)2 + (x2)2
+ 2R12

x1x2(x3)2

(x1)2 + (x2)2
+ R22

(x2)2(x3)2

(x1)2 + (x2)2
− 2R13x

1x3 − 2R23x
2x3 + R33[(x1)2 + (x2)2]

Ricp(Θ̄2, Θ̄2) = R11
(x2)2

(x1)2 + (x2)2
− 2R12

x1x2

(x1)2 + (x2)2
+ R22

(x1)2

(x1)2 + (x2)2

Ricp(Θ1, Θ̄2) = −R11
x1x2x3

(x1)2 + (x2)2
− 2R12

(x2)2x3

(x1)2 + (x2)2
+ R22

x1x2x3

(x1)2 + (x2)2
+ R12x

3 + R13x
2 −R23x

1.

Notice that the summands which contain a term of the type (xi)2m+1 (m ∈ N) have vanishing integral
on S2; then, calling “Remainder” all these summands, we get

Ric(Θ1, Θ̄2)2 = (R2
11 − 2R11R22 + R2

22 − 4R2
12)

(x1)2(x2)2(x3)2

[(x1)2 + (x2)2]2
+ R2

12(x
3)2 + R2

13(x
2)2 + R2

23(x
1)2

+ Remainder,

Ric(Θ1,Θ1)Ric(Θ̄2, Θ̄2) = (R2
11 − 2R11R22 + R2

22 − 4R2
12)

(x1)2(x2)2(x3)2

[(x1)2 + (x2)2]2
+ R11R22(x3)2 + R11R33(x2)2 + R22R33(x1)2

+ Remainder.

Therefore the integral of the left hand side of the Claim becomes

=
∫

S2

[
R2

12(x
3)2 + R2

13(x
2)2 + R2

23(x
1)2 −R11R22(x3)2 −R11R33(x2)2 −R22R33(x1)2

]
dΣ0.

Recalling that
∫

S2(xµ)2dΣ0 = 4π
3 ,we can continue the equalities

=
4π

3
[
R2

12 + R2
13 + R2

23 −R11R22 −R11R33 −R22R33

]
=

2π

3
[
(R2

11 + R2
22 + R2

33 + 2R2
12 + 2R2

13 + 2R2
23)− (R2

11 + R2
22 + R2

33 + 2R11R22 + 2R11R33 + 2R22R33)
]

=
2π

3
(
‖Ricp‖2 −R(p)2

)
Now we are in position to conclude the computation of the integral (27).

It is known that
∫

S2 Ricp(Θ,Θ)dΣ0 = 4π
3 R(p) and

∫
S2 [Ricp(Θ,Θ)]2dΣ0 = 4π

15 (2‖Ricp‖2 +R(p)2) (see the
appendix of [PX]) thus, grouping together this formulas and the claim, we can say that the conformal
Willmore functional on constrained small geodesic spheres can be expanded as

I(Sp,ρ(w)) =
π

5

(
‖Ricp‖2 −

1
3
R(p)2

)
ρ4 + Op(ρ5).
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A simple computation in the orthonormal basis that diagonalizes Ricp shows that the first term in the
expansion is the squared norm of the Traceless Ricci tensor:(

‖Ricp‖2 −
1
3
R(p)2

)
= ‖Ricp −

1
3
gpR(p)‖2 = ‖Sp‖2.

3.5 Proof of the non existence result

We start with a Lemma, which asserts that for small perturbation u ∈ C4,α(S2) and small radius ρ, the
perturbed geodesic sphere Sp,ρ(u) can be obtained as a normal graph on an other geodesic sphere Sp̃,ρ̃

with perturbation w̃ ∈ C4,α⊥: Sp,ρ(u) = Sp̃,ρ̃(w̃); for the proof see [Mon] Lemma 5.3.

Lemma 3.12. Let (M, g) be a Riemannian manifold of dimension three and fix p̄ ∈ M . Then there exist
B(0, r1) ⊂ C4,α(S2), ρ1 > 0, a compact neighbourhood U of p̄ and three continuous functions
· p(.) : B(0, r1) → U ⊂ M ,
· ρ(., .) : (0, ρ1)×B(0, r1) → R+,
· w(., .) : U ×B(0, r1) → C4,α(S2)⊥,
such that for all ρ̄ < ρ1 and u ∈ B(0, r1), all the perturbed geodesic spheres Sp̄,ρ̄(u) can be realized as

Sp̄,ρ̄(u) = Sp(u),ρ(ρ̄,u)[w(p(u), u)].

Now we are in position to prove the non existence result.

Proof of Theorem 1.4.
Since ‖Sp̄‖ 6= 0, there exists η > 0 and a compact neighbourhood Zc of p̄ such that ‖Sp‖ > η for all
p ∈ Zc.

From Lemma 3.10 there exist ρ0 > 0 and a ball B(0, r) ⊂ C4,α(S2) such that- for w ∈ C4,α⊥∩B(0, r),
p ∈ Zc and ρ < ρ0- if the perturbed geodesic sphere Sp,ρ(w) is a critical point of I then w = wp,ρ with
good decay properties as ρ → 0. Moreover, for p ∈ Zc and ρ < ρ0 we can consider the C1 function

Φ(p, ρ) = I(Sp,ρ(wp,ρ)).

Observe that if Sp̃,ρ̃(wp̃,ρ̃) is a critical point for I then a fortiori (p̃, ρ̃) is a critical point of the constricted
functional Φ(., .).
Proposition 3.11 gives an expansion for Φ(p, ρ); differentiating it with respect to ρ and recalling (from
Lemma 3.10) that as ρ → 0 one has ‖wp,ρ‖C4,α = O(ρ2) and ‖ ∂

∂ρwp,ρ‖L2 = O(ρ) uniformly for p ∈ Zc,
we get

∂

∂ρ
Φ(p, ρ) =

4π

5
‖Sp‖ρ3 + Op(ρ4)

and

(30)
∣∣∣ ∂

∂ρ
Φ(p, ρ)

∣∣∣ > 4π

5
ηρ3 + O(ρ4) for all p ∈ Zc,

where the remainder O(ρ4) is uniform on Zc.
From this equation we can say that there exist ρ2 ∈]0, ρ0[ such that for all p ∈ Zc and ρ < ρ2, (p, ρ) is
not a critical point of Φ.
Hence

∀w ∈ C4,α(S2)⊥ ∩B(0, r), ρ < ρ2 and p ∈ Zc(31)
⇒ Sp,ρ(w) is NOT a critical point of I.

