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Abstract

We prove the existence of periodic solutions for first order planar systems
at resonance. The nonlinearity is indeed allowed to interact with two positively
homogeneous Hamiltonians, both at resonance, and some kind of Landesman-
Lazer conditions are assumed at both sides. We are thus able to obtain, as
particular cases, the existence results proposed in the pioneering papers [27]
by Lazer and Leach, and [18] by Frederickson and Lazer. Our theorem also
applies in the case of asymptotically piecewise linear systems, and in particular
generalizes Fabry’s results in [10], for scalar equations with double resonance
with respect to the Dancer-Fučik spectrum.

1 Introduction

In 1969, Lazer and Leach studied in [27] the periodic problem{
ẍ+ λNx+ h(x) = e(t)
x(0) = x(T ), ẋ(0) = ẋ(T ),

where h is continuous and bounded, and λN = (2πN
T )2 for some positive integer N .

In this setting, they proved that a sufficient condition for the existence of a solution
is

2

π

(
lim inf
x→+∞

h(x)− lim sup
x→−∞

h(x)
)
>
√
a2
N + b2N ,

where

aN =
2

T

∫ T

0
e(s) cos

(
2πN

T
s

)
ds and bN =

2

T

∫ T

0
e(s) sin

(
2πN

T
s

)
ds (1)

are the Fourier coefficients of the forcing term e(t). Since λN is an eigenvalue of the
differential operator, this situation is sometimes referred to as nonlinear resonance.

For the more general problem{
ẍ+ g(t, x) = 0
x(0) = x(T ), ẋ(0) = ẋ(T ),

(2)
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where g(t, x) = λNx+h(t, x), with h continuous and bounded, such a condition can
be generalized as follows:∫

{v>0}
lim inf
x→+∞

h(t, x)v(t) dt+

∫
{v<0}

lim sup
x→−∞

h(t, x)v(t) dt > 0, (3)

for every v 6= 0 which solves the homogeneous equation v̈ + λNv = 0. Since 1970,
when Landesman and Lazer introduced in [25] a similar condition for a Dirich-
let problem associated to an elliptic operator, (3) has always been referred to as
Landesman-Lazer condition. There have been generalizations in several directions,
see for instance [1, 7, 8, 9, 10, 11, 12, 19, 21, 23, 28, 29].

In particular, Brezis and Nirenberg proposed, in [1], an abstract version of
Landesman-Lazer results in a Hilbert space H. For a given N : H → H, they
introduced the recession function JN : H → R, defined by

JN (z) = lim inf
λ→+∞
w→z

(N (λw)|w), (4)

where (·|·) denotes the scalar product in H. They proved an existence result (cf. [1,
Theorem III.1]) assuming that JN (v) > 0 for every v 6= 0 belonging to the kernel
of the linear operator appearing in their abstract equation. In the particular case
of problem (2), with g(t, x) as above, taking H = L2(0, T ) and denoting by N the
Nemytzkii operator associated to h(t, x), they showed that

JN (v) ≥
∫
{v>0}

lim inf
x→+∞

h(t, x)v(t) dt+

∫
{v<0}

lim sup
x→−∞

h(t, x)v(t) dt,

for every v 6= 0 satisfying v̈+ λNv = 0, and they were able to recover the existence
result in [25].

The boundedness assumption on h(t, x) is not really necessary. It was already
noticed, in the above quoted papers, that the function g(t, x) can be asymptotically
controlled by two lines having consecutive eigenvalues as slopes. For instance, in
[11, 12] a “double resonance” situation has been considered, taking

g(t, x) = γ(t, x)x+ r(t, x),

with λN ≤ γ(t, x) ≤ λN+1 and r(t, x) bounded, and assuming that a Landesman-
Lazer type condition holds with respect to both eigenvalues λN and λN+1. This
situation has been further extended by Fabry in [10], where a double resonance
situation was considered with respect to the Dancer-Fučik spectrum. He assumed
that

g(t, x) = γ1(t, x)x+ − γ2(t, x)x− + r(t, x),

with γ1 and γ2 such that

a+ ≤ γ1(t, x) ≤ b+, a− ≤ γ2(t, x) ≤ b−,

and r(t, x) bounded, being the points (a−, a+) and (b−, b+) on two consecutive
curves of the Dancer-Fučik spectrum. The existence result was obtained by adding
again Landesman-Lazer conditions on both sides.
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In this paper, we want to generalize Fabry’s result to the periodic problem
associated to a more general planar system, like{

u̇ = F (t, u)
u(0) = u(T ),

(5)

where F is controlled by two positively homogeneous functions, for which resonance
occurs, with some kind of Landesman-Lazer conditions to be imposed at both sides.
In order to do this, we assume that F has the following decomposition:

F (t, u) = −(1− γ(t, u))J∇H1(u)− γ(t, u)J∇H2(u) + r(t, u), (6)

being J the standard 2× 2 symplectic matrix, namely

J =

(
0 −1
1 0

)
,

and 0 ≤ γ(t, u) ≤ 1. Moreover, we assume r(t, u) to be bounded by a L2-function,
and H1, H2 to be C1-functions which are positively homogeneous of order 2 and
positive, i.e.

0 < Hi(λu) = λ2Hi(u), for every u 6= 0 and λ > 0,

for i = 1, 2. Hence, the origin is an isochronous center for the systems Ju̇ = ∇Hi(u),
i = 1, 2. If ϕ satisfies Jϕ̇ = ∇H1(ϕ), and ψ satisfies Jψ̇ = ∇H2(ψ), and they are
nonzero, letting τϕ and τψ be their minimal periods, we suppose that there exists
a positive integer N such that

T

N + 1
≤ τψ < τϕ ≤

T

N
. (7)

When equalities hold in (7), this condition gives rise to double resonance.

It seems difficult to apply the Brezis-Nirenberg approach to this type of situa-
tion; however, we can consider some kind of recession function in R2 instead of H.
More precisely, denoting by ϕω(t) and ψω(t) the functions ϕ(t + ω) and ψ(t + ω)
respectively, by N1 the Nemytzkii operator associated to JF − ∇H1, and by N2

the Nemytzkii operator associated to ∇H2 − JF , we define

J̃1(t; θ) = lim inf
λ→+∞
ω→θ

〈N1(λϕω)(t)|ϕω(t)〉, (8)

and
J̃2(t; θ) = lim inf

λ→+∞
ω→θ

〈N2(λψω)(t)|ψω(t)〉, (9)

where 〈·|·〉 is the euclidean scalar product in R2. In order to generalize the Landesman-
Lazer conditions at both sides, we thus assume∫ T

0
J̃1(t; θ) dt > 0, and

∫ T

0
J̃2(t; θ) dt > 0, (10)
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for every θ ∈ [0, T ]. In this setting, we are able to prove that problem (5) has a
solution. We will show in Section 3 that our result generalizes Fabry’s one. Indeed,
for problem (2), assuming the classical Landesman-Lazer conditions at both sides
implies (10).