Now from Lemma 3.12, if u ∈ B(0, r1) ⊂ C4,α(S2) and ρ̄ < ρ1, any perturbed sphere Sp̄,ρ̄(u) can be
realized as

Sp̄,ρ̄(u) = Sp(u),ρ(ρ̄,u)[w(p(u), u)], w(p(u), u) ∈ C4,α(S2)⊥.
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From the continuity of the functions p(.), ρ(., .) and w(., .), there exist ρ3 ∈]0,min(ρ1, ρ2)[ and r2 ∈
]0,min(r, r1)[ such that for all u ∈ B(0, r2) ⊂ C4,α(S2) and ρ̄ < ρ3 we have:

· p(u) ∈ Zc,
· ρ(ρ̄, u) < ρ2 and
· w(p(u), u) ∈ C4,α(S2)⊥ ∩B(0, r).
It follows that if u ∈ B(0, r2) and ρ̄ < ρ3, the sphere Sp̄,ρ̄(u) can be realized as Sp(u),ρ(ρ̄,u)[w(p(u), u)]

which satisfies the assumptions (31); so it is not a critical point of I.

4 The conformal Willmore functional on perturbed standard
spheres Sρ

p(w) in (R3, gε)

Throughout this section Iε(M̊) :=
∫

M̊

[
H2

4 − D
]
dΣε will be the conformal Willmore functional of the

surface M̊ embedded in the ambient manifold (R3, gε), where gε = δ + εh is a perturbation of the
euclidean metric (h is a bilinear form with good decay properties at infinity, for simplicity we will treat
in detail the case when h has compact support but as one can see from the estimates it is enough to take
h fast decreasing. See for example [Mon] Theorem 1.1).

The problem will be studied through a perturbation method relying on the Lyapunov-Schmidt re-
duction: In Subsection 4.1 we will perform the abstract reduction, in Subsection 4.2 we will compute an
expansion of the reduced functional and in the last Subsection 4.3 we will prove the main Theorems of
this paper, that is the existence of conformal Willmore surfaces.

4.1 The finite dimensional reduction

We already know from Theorem 2 that I0 possesses a critical manifold made up of the standard spheres
Sρ

p of R3, we want to study the perturbed functional Iε near this critical manifold. First of all let us point
out a clarification about I ′0(S

ρ
p) and I ′′0 (Sρ

p), that are the first and second variations of the unperturbed
functional on the standard spheres, which will be useful throughout this Section.

Remark 4.1. In the previous paper [Mon], (remark 3.3, notice the factor difference in the definition of
the Willmore functional) we observed that

I ′0(S
ρ
p(w)) =

1
2ρ3

4S2(4S2 + 2)w +
1
ρ3

Q(2)(4)
p (w)

and
I ′′0 (Sρ

p)[w] =
1

2ρ3
4S2(4S2 + 2)[w].

The sense of the two formulas were the following.
By definition Sρ

p(w) is a normal graph on Sρ
p with perturbation ρw (we chose the inward normal N̊ for

all the computations), hence

I0(Sρ
p(w)) = I0(Sρ

p) +
∫

Sρ
p

(
I ′0(S

ρ
p)(ρw)

)
dΣ0 +

1
2

∫
Sρ

p

(
I ′′0 (Sρ

p)[w](ρw)
)
dΣ0 + o(|w|2).

If we want to bring the expression to the standard sphere we get

I0(Sρ
p(w)) = I0(Sρ

p) +
∫

S2

(
ρ3I ′0(S

ρ
p)w

)
dΣ0 +

1
2

∫
S2

(
ρ3I ′′0 (Sρ

p)[w]w
)
dΣ0 + o(|w|2).

Now we denote
Ĩ ′0(S

ρ
p(w)) = ρ3I ′0(S

ρ
p(w)) =

1
2
4S2(4S2 + 2)[w] + Q(2)(4)

p (w)
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and
Ĩ ′′0 (Sρ

p)[w] = ρ3I ′′0 (Sρ
p)[w] =

1
2
4S2(4S2 + 2)[w]

then we get the more familiar formula

I0(Sρ
p(w)) = I0(Sρ

p) +
∫

S2

(
Ĩ ′0(S

ρ
p)w

)
+

1
2

∫
S2

(
Ĩ ′′0 (Sρ

p)[w]w
)

+ o(|w|2).

This was about the functional
∫

H2

4 but the same argument can be repeated for the functional
∫ (

H2

4 −D
)

(since the ambient is euclidean, D = K the Gaussian curvature which by the Gauss Bonnet Theorem does
not influence the differential). Since Sρ

p are critical points for I0 we can say that the conformal Willmore
functional on perturbed standard spheres is

I0(Sρ
p(w)) =

1
4

∫
S2

(
4S2(4S2 + 2)[w]w

)
+ o(|w|2).

In the following we will always denote

I ′0(S
ρ
p)[w] =

1
2
4S2(4S2 + 2)[w] + Q(2)(4)

p (w)

I ′′0 (Sρ
p)[w] =

1
2
4S2(4S2 + 2)[w]

since, as we saw, it is more natural.

Since from Proposition 3.11 we have an expansion of Iε on small geodesic spheres and on the other
hand the critical manifold of I0 is made up of standard spheres, let us link the two objects. The geodesic
sphere in (R3, gε) of center p and radius ρ will be denoted by Sε

p,ρ.

Lemma 4.2. For small ε the geodesic spheres Sε
p,ρ are normal graphs on the standard spheres Sρ

p with a
perturbation vε ∈ C∞(R+ × R3 × S2):

Sε
p,ρ = Sρ

p(vε(ρ, p, .)).

Moreover the perturbation vε satisfies the following decreasing properties:
1) ρvε = O(ε) in Ck norm on compact subsets of R+ × R3 × S2 for all k ≥ 0;
2) vε(ρ, ., .) = O(ρ) as ρ → 0 uniformly for Θ ∈ S2 and p in a compact subset of R3.