Coming back to the scalar case, it is worth underlining that, under the hypoth-
esis that h(t, x) is bounded and strictly increasing in x, Lazer and Leach proved
in [27] that condition (3) is indeed necessary and sufficient for the existence of a
periodic solution. Hence, in this case, the Landesman-Lazer condition, the Brezis-
Nirenberg condition and ours are all equivalent one with the other.

It is interesting to notice that in 1969, the same year of publication of the Lazer-
Leach result, Frederickson and Lazer introduced in [18] a rather similar condition
for second order equations of Liénard or Rayleigh type, where the nonlinearity
depends on the derivative of the solution x. For instance, considering the Rayleigh
periodic problem {

ẍ+Q(ẋ) + x = e(t),
x(0) = x(T ), ẋ(0) = ẋ(T ),

(11)

with the assumption that Q(x) is strictly increasing, and that

2

π

(
lim

x→+∞
Q(x)− lim

x→−∞
Q(x)

)
>
√
a2
N + b2N ,

being aN and bN as in (1), they proved that (11) has a solution.

There is a qualitative difference between this situation and the one when the
nonlinearity Q depends on x rather than ẋ (see [2, 20, 22, 32], and the references
therein). However, it is still possible to see some analogy between the result proved
by Frederickson and Lazer and the one by Lazer and Leach. In order to understand
this analogy, we introduce in Section 6 a planar system like{

u̇ = −γ̂(t, u)J∇H(u) + r(t, u)
u(0) = u(T ),

where H is positively homogeneous of order 2 and positive, α ≤ γ̂(t, u) ≤ β for
suitable positive constants α, β, and r(t, u) is bounded by a L2-function. This means
that we are considering a system like (5), assuming that F has a decomposition like
(6), but this time with H1, H2 being multiples of a single function H. In this setting,
we are able to provide a condition which includes both the Landesman-Lazer and
the Frederickson-Lazer ones. Again, since Frederickson and Lazer proved that their
condition is also necessary when Q is strictly increasing, this turns to be another
case of necessity of our condition.

The proofs of our results use degree theory, and the degree of the associated
operator is proved to be equal to 1. In order to obtain the required a priori esti-
mates, we exploit in several occasions the planar framework of our problem, so that
some kind of polar coordinates can be used. We will show that the Landesman-
Lazer condition is needed to control the angular component of the solutions, while
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the Frederickson-Lazer condition gives information on their radial component. In
Sections 6 and 7, we will combine the information obtained from either of the two
conditions, in order to generalize the above mentioned existence results.

We recall that, when H1 = H2, different types of conditions generalizing the
ones in [18, 27] have been proposed in [4, 5, 13, 14, 16, 17]. The main point in these
papers, however, is that the associated degree can also be an arbitrary negative
number, and can sometimes take large positive values, as well. The possibility of
obtaining this kind of results in the case of double resonance with two different
Hamiltonians is still to be investigated.

2 Double resonance in the case of two Hamiltonian
functions

We consider the problem

(P)

{
u̇ = F (t, u)
u(0) = u(T ),

where F : [0, T ]×R2 → R2 is a L2-Carathéodory function, that is to say, F satisfies
the following three conditions:

1. for every u ∈ R2, the function t 7→ F (t, u) is measurable;

2. for almost every t ∈ [0, T ], the function u 7→ F (t, u) is continuous;

3. for every R > 0, there exists ηR ∈ L2(0, T ) such that, for almost every
t ∈ [0, T ] and every u ∈ R2, with |u| ≤ R,

|F (t, u)| ≤ ηR(t).

Let us first recall some basilar facts about positively homogeneous Hamiltonian
systems, referring to [15] for further details. First of all, if H : R2 → R is a
C1-function which satisfies

0 < H(λu) = λ2H(u), for every u 6= 0 and λ > 0, (12)

so that H is positively homogeneous of order 2, Euler’s formula holds:

〈∇H(u)|u〉 = 2H(u), for every u ∈ R2.

Notice that this implies that the only equilibrium point for the autonomous Hamil-
tonian system Ju̇ = ∇H(u) is u = 0. As a consequence, according to Corollary 1
in [31], for every u0 ∈ R2 there is uniqueness for the Cauchy problem{

Ju̇ = ∇H(u)
u(0) = u0,
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even without assuming any Lipschitz continuity of the right-hand side. It can then
be proved that the origin is an isochronous center for the autonomous system

Ju̇ = ∇H(u),

that is to say, all the solutions of this system are periodic with the same minimal
period τ . Moreover, it can be seen that, if ϕ 6= 0 is a solution, every other solution
has the form u(t) = Cϕ(t+ ω), for suitable C ≥ 0, ω ∈ [0, τ [ .

Our aim is to consider F (t, u) in some sense “lying between” two positively
homogeneous Hamiltonian functions, say H1 and H2, which satisfy (12) and

H1(u) ≤ H2(u), for every u ∈ R2. (13)

We will consider a situation where double resonance can occur. Let ϕ and ψ satisfy,
respectively,

Jϕ̇ = ∇H1(ϕ), and Jψ̇ = ∇H2(ψ),

and let τϕ, τψ be their minimal periods. We will suppose that there exists a positive
integer N such that

T

N + 1
≤ τψ < τϕ ≤

T

N
, (14)

with possible equalities at both sides. Recall that H1(ϕ(t)) and H2(ψ(t)) are con-
stant in t. In this setting, our statement is the following.

Theorem 2.1. Assume that (14) holds. Moreover, suppose that

1) there exist L2-Carathéodory functions γ : [0, T ] × R2 → R, with 0 ≤ γ ≤ 1,
and r : [0, T ]× R2 → R2 such that

F (t, u) = −(1− γ(t, u))J∇H1(u)− γ(t, u)J∇H2(u) + r(t, u), (15)

with r satisfying
|r(t, u)| ≤ η(t), (16)

for a suitable η ∈ L2(0, T ), for almost every t ∈ R and every u ∈ R2;

2) for every θ ∈ [0, T ], the following relations are satisfied:∫ T

0
lim inf
λ→+∞
ω→θ

[〈JF (t, λϕ(t+ ω))|ϕ(t+ ω)〉 − 2λH1(ϕ(t))] dt > 0, (17)

∫ T

0
lim inf
λ→+∞
ω→θ

[2λH2(ψ(t))− 〈JF (t, λψ(t+ ω))|ψ(t+ ω)〉] dt > 0. (18)

Then problem (P) has a solution.
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From now on, we will fix ϕ and ψ in such a way that

H1(ϕ(t)) = H2(ψ(t)) = 1
2 , for every t ∈ [0, T ]. (19)

This choice is not restrictive in view of the preceding remarks. Notice that the strict
inequality τψ < τϕ in (14) implicitly assumes that H1(cos θ, sin θ) < H2(cos θ, sin θ)
for some θ ∈ [0, 2π].

Before proving the theorem, we give the lemmas below.

Lemma 2.2. Let G : [0, T ]× R2 → R2 be a L2-Carathéodory function such that

|G(t, u)| ≤ c(t)(1 + |u|),

for almost every t ∈ [0, T ], and every u ∈ R2, being c(t) a suitable function in
L1(0, T ). Then, for every R0 > 0 there exists R1 ≥ R0 such that, if u satisfies

u̇ = G(t, u), (20)

and |u(t̄)| ≤ R0 for some t̄ ∈ [0, T ], then |u(t)| ≤ R1 for every t ∈ [0, T ].

Proof. Fix R0 > 0; we choose R1 > (R0 + ‖c‖1)e‖c‖1 , and prove that this choice
makes the statement true. Indeed, otherwise, by continuity there would exist t0, t1 ∈
[0, T ] such that |u(t0)| = R0, |u(t1)| = R1, and

R0 < |u(t)| < R1, for every t ∈ ]t0, t1[

(possibly with t1 < t0). It is then possible to pass to polar coordinates (ρ, θ) in
(20), obtaining

|ρ̇(t)| =
∣∣∣〈 u̇(t)

∣∣∣ u(t)

|u(t)|

〉∣∣∣ ≤ |G(t, u(t))| ≤ c(t)(1 + ρ(t)),

for every t ∈ [t0, t1]. By Gronwall’s lemma, then, the following estimate holds:

ρ(t) ≤ (R0 + ‖c‖1) exp
∣∣∣ ∫ t

t0

c(s) ds
∣∣∣ ,

for every t ∈ [t0, t1]. By our choice of R1, this implies ρ(t1) < R1, hence a contra-
diction.

The property stated in the above lemma is sometimes referred to as the “elastic
property”: a quite laborious proof of it, in a more general context, can be found
in [24] (proof of Theorem 6.5). As a counterpart of it, in the assumptions of the
lemma, for every R2 > 0 there exists R3 ≥ R2 such that if |u(t̄)| ≥ R3 for some
t̄ ∈ [0, T ], then |u(t)| ≥ R2 for every t ∈ [0, T ].
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Lemma 2.3. Assume that (14) is fulfilled. Then, if v ∈ H1(0, T ) satisfies{
Jv̇ = α(t)∇H1(v) + (1− α(t))∇H2(v)
v(0) = v(T ),

(21)

being α ∈ L2(0, T ), with 0 ≤ α(t) ≤ 1 for almost every t ∈ [0, T ], then v solves
either

Jv̇ = ∇H1(v),

or
Jv̇ = ∇H2(v).

Proof. First of all, we observe that a nontrivial solution of (21) never reaches the
origin. Indeed, if v(t) solves (21) then also sv(t) does, for every s > 0, thanks to the
homogeneity of the right-hand side; moreover, since the right-hand side grows at
most linearly in v, Lemma 2.2 holds. It follows that, if v(t̄) 6= 0 for some t̄ ∈ [0, T ],
then v(t) 6= 0 for every t ∈ [0, T ].
Consequently, the usual system of polar coordinates (ρ, θ) is well defined for sys-
tem (21). Writing v(t) = ρ(t)(cos θ(t), sin θ(t)), by a standard computation (recall
Euler’s formula) we get

−θ̇(t) = 2α(t)H1(cos θ(t), sin θ(t)) + 2(1− α(t))H2(cos θ(t), sin θ(t)).

Being 0 ≤ α(t) ≤ 1, it follows that

− θ̇(t)

2H2(cos θ(t), sin θ(t))
≤ 1 ≤ − θ̇(t)

2H1(cos θ(t), sin θ(t))
, (22)

for almost every t ∈ [0, T ]. Since v is T -periodic, it will perform an integer number
of turns around the origin, say m. Recalling that∫ 2π

0

dθ

2H1(cos θ, sin θ)
= τϕ ,

∫ 2π

0

dθ

2H2(cos θ, sin θ)
= τψ ,

integrating in (22) from 0 to T yields

mτψ ≤ T ≤ mτϕ,

from which, using (14),

N ≤ T

τϕ
≤ m ≤ T

τψ
≤ N + 1.

Since m is integer, this gives a contradiction unless m = N and τϕ = T/N or
m = N + 1 and τψ = T/(N + 1).
Assume the first case. We pass to generalized polar coordinates in (21) by writing
v(t) = r(t)ϕ(t+ ω(t)), and get the equations for ṙ and ω̇:

ṙ(t) = − r(t)(1− α(t))〈∇H2(ϕ(t+ ω(t)))|ϕ̇(t+ ω(t))〉, (23)

8



and
ω̇(t) = (1− α(t))(2H2(ϕ(t+ ω(t)))− 1). (24)

Since ω(0) = ω(T ), integrating in (24) from 0 to T gives

0 =

∫ T

0
(1− α(t))(2H2(ϕ(t+ ω(t)))− 1) dt,

and since our hypotheses imply (1 − α(t))(2H2(ϕ(t + ω(t))) − 1) ≥ 0 for almost
every t ∈ [0, T ], it will be

(1− α(t))(2H2(ϕ(t+ ω(t)))− 1) = 0 (25)

almost everywhere, that is to say, ω̇(t) = 0 for almost every t ∈ [0, T ]. Thus, since
ω(t) is absolutely continuous, there exists ω0 ∈ R such that ω(t) = ω0 for every
t ∈ [0, T ]. Concerning (23), it follows that

ṙ(t) = − r(t)(1− α(t))〈∇H2(ϕ(t+ ω0))|ϕ̇(t+ ω0)〉.

We want to prove that ṙ(t) = 0 for almost every t ∈ [0, T ]. Indeed, if t ∈ [0, T ],
(25) implies that either α(t) = 1, or H2(ϕ(t+ ω0)) = 1

2 . If α(t̄) = 1, then ṙ(t̄) = 0;
on the other hand, if α(t̄) < 1, then t̄ is a zero of the function t 7→ H2(ϕ(t +
ω0))−H1(ϕ(t+ ω0)), which is of class C1 and nonnegative. Necessarily t̄ is then a
minimum of this function, and so

d

dt
H2(ϕ(t+ ω0))∣∣

t=t̄

=
d

dt
H1(ϕ(t+ ω0))∣∣

t=t̄

= 0,

as H1 is preserved along ϕ. It follows that 〈∇H2(ϕ(t̄ + ω0))|ϕ̇(t̄ + ω0)〉 = 0, so
that ṙ(t̄) = 0. Summing up, ṙ(t) = 0 for almost every t ∈ [0, T ], and, since r(t) is
absolutely continuous, this implies that r(t) is constant; being v(t) = R0ϕ(t + ω0)
for some nonnegative constant R0, it follows that v is a solution of

Jv̇ = ∇H1(v).

The other case can be proved similarly.