Proof. The geodesic spheres Sε
p,ρ are parametrized by Θ 7→ Expp(ρΘ). So one is interested in the solution

of the geodesic equation 
ÿi + Γi

jkẏj ẏk = 0
yi(0) = pi

ẏi(0) = Θi

evaluated at ρ. We look for yi of the form

yi = pi + ρΘi + εui + o(ε)

where
ui : R+ × R3 × S2 → R, (ρ, p,Θ) 7→ ui(ρ, p,Θ)

is C∞(R+ ×R3 × S2) and have to be determined. A straightforward computation ( setting Γi
jk = εΓ̃i

jk )
shows that ui must solve the following non linear second order ODE: üi + Γ̃i

jkΘjΘk = 0
ui(0) = 0
u̇i(0) = 0
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where we have denoted u̇i = ∂
∂ρui and üi = ∂2

∂ρ2 ui and the equation has to be considered at (p, Θ) fixed.
Since h is compactly supported (more generally it is enough to assume that h and its first derivatives
vanish at infinity), the Christoffel symbols Γ̃i

jk vanish at infinity and the ODE admits unique solution
defined for all ρ ≥ 0. From differentiable dependence on parameters, ui is of class C∞(R+ × R3 × S2),
observe also that ui = O(ρ2) as ρ → 0 uniformly for Θ ∈ S2 and p in a compact subset of R3.
It follows that the geodesic sphere Sε

p,ρ can be obtained from the standard sphere Sρ
p with the small

variation εui(ρ, p,Θ). Now it is easy to see that for ε small enough there exists vε ∈ C∞(R+ × R3 × S2)
such that

• Sε
p,ρ = Sρ

p(vε)

• ρvε = O(ε) in Ck norm on compact subsets of R+ × R3 × S2 for all k ≥ 0

• vε(ρ,Θ) = O(ρ) as ρ → 0, uniformly for Θ ∈ S2 and p in a compact subset of R3.

Now we define the manifold of approximate solutions that will play the role of the “critical manifold”
Z. Let R1 and R2 be positive real numbers to be determined and χ a C∞(R+) cut off function such that χ(ρ) = 1 for 0 ≤ ρ ≤ R1

0 ≤ χ(ρ) ≤ 1 for R1 ≤ ρ ≤ R2

χ(ρ) = 0 for ρ ≥ R2.

We denote with Σε
p,ρ the perturbed standard sphere

(32) Σε
p,ρ = Sρ

p(χvε)

and we consider it as parametrized on S2; observe that for ρ < R1 one gets the geodesic spheres Σε
p,ρ = Sε

p,ρ

and for ρ > R2 one has the standard spheres Σε
p,ρ = Sρ

p .
Denoted by N̊ the inward normal unit vector, given a function w on S2, Σε

p,ρ(w) will be the surface
parametrized by Σε

p,ρ + ρwN̊ (notice that we are consistent with the previous notations since Θ points
outward).

At this point we can state the two Lemmas which allow us to perform the Finite Dimensional Reduc-
tion. Recall that, as always, P : L2(S2) → Ker[4S2(4S2 + 2)]⊥ is the orthogonal projection.

Lemma 4.3. For each compact subset Zc ⊆ R3 ⊕ R+, there exist ε0 > 0 and r > 0 with the following
property: for all |ε| ≤ ε0 and (p, ρ) ∈ Zc, the auxiliary equation PI ′ε(Σ

ε
p,ρ(w)) = 0 has unique solution

w = wε(p, ρ) ∈ B(0, r) ⊂ C4,α(S2)⊥ such that:
1) the map wε(., .) : Zc → C4,α(S2)⊥ is of class C1;
2) ‖wε(p, ρ)‖C4,α(S2) → 0 for ε → 0 uniformly with respect to (p, ρ) ∈ Zc;
3) more precisely ‖wε(p, ρ)‖C4,α(S2) = O(ε) for ε → 0 uniformly in (p, ρ) ∈ Zc;
4) ‖wε(p, ρ)‖C4,α = O(ρ2) uniformly for p in the compact set.

Proof. The proof will be rather sketchy, for more details we refer to Section 4 of [Mon].
• ρ ≤ R1: Recall Lemma 3.10 and choose R1 = ρ0; for ρ ≤ R1, the surface Σε

p,ρ coincides with the
geodesic sphere Sp,ρ, so thanks to Lemma 3.10 there exists a unique wε(p, ρ) ∈ C4,α(S2)⊥ which solves
the auxiliary equation. During the proof of Proposition 3.9 we wrote I ′ as in equation (15); observing
that all the curvature tensors of (R3, gε) are of order O(ε) (in Ck norm ∀k ∈ N on each fixed compact set
of R3), it follows that

PI ′ε(S
ε
p,ρ(wε(p, ρ))) =

1
2
4Sε

p,ρ(wε(p,ρ))H + Q(2)(4)(wε(p, ρ)) + O(ε) = 0 in C0,α(S2);

from this formula and the expansions of h̊, g̊−1 and H, we have that

4S2(4S2 + 2)[wε(p, ρ)] + Q(2)(4)(wε(p, ρ)) = O(ε) in C0,α(S2)
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uniformly for (p, ρ) ∈ Zc; first observe that ‖wε‖C4,α(S2) → 0 as ε → 0 uniformly in Zc so the second
summand is negligible, then conclude that ‖wε‖C4,α(S2) = O(ε) uniformly on Zc. The other properties
follow from Lemma 3.10.

• ρ ≥ R2: in this case the surface Σε
p,ρ coincides with the standard sphere Sρ

p for which the discussion
has already been done in Lemma 4.1 of [Mon].

• R1 ≤ ρ ≤ R2: with a Taylor expansion the auxiliary equation becomes

0 = PI ′ε(Σ
ε
p,ρ(wε)) = PI ′ε(Σ

ε
p,ρ) + PI ′′ε (Σε

p,ρ)[wε] + o(‖wε‖C4,α(S2)).

But by definition Σε
p,ρ = Sρ

p(χvε), so

I ′ε(Σ
ε
p,ρ) = I ′ε(S

ρ
p(χvε)) = I ′0(S

ρ
p) + I ′′0 (Sρ

p)[χvε] + O(ε).

Since I ′0(S
ρ
p) = 0 and ‖vε‖C4,α = O(ε) we get

‖I ′ε(Σε
p,ρ)‖C0,α(S2) = O(ε).

Now PI ′′0 (Sρ
p) = 4S2(4S2 + 2) which is an invertible map C4,α⊥ → C0,α⊥ uniformly on Zc; since the

set of invertible operators is open, for ε small also PI ′′ε (Sρ
p) is uniformly invertible. From the fact that

‖vε‖Ck(S2) = O(ε) for all k it follows that also PI ′′ε (Σε
p,ρ) = PI ′′ε (Sρ

p(χvε)) is uniformly invertible on Zc.
With a fixed point argument analogous to the proof of Lemma 4.1 in [Mon] it is possible to show that
there exist r > 0 and a unique solution wε ∈ B(0, r) ⊂ C4,α⊥ of

wε = −PI ′′ε (Σε
p,ρ)

−1
(
PI ′ε(Σ

ε
p,ρ) + o(‖wε‖C4,α(S2))

)
with the desired properties.