Remark 2.4. We notice that, if (21) has a nontrivial solution, it is not possible
to say that α(t) = 0 or α(t) = 1 almost everywhere: this is a priori true only if
H1(cos θ, sin θ) < H2(cos θ, sin θ) for every θ ∈ [0, 2π]. For instance, if H1(x, y) =
1
2((x+)2 +a−(x−)2 +y2) and H2(x, y) = 1

2((x+)2 +b−(x−)2 +y2), with 0 < a− < b−,
then α(t) does not affect the orbit of the solutions in the half-plane {x > 0}.

We are now ready to give the proof of our main theorem.

Proof of Theorem 2.1. The proof will consist in carrying out a continuation argu-
ment by means of performing a suitable homotopy. Consider the family of problems,
parametrized by σ ∈ [0, 1],{

u̇ = σF (t, u)− 1−σ
2 (J∇H1(u) + J∇H2(u))

u(0) = u(T ).
(26)
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In view of [3, Theorem 2], it will be sufficient to prove that the solutions of (26)
are a priori L∞-bounded (the bound not depending on the homotopy parameter
σ), since, by [24, Lemma II.6.5],

degB(1
2(J∇H1 + J∇H2),Ω) = degB(∇H1 +∇H2,Ω) = 1,

for every bounded open subset Ω of R2 containing 0. Thus, by contradiction we
assume that, for every n ∈ N, there exist σn ∈ [0, 1], un ∈ H1(0, T ) such that{

u̇n = σnF (t, un)− 1−σn
2 (J∇H1(un) + J∇H2(un))

un(0) = un(T ),
(27)

and ‖un‖∞ → +∞. We can assume σn → σ̄ ∈ [0, 1]; thanks to hypothesis (15), by
setting vn = un

‖un‖∞ , (27) is equivalent to{
Jv̇n =

(
1+σn

2 − σnγ(t, un)
)
∇H1(vn) +

(
1−σn

2 + σnγ(t, un)
)
∇H2(vn) + σnJ

r(t,un)
‖un‖∞

vn(0) = vn(T ).

(28)
Since (vn)n is bounded in L2(0, T ), (28) implies that (vn)n is bounded in H1(0, T )
and so there exists a T -periodic function v ∈ H1(0, T ) such that (up to subse-
quences) vn → v uniformly and vn ⇀ v weakly in H1(0, T ); being ‖vn‖∞ = 1 for
every n, it is v 6= 0. Moreover, the sequence (γ(·, un(·)))n is bounded in L2(0, T ),
so (extracting a new subsequence) it weakly converges to a function Γ ∈ L2(0, T );
as {w ∈ L2(0, T ) | 0 ≤ w(t) ≤ 1 for almost every t ∈ [0, T ]} is a convex and closed
subset of L2(0, T ), it is weakly closed and this implies 0 ≤ Γ(t) ≤ 1 for almost every
t ∈ [0, T ]. Passing to the weak limit in (28), noticing that the last term vanishes
thanks to the L2-boundedness of r(t, u), we then get{

Jv̇ =
(

1+σ̄
2 − σ̄Γ(t)

)
∇H1(v) +

(
1−σ̄

2 + σ̄Γ(t)
)
∇H2(v)

v(0) = v(T ).
(29)

Notice that this excludes the case σ̄ = 0, since in this case v (which is nonzero)
would be a solution of the periodic problem{

Jv̇ = 1
2(∇H1(v) +∇H2(v))

v(0) = v(T ),

which has only the trivial solution. Being the right-hand side of the differential
equation in (29) a convex combination of ∇H1(v) and ∇H2(v) (recall that 0 ≤
Γ(t) ≤ 1 for almost every t ∈ [0, T ]), we can now use Lemma 2.3 to infer that v
solves either

Jv̇ = ∇H1(v),

or
Jv̇ = ∇H2(v).
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Let us assume this last case (the other being similar): for suitable R0 > 0, ω0 ∈
[0, τψ[ , it will be v(t) = R0ψ(t + ω0). Writing, in generalized polar coordinates,
un(t) = rn(t)ψ(t+ ωn(t)), with wn(0) ∈ [0, τψ[ for every n, (27) gives

ω̇n(t) = σn
〈JF (t, rn(t)ψ(t+ ωn(t)))|ψ(t+ ωn(t))〉

rn(t)
+

+(1− σn)(H1(ψ(t+ ωn(t))) +H2(ψ(t+ ωn(t))))− 1. (30)

Since v performs N + 1 turns around the origin in the time T , and the sequence
of T -periodic functions vn tends to v uniformly, for n sufficiently large, every vn
performs N + 1 turns around the origin, and so every un, since un = ‖un‖∞ vn.
As a consequence, for such n it is ωn(0) = ωn(T ), thus integrating in (30) gives 0.
Using (13) and (19), it follows that

0 ≥
∫ T

0
σn
rn(t)− 〈JF (t, rn(t)ψ(t+ ωn(t)))|ψ(t+ ωn(t))〉

rn(t)
dt,

from which we obtain, for n large (being σ̄ 6= 0),

0 ≥
∫ T

0

rn(t)− 〈JF (t, rn(t)ψ(t+ ωn(t)))|ψ(t+ ωn(t))〉
rVn (t)

dt, (31)

where rVn (t) = rn(t)/‖un‖∞. Hypotheses (15) and (16) now allow us to apply
Fatou’s lemma, which gives

0 ≥
∫ T

0
lim inf
n→+∞

rn(t)− 〈JF (t, rn(t)ψ(t+ ωn(t)))|ψ(t+ ωn(t))〉
rVn (t)

dt;

using standard properties of the inferior limit, taking into account that, since vn → v
uniformly, also rVn → R0 uniformly, this yields

0 ≥
∫ T

0
lim inf
n→+∞

[rn(t)− 〈JF (t, rn(t)ψ(t+ ωn(t)))|ψ(t+ ωn(t))〉] dt.

Moreover, using again the fact that vn → v uniformly, we can assume without
loss of generality that ωn(t) → ω0 uniformly, passing, if necessary, to a further
subsequence. Thus, recalling (19), for every fixed t ∈ [0, T ] we are computing the
inferior limit which appears in (18) along the particular subsequence (rn(t), ωn(t)),
for which ωn(t)→ ω0 and rn(t) = ‖un‖∞ rVn (t)→ +∞. We deduce that

0 ≥
∫ T

0
lim inf
λ→+∞
ω→ω0

[λ− 〈JF (t, λψ(t+ ω))|ψ(t+ ω)〉] dt,

which contradicts (18).
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Remark 2.5. In the previous proof, we have been able to apply Fatou’s lemma
thanks to (15) and (16), which guarantee that

〈JF (t, λw)|w〉 − 2λH1(w) ≥ −η(t), (32)

and
2λH2(w)− 〈JF (t, λw)|w〉 ≥ −η(t), (33)

for almost every t ∈ [0, T ], every w ∈ R2 with |w| ≤ 1, and λ ≥ 1, being η ∈
L2(0, T ). If we replace the assumption that r(t, u) is L2-bounded with the following
condition of sublinearity:

• for every ε > 0, there exists ηε ∈ L2(0, T ) such that, for almost every t ∈ [0, T ]
and every u ∈ R2,

|r(t, u)| ≤ ε|u|+ ηε(t),

then the statement still holds true, provided that (32) and (33) are assumed as
hypotheses.