Now we are in position to define the reduced functional Φε(p, ρ) = Iε(Σε
p,ρ(wε(p, ρ))) and to state the

following fundamental Lemma:

Lemma 4.4. Fixed a compact set Zc ⊆ R3 ⊕ R+, for |ε| ≤ ε0 consider the functional Φε : Zc → R.
Assume that, for ε small enough, Φε has a critical point (pε, ρε) ∈ Zc. Then Σε

pε,ρε
(wε(pε, ρε)) is a critical

point of Iε.

Proof. The proof is a slight modification of the proof of Lemma 4.2 in [Mon] just using the good decay
properties of vε, wε and their derivatives as ε → 0.

Remark 4.5. The reduced functional Φε is defined for small ε once a compact Zc ⊂ R3⊕R+ is fixed. In
the following discussion we will study the behaviour of Φε for large ρ; this makes sense since the compact
Zc can be chosen arbitrarily large and the solution of the auxiliary equation wε(p, ρ) given in Lemma
4.3 is unique in a small ball of C4,α(S2)⊥. However the compact Zc will be chosen in a rigorous and
appropriate way in the proofs of Theorem 1.1 and Theorem 1.2.

4.2 Expansion of the reduced functional Iε(Σ
ε
p,ρ(wε(p, ρ)))

Since Lemma 4.3 applies, we can perform the Finite Dimensional Reduction. In this Subsection we will
study the reduced functional Φε(p, ρ) = Iε(Σε

p,ρ(wε(p, ρ))). For ρ < R1, Σε
p,ρ = Sε

p,ρ so for small radius ρ
we have the explicit expansion of Φε(p, ρ) = Iε(Sε

p,ρ(wε(p, ρ))) given by Proposition 3.11. More generally,
for all the radius we can write the conformal Willmore functional on our surfaces Σε

p,ρ(w) as

(33) Iε(Σε
p,ρ(w)) = I0(Σε

p,ρ(w)) + εG1(Σε
p,ρ(w)) + ε2G2(Σε

p,ρ(w)) + o(ε2).

Now let us study the case ρ > R2, when Σε
p,ρ = Sρ

p ; in this circumstance we get the formula

(34) Iε(Sρ
p(w)) = I0(Sρ

p(w)) + εG1(Sρ
p(w)) + ε2G2(Sρ

p(w)) + o(ε2).
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Lemma 4.6. For all standard spheres Sρ
p one has

I0(Sρ
p) = G1(Sρ

p) = 0.

Proof. As above, we write the functional as Iε(Sρ
p) = I0(Sρ

p) + εG1(Sρ
p) + o(ε). First let us expand in ε

the geometric quantities of interest starting from the area form dΣε :=
√

EεGε − F 2
ε .

Eε = gε(θ1, θ1) = (θ1, θ1) + εh(θ1, θ1) = E0 + εh(θ1, θ1)
Fε = F0 + εh(θ1, θ2) = εh(θ1, θ2)
Gε = G0 + εh(θ2, θ2),

where (., .) denotes the euclidean scalar product and E0, F0, G0 are the coefficients of the first fundamental
form in euclidean metric. The area form can be expanded as

dΣε :=
√

EεGε − F 2
ε

=
√

E0G0 + ε
(
E0h(θ2, θ2) + G0h(θ1, θ1)

)
+ o(ε),

where the remainder o(ε) is uniform fixed the compact set in the variables (p, ρ), ρ > 0.
Using the standard Taylor expansion

√
a + bx + cx2 =

√
a + 1

2
b√
a
x + o(x), we get

(35)
√

EεGε − F 2
ε =

√
E0G0 +

ε

2
E0h(θ2, θ2) + G0h(θ1, θ1)√

E0G0

+ o(ε),

where the remainder o(ε) is uniform fixed the compact set in the variables (p, ρ).
Now let us expand the second fundamental form.

First of all we have to find an expression of the inward normal unit vector νε on Sρ
p in metric gε.

We look for νε of the form
νε = ν0 + εN + o(ε)

where ν0 = −Θ is the inward normal unit vector on Sρ
p in euclidean metric and the remainder is o(ε)

uniformly fixed the compact in (p, ρ). From the orthogonality conditions gε(θ1, νε) = 0 and gε(θ2, νε) = 0,
we get

0 = gε(θ1, νε) = (θ1, ν0) + ε(θ1, N) + εh(θ1, ν0) + o(ε)
0 = gε(θ2, νε) = (θ2, ν0) + ε(θ2, N) + εh(θ2, ν0) + o(ε)

from which, being ν0 the euclidean normal vector to Sρ
p ,

(N, θ1) = −h(ν0, θ1)(36)
(N, θ2) = −h(ν0, θ2).(37)

Imposing the normalization condition on νε we obtain

1 = gε(νε, νε) = (ν0, ν0) + 2ε(ν0, N) + εh(ν0, ν0) + o(ε)

from which, being (ν0, ν0) = 1

(38) (N, ν0) = −1
2
h(ν0, ν0).

Denote with θ̄i = θi

|θi| the normalized tangent vectors; since (θ̄1, θ̄2, ν0) are an orthonormal base, the
expressions (36),(37),(38) characterize univocally N , which can be written in this base as

(39) N = −h(ν0, θ̄1)θ̄1 − h(ν0, θ̄2)θ̄2 −
1
2
h(ν0, ν0)ν0.
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Knowing the normal vector we can evaluate the coefficients of the second fundamental form

h̊εij := −gε(∇θi
νε, θj),

where∇ is the connection on R3 endowed with the metric gε. By linearity, denoting with ∂
∂xλ the standard

euclidean frame of R3

∇θi
νε = θµ

i ∇µ(νλ
ε

∂

∂xλ
) =

∂νε

∂θi
+ θµ

i νλ
ε Γν

µλ

∂

∂xν

where Γν
µλ are the Christoffel symbols of (R3, gε).

Let us find an expansion in ε of Γν
µλ. By definition

Γν
µλ =

1
2
gνσ[Dµgλσ + Dλgσµ −Dσgµλ].

Noticing that gµσ = δµσ − εhµσ + o(ε) and Dµgλσ = εDµhλσ, we obtain

Γν
µλ =

1
2
εδνσ[Dµhλσ + Dλhσµ −Dσhµλ] + o(ε)

=
1
2
εδνσAµσλ

(40)

where we set

(41) Aµνλ := [Dµhλν + Dλhνµ −Dνhµλ].