Remark 2.6. It will often be useful, in the sequel, to write assumption (18) as∫ T

0
lim sup
λ→+∞
ω→θ

[〈JF (t, λψ(t+ ω))|ψ(t+ ω)〉 − 2λH2(ψ(t))] dt < 0. (34)

The integrals appearing in (17) and (34) depend on θ ∈ [0, T ], and in the sequel
they will often be denoted by Γ−1 (θ) and Γ+

1 (θ), respectively.

The following corollary is a straightforward consequence of Theorem 2.1. We
will denote respectively by ϕω(t) and ψω(t) the functions ϕ(t+ ω) and ψ(t+ ω).

Corollary 2.7. Assume that (14), (15) and (16) hold. Moreover, assume that∫ T

0
lim inf
λ→+∞
ω→θ

〈Jr(t, λϕω(t))|ϕω(t)〉 dt > 0, (35)

and ∫ T

0
lim sup
λ→+∞
ω→θ

〈Jr(t, λψω(t))|ψω(t)〉 dt < 0, (36)

for every θ ∈ [0, T ]. Then, problem (P) has a solution.

Proof. Being H1 ≤ H2, it holds

〈JF (t, λw)− Jr(t, λw)|w〉 − 2λH1(w) ≥ 0,

2λH2(w)− 〈JF (t, λw)− Jr(t, λw)|w〉 ≥ 0

(recall Euler’s formula). Consequently, (35) and (36) imply (17) and (18).

The corollary can be useful in the applications: from a practical point of view,
indeed, we can first check if the part which has lower order satisfies the hypotheses
of the theorem.
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We conclude this section with two remarks, which link our theorem respectively
with the results proved by Brezis and Nirenberg in [1] and with a typical tool in
Calculus of Variations, the Γ-limit of a sequence of functions.

Remark 2.8. Introducing the two functions J̃1, J̃2 : [0, T ] × [0, T ] → R as in (8),
(9), and recalling that H1(ϕ(t)) and H2(ψ(t)) are constant in t, we can write in an
equivalent way conditions (17) and (18):∫ T

0
J̃1(t; θ) dt > 0, and

∫ T

0
J̃2(t; θ) dt > 0,

for every θ ∈ [0, T ]. Writing explicitly,

J̃1(t; θ) = lim inf
λ→+∞
ω→θ

[〈JF (t, λϕ(t+ ω))|ϕ(t+ ω)〉 − 2λH1(ϕ(t+ ω))],

and
J̃2(t; θ) = lim inf

λ→+∞
ω→θ

[2λH2(ψ(t+ ω))− 〈JF (t, λψ(t+ ω))|ψ(t+ ω)〉].

It is possible to see some kind of relation between our conditions and the ones
introduced by Brezis and Nirenberg in [1]. As we have already recalled in the
introduction, they defined, in the abstract setting of Hilbert spaces, the concept of
recession function, according to (4). In this particular case, the recession functions
would be

JN1(θ) = lim inf
λ→+∞
w→z

∫ T

0
[〈JF (t, λw(t))|w(t)〉 − 2λH1(w(t))] dt,

and

JN2(θ) = lim inf
λ→+∞
w→z

∫ T

0
[2λH2(w(t))− 〈JF (t, λw(t))|w(t)〉] dt,

where w → z in L2([0, T ];R2). In some sense, the functions J̃1(t; θ) and J̃2(t; θ)
can be thought as particular recession functions in R2 instead of L2, and depending
on t (and thus still to be integrated in order to write a Landesman-Lazer type
condition). From our point of view, this approach gives the advantage of providing
conditions which are easier to handle.

Remark 2.9. Conditions (17) and (18) can also be written in terms of the Γ-liminf
of the generalized sequences of functions

Ltλ(ω) = 〈JF (t, λϕ(t+ ω))|ϕ(t+ ω)〉 − 2λH1(ϕ(t)),

and
U tλ(ω) = 2λH2(ψ(t))− 〈JF (t, λψ(t+ ω))|ψ(t+ ω)〉

(at t fixed), which are defined, as usual, by

(Γ- lim inf
λ→+∞

Ltλ)(θ) = sup
V ∈Iθ

lim inf
λ→+∞

inf
ω∈V

Ltλ(ω),

13



and
(Γ- lim inf

λ→+∞
U tλ)(θ) = sup

V ∈Iθ
lim inf
λ→+∞

inf
ω∈V

U tλ(ω),

being Iθ the filter of neighbourhoods of θ ∈ [0, T ]. Indeed, for every t, θ ∈ [0, T ] it
is known that the following equalities hold:

lim inf
λ→+∞
ω→θ

[〈JF (t, λϕ(t+ ω))|ϕ(t+ ω)〉 − 2λH1(ϕ(t))] = (Γ- lim inf
λ→+∞

Ltλ)(θ), (37)

and

lim inf
λ→+∞
ω→θ

[2λH2(ψ(t))− 〈JF (t, λψ(t+ ω))|ψ(t+ ω)〉] = (Γ- lim inf
λ→+∞

U tλ)(θ). (38)

For the reader’s convenience, let us recall the proof of the first one, the computations
for (38) being the same. It is

(Γ- lim inf
λ→+∞

Ltλ)(θ) = sup
δ>0

sup
γ>0

inf
λ≥γ

inf
|ω−θ|≤δ

Ltλ(ω)

= sup
δ,γ>0

inf
λ∈[γ,+∞)
ω∈[θ−δ,θ+δ]

[〈JF (t, λϕ(t+ ω))|ϕ(t+ ω)〉 − 2λH1(ϕ(t))].

Since a fundamental system of neighbourhoods for the ordered pair (+∞, θ) is given
by the family {[γ,+∞)× [θ − δ, θ + δ]}δ,γ>0 , and taking the inferior limit over a
fundamental system of neighbourhoods does not change its value, it follows that

(Γ- lim inf
λ→+∞

Ltλ)(θ) = lim inf
λ→+∞
ω→θ

Ltλ(ω),

and (37) is proved.
Consequently, (17) and (18) can be written in the following equivalent way:∫ T

0
Γ- lim inf

λ→+∞
Ltλ(θ) dt > 0, and

∫ T

0
Γ- lim inf

λ→+∞
U tλ(θ) dt > 0.

3 Scalar second order equations without damping

We now want to consider the scalar case, namely we will focus on the problem{
ẍ+ g(t, x) = 0
x(0) = x(T ), ẋ(0) = ẋ(T ),

(39)

where g : [0, T ]× R→ R is a L2-Carathéodory function. To begin with, assume

g(t, x) = µx+ − νx− + f(t, x),

where µ and ν are positive constants such that the pair (µ, ν) belongs to the Dancer-
Fučik spectrum (see [6, 19]) of the T -periodic problem. The equation can then be
written as {

ẋ = y
ẏ = −µx+ + νx− − f(t, x).