Hence
∇θi

νε =
∂νε

∂θi
+

1
2
εθµ

i νλ
0 δνσAµσλ

∂

∂xν
+ o(ε)

and the second fundamental form becomes

(42) h̊εij = −
(

∂ν0

∂θi
, θj

)
− ε

[
h

(
∂ν0

∂θi
, θj

)
+
(

∂N

∂θi
, θj

)]
− 1

2
εθµ

i θν
j νλ

0 Aµνλ.

In order to simplify the expressions let us recall the values of the coefficients of the unperturbed first
fundamental form

E0 = ρ2

F0 = 0
G0 = ρ2 sin2 θ1,

those of the unperturbed second fundamental form (following the classical notation of the theory of
surfaces, we denote with l0,m0, n0 the quantities h̊011 , h̊012 , h̊022)

l0 = ρ

m0 = 0
n0 = ρ sin2 θ1

and the unperturbed mean curvature and Gaussian curvature

H0 =
2
ρ

D0 =
1
ρ2

.
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From formula (22) in the proof of Lemma 3.4 in [Mon] and the above expressions of the unperturbed
quantities we have immediately that

∫
Sρ

p

H2
ε

4
dΣε = 4π − 1

2
ε

∫
S2

[
h(θ̄1, θ̄1) + h(θ̄2, θ̄2)

]
dΣ0 −

1
2
ερ

∫
S2

[
(θ̄µ

2 θ̄ν
2 + θ̄µ

1 θ̄ν
1 )νλ

0 Aµνλ

]
dΣ0

−ε

∫
(0,π)×(0,2π)

[
h

(
∂ν0

∂θ2
, θ̄2

)
+
(

∂N

∂θ2
, θ̄2

)]
dθ1dθ2 − ε

∫
S2

[
h

(
∂ν0

∂θ1
, θ̄1

)
+
(

∂N

∂θ1
, θ̄1

)]
dΣ0 + o(ε).(43)

Now we have to compute
∫

Sρ
p

DεdΣε. Knowing the first and the second fundamental forms we can evaluate

Dε := det h̊ε

det g̊ε
, in fact observing that

det h̊ε = det h̊0 − εn0

[
h

(
∂ν0

∂θ1
, θ1

)
+
(

∂N

∂θ1
, θ1

)]
− 1

2
εn0θ

µ
1 θν

1νλ
0 Aµνλ +

−εl0

[
h

(
∂ν0

∂θ2
, θ2

)
+
(

∂N

∂θ2
, θ2

)]
− 1

2
εl0θ

µ
2 θν

2νλ
0 Aµνλ + o(ε)(44)

and that
det g̊ε = det g̊0 + εE0h(θ2, θ2) + εG0h(θ1, θ1),

using the Taylor expansion 1
a+εb+o(ε) = 1

a − ε b
a2 + o(ε), we get

Dε = D0 − ε

n0

[
h

(
∂ν0
∂θ1 , θ1

)
+
(

∂N
∂θ1 , θ1

)]
+ 1

2n0θ
µ
1 θν

1νλ
0 Aµνλ + l0

[
h

(
∂ν0
∂θ2 , θ2

)
+
(

∂N
∂θ2 , θ2

)]
+ 1

2 l0θ
µ
2 θν

2νλ
0 Aµνλ

E0G0

−ε

[
E0h(θ2, θ2) + G0h(θ1, θ1)

]
det h̊0

(E0G0)2
+ o(ε).

Recalling (35) we obtain

∫
Sρ

p

DεdΣε =
∫

Sρ
p

D0dΣ0 +
ε

2

∫
(0,π)×(0,2π)

D0

{
E0h(θ2, θ2) + G0h(θ1, θ1)√

E0G0

}
dθ1dθ2

−ε

∫
(0,π)×(0,2π)

{n0

[
h

(
∂ν0
∂θ1 , θ1

)
+
(

∂N
∂θ1 , θ1

)]
+ 1

2n0θ
µ
1 θν

1νλ
0 Aµνλ + l0

[
h

(
∂ν0
∂θ2 , θ2

)
+
(

∂N
∂θ2 , θ2

)]
√

E0G0

}
dθ1dθ2

−ε

∫
(0,π)×(0,2π)

{
1
2 l0θ

µ
2 θν

2νλ
0 Aµνλ√

E0G0

+

[
E0h(θ2, θ2) + G0h(θ1, θ1)

]
det h̊0

(E0G0)3/2

}
dθ1dθ2 + o(ε).

(45)

Plugging the unperturbed quantities into (45), after some easy computations we get∫
Sρ

p

DεdΣε = 4π − 1
2
ε

∫
S2

[
h(θ̄2, θ̄2) + h(θ̄1, θ̄1)

]
dΣ0 − ε

∫
(0,π)×(0,2π)

[
h

(
∂ν0

∂θ2
, θ̄2

)
+
(

∂N

∂θ2
, θ̄2

)]
dθ1dθ2

−ε

∫
S2

{[
h

(
∂ν0

∂θ1
, θ̄1

)
+
(

∂N

∂θ1
, θ̄1

)]
+

ρ

2
[θ̄µ

1 θ̄ν
1νλ

0 Aµνλ + θ̄µ
2 θ̄ν

2νλ
0 Aµνλ]

}
dΣ0 + o(ε).(46)

Comparing the integrals (43) and (46) we see that all terms cancel out and we can conclude that∫
Sρ

p

[H2
ε

4
−Dε

]
dΣε = o(ε).
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In the following Lemma we find the expansion of the reduced functional Φε in terms of I0, G1, G2 and
their derivatives. Recall the notation introduced in Remark 4.1 about I ′0 and I ′′0 and the definition of R2

given in the Subsection 4.1 after Lemma 4.2.

Lemma 4.7. For ρ > R2 the reduced functional has the following expression:

Φε = ε2
(

G2(Sρ
p)− 1

2

∫
S2

[
G′

1(S
ρ
p)
(
I ′′0 (Sρ

p)−1
[
G′

1(S
ρ
p)
])]

dΣ0

)
+ o(ε2).

Proof. With a Taylor expansion in ε, w and recalling that ‖w‖C4,α = O(ε) (see Lemma 4.3), we have

I ′ε(S
ρ
p(w)) = I ′0(S

ρ
p(w)) + εG′

1(S
ρ
p(w)) + o(ε)

= I ′0(S
ρ
p) + I ′′0 (Sρ

p)[w] + εG′
1(S

ρ
p) + o(ε).

Since I ′0(S
ρ
p) = 0 and w satisfies the auxiliary equation PI ′ε(S

ρ
p(w)) = 0, we must have

w = −εI ′′0 (Sρ
p)−1[PG′

1(S
ρ
p)].

Observe that from G1(Sρ
p) ≡ 0 ∀p, ρ it follows that G′

1(S
ρ
p) ∈ Ker[4S2(4S2 +2)]⊥, so PG′

1(S
ρ
p) = G′

1(S
ρ
p).

Hence, recalling that I0(Sρ
p) = 0, I ′0(S

ρ
p) = 0, G1(Sρ

p) = 0 we have

Iε(Sρ
p(w)) = I0(Sρ

p(w)) + εG1(Sρ
p(w)) + ε2G2(Sρ

p(w)) + o(ε2)

=
1
2

∫
S2

[
I ′′0 (Sρ

p)[w] w
]
dΣ0 + ε

∫
S2

[
G′

1(S
ρ
p) w

]
dΣ0 + ε2G2(Sρ

p) + o(ε2)

= −1
2
ε2
∫

S2

[
G′

1(S
ρ
p) I ′′0 (Sρ

p)−1[G′
1(S

ρ
p)]
]
dΣ0 + ε2G2(Sρ

p) + o(ε2).

Now we want to estimate the quantities G′
1(S

ρ
p) and G2(Sρ

p) appearing in the expression of the reduced
functional.

Lemma 4.8. Writing the conformal Willmore functional on perturbed standard spheres as in (34), we
get the following expressions for the differential of G1 and for G2 evaluated on Sρ

p :

G′
1(S

ρ
p) = L(h) + (1 + ρ)

[
L(Dh) + L(D2h) + L(D3h)

]
G2(Sρ

p) =
∫

Sρ
p

[ 1
ρ2

L(h)L(Dh) +
1
ρ
L(h)L(Dh) +

1
ρ2

(Q(h) + Q(Dh)) +
1
ρ
Q(Dh) + Q(Dh)

]
where L(.) and Q(.) denote a generic linear (respectively quadratic) function in the entries of the matrix
argument with smooth coefficients on S2 which can change from formula to formula and also in the same
formula.

Proof. To get the expression of the desired quantities we compute the expansion of Iε(Sρ
p) at second order

in ε and first order in w. In the intention of simplifying the notation, we will omit the remainder terms in
the expansions. During the proof we use L(.) and Q(.) to denote a generic linear (respectively quadratic)
in the components real, vector or matrix-valued function, with real, vector or matrix argument and with
smooth coefficients on S2. The letter a will denote a smooth real, vector or matrix-valued function on
S2. L, Q and a can change from formula to formula and also in the same formula.

Let us start with the expansion. Observe that Sρ
p is parametrized by p + ρ(1 − w)Θ so the tangent

vectors are
Zi = ρ(1− w)Θi − ρwiΘ = ρ(a + L(w) + L(Dw)).

The first fundamental form on Sρ
p is

g̊ij = gε(Zi, Zj) = (Zi, Zj) + εh(Zi, Zj) = ρ2
[
a + L(w) + L(Dw) + εL(h)(a + L(w) + L(Dw))

]
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and
det g̊ = ρ4

[
a + L(w) + L(Dw) + εL(h)(a + L(w) + L(Dw)) + ε2Q(h)

]
√

det g̊ = ρ2
[
a + L(w) + L(Dw) + εL(h)(a + L(w) + L(Dw)) + ε2Q(h)

]
;

it’s easy to see that the inverse of metric is

g̊ij =
1
ρ2

[
a + L(w) + L(Dw) + εL(h)(a + L(w) + L(Dw)) + ε2Q(h)

]
.

The normal versor νε has to satisfy the three following equations:

0 = gε(νε, Zi) = (νε, Zi) + εh(νε, Zi) = νε(1 + εL(h))
(
a + L(w) + L(Dw)

)
1 = gε(νε, νε).

Hence, just solving the linear system given by the first two conditions and plugging in the third one, we
realize that

νε = a + L(w) + L(Dw) + εL(h)(a + L(w) + L(Dw)) + ε2Q(h).

In order to compute the second fundamental form h̊ε = −gε(∇Zi
νε, Zj) recall that

∇Zi
νε =

∂νε

∂θi
+ Zµ

i νλ
ε Γν

µλ

∂

∂xν

and that
Γν

µλ =
1
2
εδνσ[Dµhλσ + Dλhσµ −Dσhµλ] = εL(Dh),

so the covariant derivative of νε can be written as

∇Zi
νε = a + L(w) + L(Dw) + L(D2w) + εL(Dh)(a + L(w) + L(Dw)) + εL(h)(a + L(w) + L(Dw) + L(D2w))

+ερL(Dh)
(
a + L(w) + L(Dw)

)
+ ε2(1 + ρ)L(h)L(Dh)

and the second fundamental form becomes

h̊ε = ρ
[
a + L(w) + L(Dw) + L(D2w) + εL(Dh)(a + L(w) + L(Dw)) + εL(h)(a + L(w) + L(Dw) + L(D2w))

]
+ερ2L(Dh)

(
a + L(w) + L(Dw)

)
+ ε2ρ(1 + ρ)L(h)L(Dh) + ε2ρQ(h).

Using the previous formulas now we are in position to estimate H, H2 and D. With some easy compu-
tations one gets

H =
1
ρ

[
a + L(w) + L(Dw) + L(D2w) + εL(Dh)(a + L(w) + L(Dw)) + εL(h)(a + L(w) + L(Dw) + L(D2w))

]
+εL(Dh)

(
a + L(w) + L(Dw)

)
+ ε2

1
ρ
(1 + ρ)L(h)L(Dh) + ε2

1
ρ
Q(h).