14



Setting u = (x, y), we define F(t, u) =

(
0

−f(t, x)

)
, and H(x, y) = 1

2(µ(x+)2 +

ν(x−)2 + y2). We will assume the following hypothesis on f :

(LL1) For every v 6= 0 satisfying the homogeneous equation

ẍ+ µx+ − νx− = 0, (40)

the following inequality holds:∫
{v>0}

lim inf
x→+∞

f(t, x)v(t) dt+

∫
{v<0}

lim sup
x→−∞

f(t, x)v(t) dt > 0.

Recall that, if v(t) solves (40), then also Cv(t + θ) does, for every C ≥ 0 and
θ ∈ [0, T [ .

Proposition 3.1. Assume hypothesis (LL1). Then, for every θ ∈ [0, T ], the fol-
lowing relation is satisfied:∫ T

0
lim inf
λ→+∞
ω→θ

〈JF(t, λϕω(t))|ϕω(t)〉 dt > 0,

being ϕ 6= 0 such that
Jϕ̇ = ∇H(ϕ). (41)

Proof. In view of the particular structure of (41), we can write ϕ = (v, v̇), for a
suitable v satisfying (40). Let θ ∈ [0, T ] be fixed; setting vθ(t) = v(t + θ), we can
write

[0, T ] = {vθ > 0} ∪ {vθ < 0} ∪N0,

where, as it is well known, the Lebesgue measure of N0 = {vθ = 0} is equal to 0
(N0 is made up by a finite number of points, as it can be easily seen by computing
explicitly vθ). Let us fix t ∈ {vθ > 0} and consider

lim inf
λ→+∞
ω→θ

〈JF(t, λϕω(t))|ϕω(t)〉 = lim inf
λ→+∞
ω→θ

f(t, λv(t+ ω))v(t+ ω).

Since limω→θ v(t+ω) = v(t+θ) > 0, we have, by standard properties of the inferior
limits,

lim inf
λ→+∞
ω→θ

f(t, λv(t+ ω))v(t+ ω) ≥ lim inf
x→+∞

f(t, x) v(t+ θ).

Fix now t ∈ {vθ < 0}; noticing that, for ω close to θ, the sign of vω will now be
negative, a similar argument yields

lim inf
λ→+∞
ω→θ

f(t, λv(t+ ω))v(t+ ω) ≥ lim sup
x→−∞

f(t, x) v(t+ θ).

15



So, ∫
{vθ>0}

lim inf
λ→+∞
ω→θ

f(t, λv(t+ ω))v(t+ ω) dt ≥
∫
{vθ>0}

lim inf
x→+∞

f(t, x) v(t+ θ) dt,

and∫
{vθ<0}

lim inf
λ→+∞
ω→θ

f(t, λv(t+ ω))v(t+ ω) dt ≥
∫
{vθ<0}

lim sup
x→−∞

f(t, x) v(t+ θ) dt.

By assumption (LL1), we immediately get∫ T

0
lim inf
λ→+∞
ω→θ

f(t, λv(t+ ω))v(t+ ω) dt > 0,

and the assertion is proved.

As a counterpart, consider the following assumption on f :

(LL2) For every v 6= 0 satisfying the homogeneous equation (40), the following
inequality holds:∫

{v>0}
lim sup
x→+∞

f(t, x)v(t) dt+

∫
{v<0}

lim inf
x→−∞

f(t, x)v(t) dt < 0.

The following proposition can be proved in the same way as Proposition 3.1.

Proposition 3.2. Assume hypothesis (LL2). Then, for every θ ∈ [0, T ], the fol-
lowing relation is satisfied:∫ T

0
lim sup
λ→+∞
ω→θ

〈JF(t, λψω(t))|ψω(t)〉 dt < 0,

being ψ 6= 0 such that
Jψ̇ = ∇H(ψ).

We are now ready to show that Theorem 2.1 includes the main result proved
by Fabry in [10].

Corollary 3.3 (Fabry 1995). Let g : [0, T ] × R → R be a Carathéodory function
such that the following conditions hold:

a+x− η(t) ≤ g(t, x) ≤ b+x+ η(t) for every x ≥ 0, and a.e. t ∈ [0, T ], (42)

b−x− η(t) ≤ g(t, x) ≤ a−x+ η(t) for every x ≤ 0, and a.e. t ∈ [0, T ], (43)
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being a−, a+, b−, b+ positive numbers such that

1
√
a+

+
1
√
a−

=
T

Nπ
, (44)

1√
b+

+
1√
b−

=
T

(N + 1)π
, (45)

for some positive integer N , and η ∈ L2(0, T ). Moreover, assume that for every
nontrivial solutions φ, ξ of

φ̈+ a+φ
+ − a−φ− = 0, and ξ̈ + b+ξ

+ − b−ξ− = 0,

respectively, the following conditions are satisfied:∫
{φ>0}

[lim inf
x→+∞

(g(t, x)− a+x)]φ(t) dt+

∫
{φ<0}

[lim sup
x→−∞

(g(t, x)− a−x)]φ(t) dt > 0,

and∫
{ξ>0}

[lim sup
x→+∞

(g(t, x)− b+x)] ξ(t) dt+

∫
{ξ<0}

[lim inf
x→−∞

(g(t, x)− b−x)] ξ(t) dt < 0.

Then problem (39) has a solution.

Proof. It can be shown (see e.g. [10, Lemma 1]) that, under conditions (42) and
(43), one can write

g(t, x) = γ1(t, x)x+ − γ2(t, x)x− + h(t, x), (46)

where h(t, x) is L2-bounded and

a+ ≤ γ1(t, x) ≤ b+, a− ≤ γ2(t, x) ≤ b−, (47)

for almost every t ∈ [0, T ], and every x ∈ R. Defining

H1(u) = 1
2(a+(x+)2 + a−(x−)2 + y2), H2(u) = 1

2(b+(x+)2 + b−(x−)2 + y2),

r(t, u) =

(
0

−h(t, x)

)
, F (t, u) =

(
y

−g(t, x)

)
,

we see that Theorem 2.1 applies. Indeed, (14) is straightly implied by (44) and
(45), while (15) and (16) hold thanks to (46) and (47). Condition (17) follows from
Proposition 3.1, with µ = a+ and ν = a−, applied to f(t, x) = g(t, x)−a+x

++a−x
−,

and condition (18) follows from Proposition 3.2, with µ = b+ and ν = b−, applied
to f(t, x) = g(t, x)− b+x+ + b−x

−.
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4 A piecewise linear-controlled system

In this section we will show a further application of Theorem 2.1 to a class of
planar systems which are, in some sense, asymptotically controlled by piecewise
linear functions.