H2 =
1
ρ2

[
a + L(w) + L(Dw) + L(D2w) + ε(L(h) + L(Dh) + ρL(Dh))(a + L(w) + L(Dw) + L(D2w))

]
+ε2

1
ρ2

(1 + ρ)L(h)L(Dh) +
ε2

ρ2
(Q(h) + Q(Dh)) +

ε2

ρ
L(Dh)(L(h) + L(Dh)) + ε2Q(Dh)

det h̊ = ρ2
[
a + L(w) + L(Dw) + L(D2w) + ε(L(h) + L(Dh) + ρL(Dh))(a + L(w) + L(Dw) + L(D2w))

]
+ε2ρ2(1 + ρ)L(h)L(Dh) + ε2ρ2(Q(h) + Q(Dh)) + ε2ρ3(1 + ρ)Q(Dh)

D =
det h̊

det g̊
=

1
ρ2

[
a + L(w) + L(Dw) + L(D2w) + ε(L(h) + L(Dh) + ρL(Dh))(a + L(w) + L(Dw) + L(D2w))

]
+

ε2

ρ2
(1 + ρ)L(h)L(Dh) +

ε2

ρ2
(Q(h) + Q(Dh)) + ε2

1
ρ
(1 + ρ)Q(Dh)

29



Now we can compute Iε(Sρ
p(w)) = I0(Sρ

p(w)) + εG1(Sρ
p(w)) + ε2G2(Sρ

p(w)) at the second order in ε and
first order in w:

Iε(Sρ
p)) =

∫
Sρ

p

[
H2

4
−D

]
dΣ0 =

∫
S2

[
a + L(w) + L(Dw) + L(D2w)

]
dΣ0

+ε

∫
S2

[(
L(h) + L(Dh) + ρL(Dh)

)(
a + L(w) + L(Dw) + L(D2w)

)]
dΣ0

+ε2
∫

S2

[
(1 + ρ)L(h)L(Dh) + ρL(Dh)(L(h) + L(Dh)) + Q(h) + Q(Dh) + ρQ(Dh) + ρ2Q(Dh)

]
dΣ0.

So G1(Sρ
p(w)) =

∫
S2 [(L(h) + L(Dh) + ρL(Dh)

)(
a + L(w) + L(Dw) + L(D2w))], but also

G1(Sρ
p(w)) = G1(Sρ

p) +
∫

S2
G′

1(S
ρ
p)wdΣ0;

with an integration by parts we get the first variation∫
S2

G′
1(S

ρ
p)w =

∫
S2

[(
L(h) + (1 + ρ)

(
L(Dh) + L(D2h) + L(D3h)

))
w
]
dΣ0,

then the differential of G1 at Sρ
p is

G′
1(S

ρ
p) = L(h) + (1 + ρ)

[
L(Dh) + L(D2h) + L(D3h)

]
.

Finally observe that

G2(Sρ
p) =

∫
Sρ

p

[1 + ρ

ρ2
L(h)L(Dh)+

1
ρ
L(Dh)(L(h)+L(Dh))+

1
ρ2

(Q(h)+Q(Dh))+
1
ρ
Q(Dh)+Q(Dh)

]
dΣ0

4.3 Proof of the existence Theorems

In order to get existence of critical points we study the reduced functional Φε : R3 ⊕ R+ → R. Since for
small radius ρ, the reduced functional coincides with the conformal Willmore functional evaluated on the
perturbed geodesic spheres Sε

p,ρ(wε(p, ρ)) obtained in Lemma 3.10, then we know the expansion of Φε for
small radius from Proposition 3.11. Now, using the expression of the reduced functional for large radius
given in Lemma 4.7 and the estimates of Lemma 4.8, we are able to bound Φε(p, ρ) for large radius. This
is done in the following Lemma:

Lemma 4.9. Let hµν ∈ C∞
0 (R3) a symmetric bilinear form with compact support (it is enough that h

and its first derivatives decrease fast at infinity) and let c ∈ R such that

c := sup{‖hµν‖H1(π) : π is an affine plane in R3, µ, ν = 1, 2, 3}.

Then there exists a constant Cc > 0 depending on c and R3 > 0 such that for all ρ > R3

|Φε(p, ρ)| < ε2Cc.

Moreover one has that ∀η > 0 there exist δ > 0 small enough and R4 ≥ 0 large enough such that for c < δ
and ρ > R4

|Φε(p, ρ)| < ηε2.
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Proof. For simplicity the proof of the Lemma is done in the case h ∈ C∞
0 . Using the notations established

in Remark 4.1, from Lemma 4.7 and Lemma 4.8 we can write the reduced functional as

Φε(p, ρ) = ε2
(

G2(Sρ
p)− 1

2

∫
S2

[
G′

1(S
ρ
p)((I ′′0 (Sρ

p))−1
[
G′

1(S
ρ
p)
]
)
])

+ o(ε2)

= ε2
∫

Sρ
p

[ 1
ρ2

L(h)L(Dh) +
1
ρ
L(h)L(Dh) +

1
ρ2

(Q(h) + Q(Dh)) +
1
ρ
Q(Dh) + Q(Dh)

]
dΣ0

+ε2
∫

Sρ
p

1
ρ2

[
L(h) + (1 + ρ)(L(Dh) + L(D2h) + L(D3h))×

×(4S2(4S2 + 2))−1
[
L(h) + (1 + ρ)(L(Dh) + L(D2h) + L(D3h))

]]
dΣ0.

Now denote K = supp(h) which is a compact subset of R3; of course in the formula above the domain of
integration can be replaced with Sρ

p ∩K.
Observe that for all σ > 0 there exists R > 0 with the following property:

for all standard spheres Sρ
p with radius ρ > R there exists an affine plane π ⊂ R3 such that

(47) ‖h‖2H1(Sρ
p∩K) < ‖h‖2H1(π∩K) + σ.

This is simply because one can approximate (in Ck norm for all k ∈ N ) the portion of standard sphere
Sρ

p ∩K with a portion of an affine plane π provided that the radius ρ is large enough.
So the first integral can be bounded by a constant times ‖h‖2H1(π∩K) + σ. Using the standard elliptic

regularity estimates and integration by parts also the second integral can be bounded with a constant
times ‖h‖2H1(π∩K) + σ.
Hence for all σ > 0 there exists R > 0 and C̃ > 0 such that for all (p, ρ) with ρ > R, there exists an affine
plane π such that

|Φε(p, ρ)| < ε2C̃(‖h‖2H1(π∩K) + σ).

Notice that C̃ depends on the structure of the functions L(.) and Q(.) but is uniform in (p, ρ), R and σ
as above. Recalling the definition of c we get:

For all σ > 0 there exists R > 0 such that for all (p, ρ) with ρ > R,

|Φε(p, ρ)| < ε2C̃(c2 + σ).

Clearly setting σ = 1, R3 = R and Cc = C̃(c2 +1) one obtains the first part of the thesys. For the second
part we have to show that for all η > 0 there exist δ > 0 and R4 > 0 such that if c < δ then for all (p, ρ)
with ρ > R4 one has Φε(p, ρ) < ε2η; but this is true setting above δ2 = σ = η

2C̃
and R4 = R associated

to σ as before (observe that the estimate is uniform in p).