For u = (x, y) ∈ R2, let us write u+ = (x+, y+) and u− = (x−, y−). We consider
the problem{
Ju̇ = [(1− γ(t, u))A+ + γ(t, u)B+]u+ − [(1− γ(t, u))A− + γ(t, u)B−]u− + r(t, u)
u(0) = u(T ),

(48)
where γ(t, u) and r(t, u) are L2-Carathéodory functions such that 0 ≤ γ(t, u) ≤ 1
for almost every t ∈ [0, T ] and every u ∈ R2, and r(t, u) is L2-bounded. Moreover,
we assume that

r(t, u) =

(
r1,1(t, x) + r1,2(t, y)
r2,1(t, x) + r2,2(t, y)

)
, (49)

and

A+ =

(
a+ c
c A+

)
,B+ =

(
b+ c
c B+

)
,A− =

(
a− c
c A−

)
,B− =

(
b− c
c B−

)
,

for positive numbers a±, A±, b±, B± satisfying a± ≤ b±, A± ≤ B±, with at least
one of these inequalities strict, and c ∈ R such that

c2 < min{a+A+, a+A−, a−A+, a−A−},

in order to ensure that the two Hamiltonians

H1(u) = 1
2

(
a+(x+)2 + a−(x−)2 +A+(y+)2 +A−(y−)2 + cxy

)
,

H2(u) = 1
2

(
b+(x+)2 + b−(x−)2 +B+(y+)2 +B−(y−)2 + cxy

)
are positive. The particular form of the system is due to the fact that we want the
right-hand side of (48) to be (up to r) a convex combination of the gradients of the
two comparison Hamiltonians. For the sake of simplicity, we will only search for
conditions which allow us to apply Corollary 2.7.

It is immediately seen that condition (15) holds. Concerning the Landesman-
Lazer conditions, fix a solution ϕ = (ϕ(1), ϕ(2)) of the Hamiltonian system associ-
ated to H1, and a solution ψ = (ψ(1), ψ(2)) of the Hamiltonian system associated
to H2. We will ask a condition which is slightly stronger than (35) and (36), but
has the advantage of being more understandable. Define, for i, j = 1, 2,

Li,j(θ) =

∫
{ϕ(j)
θ >0}

lim inf
s→+∞

ri,j(t, s)ϕ
(i)
θ (t) dt+

∫
{ϕ(j)
θ <0}

lim sup
s→−∞

ri,j(t, s)ϕ
(i)
θ (t) dt,

and

Ui,j(θ) =

∫
{ψ(j)
θ >0}

lim sup
s→+∞

ri,j(t, s)ψ
(i)
θ (t) dt+

∫
{ψ(j)
θ <0}

lim inf
s→−∞

ri,j(t, s)ψ
(i)
θ (t) dt.
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Setting
Γ̃−1 (θ) = L1,1(θ) + L1,2(θ) + L2,1(θ) + L2,2(θ), (50)

and
Γ̃+

1 (θ) = U1,1(θ) + U1,2(θ) + U2,1(θ) + U2,2(θ), (51)

to fulfill conditions (35) and (36) we will then ask

Γ̃−1 (θ) > 0 > Γ̃+
1 (θ), (52)

for every θ ∈ [0, T ]. For the computation of the periods of the solutions of the
comparison systems{

−ẏ = a+x
+ − a−x− + cy

ẋ = cx+A+y
+ −A−y−,

and

{
−ẏ = b+x

+ − b−x− + cy
ẋ = cx+B+y

+ −B−y−,

we refer to [17, Section 4]. In the particular case c = 0, they have the following
simple expressions:

τϕ =
π

2

[
1√
a+A+

+
1√
a−A+

+
1√
a−A−

+
1√
a+A−

]
,

and

τψ =
π

2

[
1√
b+B+

+
1√
b−B+

+
1√
b−B−

+
1√
b+B−

]
,

respectively. Summing up, we infer:

Corollary 4.1. Assume that conditions (14) and (52) hold. Then problem (48)
has a solution.

We have thus proved a double resonance existence result, which, in the scalar
case without damping, corresponding to r1,2 ≡ r2,1 ≡ r2,2 ≡ 0, A± = B± = 1, and
c = 0, is strongly related to Fabry’s one in [10]. As particular cases of system (48),
one can also consider scalar second order equations of Liénard or Rayleigh type (see
[17] for details).

5 Simple resonance and nonresonance

The technique used to prove Theorem 2.1 can be adapted to more specific cases, in
particular when some of the inequalities in (14) are strict. First of all, we show that
it is possible to deduce, as an immediate corollary, an existence result for the case
of simple resonance, that is, when the nonlinearity interacts only with one resonant
Hamiltonian.

Corollary 5.1 (Simple resonance). Assume that condition 1) of Theorem 2.1 holds,
and

T

N + 1
< τψ ≤ τϕ ≤

T

N
(53)

(with the same notations as in Section 2). If, moreover, (17) holds, then problem
(P) has a solution.
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Proof. The result can be obtained following the lines of the proof of Theorem 2.1,
performing a homotopy of the type

u̇ = −σ((1− γ(t, u))J∇H1(u) + γ(t, u)J∇H2(u))− (1− σ)J∇H2(u),

for σ ∈ [0, 1]. In this case, the normalized sequence vn will necessarily converge to
a solution of Jv̇ = ∇H1(v). We omit the details for briefness.

Clearly, we have a similar statement if we replace (53) by

T

N + 1
≤ τψ ≤ τϕ <

T

N
,

and in this case we will assume (18) instead of (17).

On the other hand, if we want to investigate the case when all the inequalities
in (14) are strict, it is even possible to drop some of the hypotheses of Theorem 2.1,
still performing a similar proof, as we are going to show.

Theorem 5.2 (Nonresonant case). Assume that F : [0, T ] × R2 → R2 grows at
most linearly in the second variable, i.e.

|F (t, u)| ≤ c(t)(1 + |u|),

with c ∈ L2(0, T ), and that (32), (33) hold. If there exists a positive integer N such
that

T

N + 1
< τψ ≤ τϕ <

T

N
(54)

(with the same notations as in Section 2), then problem (P) has a solution.

Proof. As in the proof of Theorem 2.1, we argue by contradiction, assuming that
(27) holds for an unbounded (in L∞-norm) sequence (un)n, i.e.{

u̇n = σnF (t, un)− 1−σn
2 (J∇H1(un) + J∇H2(un))

un(0) = un(T ).

By the elastic property, min |un(t)| → ∞ for n → ∞. Consequently, it is possible
to introduce polar coordinates, writing un(t) = ρn(t)(cos θn(t), sin θn(t)), and we
know that un will perform an integer number mn of rotations around the origin in
the time T . A direct computation of θ̇n, together with the use of (32), (33) gives

θ̇n(t)

2H2(cos θn(t), sin θn(t))
≥ −η(t)

ρ2
n(t)2H2(cos θn(t), sin θn(t))

− 1, (55)

and
θ̇n(t)

2H1(cos θn(t), sin θn(t))
≤ η(t)

ρ2
n(t)2H1(cos θn(t), sin θn(t))

− 1. (56)
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Since, as we have already recalled,∫ 2π

0

dθ

2H1(cos θ, sin θ)
= τϕ ,

∫ 2π

0

dθ

2H2(cos θ, sin θ)
= τψ ,

integrating in (55) and (56) from 0 to T yields

T ≥ mn τψ +

∫ T

0

−η(t)

ρ2
n(t)2H2(cos θn(t), sin θn(t))

dt,

and

T ≤ mn τϕ +

∫ T

0

η(t)

ρ2
n(t)2H1(cos θn(t), sin θn(t))

dt.