Now we are in position to prove the main results of the paper.

Proof of Theorem 1.1 In order to show the Theorem, by Lemma 4.4, it is enough to prove that
Φε has a critical point.
Observe that for ρ < R1

Φε(p, ρ) = Iε(Sε
p,ρ(wε)) = O(ρ4),

so Φε can be extended to a C1 function up to ρ = 0 just putting Φε(p, 0) = 0 for all p ∈ R3.
Let R3 and Cc be as in Lemma 4.9. Since h has compact support, there exists a R > 0 such that for
|p| ≥ R and ρ ≤ R3, Sρ

p ∩ supp(h) = ∅.
In order to apply the Finite Dimensional Reduction, we have to fix a compact Zc ⊂ R3 ⊕R+. Let us

choose it as
Zc := {(p, ρ) : |p| ≤ R, 0 ≤ ρ ≤ R3}.

Apply Lemma 4.3 to the compact Zc and observe that on the boundary ∂Zc we have:
- ρ = 0: Φε = 0.
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- |p| = R: Φε = 0. In fact for |p| = R the standard sphere Sρ
p does not intersect the support of h, so

Σε
p,ρ = Sρ

p for all the radius 0 ≤ ρ ≤ R3; since the solution of the auxiliary equation PI ′ε(Σ
ε
p,ρ(wε)) = 0

is unique for wε small enough and since Sρ
p is already a critical point for Iε(= I0 since Sρ

p ∩ supp(h) = ∅)
it follows that Σε

p,ρ(wε) = Sρ
p , hence

Φε(p, ρ) = Iε(Σε
p,ρ(wε)) = Iε(Sρ

p) = I0(Sρ
p) = 0.

-ρ = R3: from Lemma 4.9 we have that |Φε| < ε2Cc.
Now observe that Φε = O(ε2) uniformly on Zc:

from the definition of reduced functional, with a Taylor expansion one gets

Φε(p, ρ) = Iε(Σε
p,ρ(wε)) = I ′ε(Σ

ε
p,ρ)[wε] + O(‖wε‖2),

but ‖wε‖C4,α(S2) = O(ε) and ‖vε‖C4,α(S2) = O(ε) uniformly for (p, ρ) ∈ Zc, so

I ′ε(Σ
ε
p,ρ) = I ′ε(S

ρ
p(vε)) = I ′′0 (Sρ

p)[vε] + εG′
1(S

ρ
p) + o(ε) = O(ε)

hence Φε = O(ε2) uniformly on Zc.
At this moment we know that Φε is of order O(ε2) uniformly on Zc and we know its behaviour on the

boundary ∂Zc.
Now we are going to use the expansion for small radius computed in Proposition 3.11. Recall that for
ρ < R1, Φε(p, ρ) = Iε(Sε

p,ρ(wε(p, ρ))) and from Proposition 3.11 we have the expansion:

Φε(p, ρ) =
π

5
‖Sp‖2ρ4 + O(ε2)Op(ρ5).

Recalling (6), the first term can be written as ‖Sp‖2 = ε2s̃p + o(ε2), so

Φε(p, ρ) =
π

5
ε2s̃pρ

4 + ρ4o(ε2) + O(ε2)Op(ρ5).

Choose ρ̄ < R1 such that for small ε the remainder |ρ̄4o(ε2) + O(ρ̄5)O(ε2)| < ε2 and choose Ac > 5
π

Cc+1
ρ̄4 .

If there exists a point p̄ such that s̃p̄ > Ac then

Φε(p̄, ρ̄) > ε2Cc

so Φε attains its global maximum on Zc at an interior point (pε, ρε) for all ε small enough and applying
Lemma 4.4 we can say that Σε

p,ρ(wε(p, ρ)) is a critical point of Iε for ε small enough.
Since for ε → 0 we have ‖vε‖C4,α(S2) → 0 and ‖wε‖C4,α(S2) → 0 (see Lemma 4.2 and Lemma 4.3), then
the critical point Σε

p,ρ(wε(p, ρ)), for small ε, can be realized as normal graph on a standard sphere and it
converges to a standard sphere as ε → 0.

Proof of Theorem 1.2 Recall (6) and let p̄ ∈ R3 be a maximum point of the first term in the expansion
of the squared norm of the Traceless Ricci tensor: s̃p̄ = M . Observe that from Proposition 3.11 and from
the proof of the last Theorem, for small radius ρ the reduced functional Φε(p̄, ρ) expands as

Φε(p̄, ρ) =
π

5
ε2s̃p̄ρ

4 + ρ4o(ε2) + O(ε2)Op̄(ρ5).

Let ρ̄ and ε small enough such that the remainder |ρ̄4o(ε2) + O(ε2)Op̄(ρ̄5)| < π
10Mε2ρ̄4; in this way

Φε(p̄, ρ̄) >
π

10
Mε2ρ̄4.

From the second part of Lemma 4.9 there exist δM > 0 and R4 > 0 such that, if c < δM

|Φε(p, ρ)| < π

11
Mε2ρ̄4 ∀(p, ρ) : ρ ≥ R4.
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(Recall that h has compact support and if Σε
p,ρ(wε(p, ρ)) does not intersect supp(h) then Φε(p, ρ) = 0.)

As in the proof of Theorem 1.1, let R > 0 be such that for |p| ≥ R and ρ ≤ R4, Sρ
p ∩ supp(h) = ∅;

now we apply the Finite Dimensional Reduction to the compact subset Zc ⊂ R3 ⊕ R+ defined as

Zc := {(p, ρ) : |p| ≤ R, 0 ≤ ρ ≤ R4}.

If we apply Lemma 4.3 to the compact Zc, from the previous discussion and from the proof of Theorem
1.1, on the boundary ∂Zc we have:
- ρ = 0: Φε = 0.
- |p| = R: Φε = 0.
-ρ = R4: |Φε(p, ρ)| < π

11Mε2ρ̄4.
Observe that (p̄, ρ̄) is an interior point of ∂Zc and that

Φε(p̄, ρ̄) >
π

10
Mε2ρ̄4 > sup

(p,ρ)∈∂Zc

|Φε(p, ρ)|

so Φε attains its global maximum on Zc at an interior point (pε, ρε) for all ε small enough. Applying
Lemma 4.4 we can say that Σε

p,ρ(wε(p, ρ)) is a critical point of Iε for ε small enough and we conclude as
in the previous Theorem.
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