However, since ρn →∞ uniformly, the contribution of the two terms∫ T

0

−η(t)

ρ2
n(t)2H2(cos θn(t), sin θn(t))

dt and

∫ T

0

η(t)

ρ2
n(t)2H1(cos θn(t), sin θn(t))

dt

vanishes for n→∞. As a consequence, in view of (54) we will have, for a suitable
ε > 0, to be chosen sufficiently small,

N <
T

τϕ
− ε ≤ mn ≤

T

τψ
+ ε < N + 1,

for n sufficiently large. Since mn is integer, this is a contradiction.

As already observed in Remark 2.5, if condition 1) of Theorem 2.1 is satisfied,
then F has at most linear growth in the second variable, and (32), (33) hold. Notice
that the Landesman-Lazer conditions, namely (17) and (18), are not needed, in view
of the nonresonance hypothesis (54).

6 A possible relaxing of the double resonance condi-
tions

We now focus on the special case when double resonance occurs with two multiples
of the same Hamiltonian function. Let H : R2 → R be a C1-function satisfying (12),
and let α, β be two positive constants such that α < β. We will take H1(u) = αH(u)
and H2(u) = βH(u). Let ζ be a solution of

Jζ̇ = ∇H(ζ),

satisfying
H(ζ(t)) = 1

2 , for every t ∈ [0, T ],

and let τ be its minimal period. Hence, ϕ(t) = ζ(αt) and ψ(t) = ζ(βt) solve
Jϕ̇ = α∇H(ϕ) and Jψ̇ = β∇H(ψ), respectively. Denoting by τϕ = τ

α , and τψ = τ
β

their minimal periods, respectively, we assume that

T

N + 1
≤ τψ < τϕ ≤

T

N
, (57)
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for some positive integer N . Consider the problem{
u̇ = −γ̂(t, u)J∇H(u) + r(t, u)
u(0) = u(T ),

(58)

being α ≤ γ̂(t, u) ≤ β for almost every t ∈ [0, T ], and every u ∈ R2, and r(t, u)
a L2-bounded function. In this setting, assuming hypotheses (17) and (18), The-
orem 2.1 straightly applies; indeed, conditions (15) and (16) are plainly satisfied,
since γ̂(t, u)∇H(u) can be written as a convex combination of the gradients of the
Hamiltonians H1(u) = αH(u) and H2(u) = βH(u).

However, it is possible to prove a better result which includes this one, as we are
going to show. Recalling that H(ζ(t)) = 1

2 for every t ∈ [0, T ], as we have already
announced in Remark 2.6 we define the functions Γ±1 by

Γ−1 (θ) =

∫ T

0
lim inf
λ→+∞
ω→θ

[λ(γ̂(t, λϕ(t+ ω))− α) + 〈Jr(t, λϕ(t+ ω))|ϕ(t+ ω)〉] dt,

Γ+
1 (θ) =

∫ T

0
lim sup
λ→+∞
ω→θ

[λ(γ̂(t, λψ(t+ ω))− β) + 〈Jr(t, λψ(t+ ω))|ψ(t+ ω)〉] dt.

Notice that conditions (17) and (18) can be written, in this particular setting, as
Γ−1 (θ) > 0 and Γ+

1 (θ) < 0 for every θ ∈ [0, T ], respectively. We now introduce the
new functions Γ±2 and Γ±3 , defined by

Γ−2 (θ) =

∫ T

0
lim inf
λ→+∞
ω→θ

〈Jr(t, λϕ(t+ ω))|ϕ̇(t+ ω)〉 dt,

Γ+
2 (θ) =

∫ T

0
lim sup
λ→+∞
ω→θ

〈Jr(t, λψ(t+ ω))|ψ̇(t+ ω)〉 dt,

and

Γ−3 (θ) =

∫ T

0
lim sup
λ→+∞
ω→θ

〈Jr(t, λϕ(t+ ω))|ϕ̇(t+ ω)〉 dt,

Γ+
3 (θ) =

∫ T

0
lim inf
λ→+∞
ω→θ

〈Jr(t, λψ(t+ ω))|ψ̇(t+ ω)〉 dt.

Theorem 6.1. Suppose that (57) holds. Moreover, assume that, for every θ ∈
[0, T ],

Γ−1 (θ) > 0 or Γ−2 (θ) > 0 or Γ−3 (θ) < 0, (59)

and
Γ+

1 (θ) < 0 or Γ+
2 (θ) < 0 or Γ+

3 (θ) > 0. (60)

Then problem (58) has a solution.
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Proof. Following the lines of the proof of Theorem 2.1, we proceed by perfoming
a suitable homotopy. Assume by contradiction that an unbounded (in L∞-norm)
sequence (un)n satisfies{

u̇n = σn(−γ̂(t, un)J∇H(un) + r(t, un))− (1− σn)δ(J∇H(un))
un(0) = un(T ),

(61)

where σn ∈ [0, 1], and δ ∈ R is a fixed number such that α < δ < β (for example,
δ = 1

2(α + β)); without loss of generality, we can suppose σn → σ̄ ∈ [0, 1]. We
can show that σ̄ 6= 0 exactly as in the proof of Theorem 2.1. Moreover, setting
vn = un

‖un‖∞ , for a subsequence, vn converges uniformly to a function v which

has the form v(t) = R0ϕ(t + ω0) or v(t) = R0ψ(t + ω0), for suitable constants
R0 > 0, ω0 ∈ [0, T [ . For example, suppose that this second situation occurs; we
pass to generalized polar coordinates in (61), writing un(t) = rn(t)ψ(t + ωn(t)),
with ωn(0) ∈ [0, τψ[ for every n. For a subsequence, we have that ωn(t) → ω0

uniformly. We have already seen, in the proof of Theorem 2.1, that the result holds
if Γ+

1 (ω0) < 0. Assume now Γ+
1 (ω0) ≥ 0. We have

−ṙn(t) =
1

β
σn〈Jr(t, rn(t)ψ(t+ ωn(t)))|ψ̇(t+ ωn(t))〉.

In view of the T -periodicity of un, we have

0 =

∫ T

0
σn〈Jr(t, rn(t)ψ(t+ ωn(t)))|ψ̇(t+ ωn(t))〉 dt.

By a straight use of Fatou’s lemma, since r is L2-bounded, (notice that σ̄ 6= 0), it
follows that

0 ≥
∫ T

0
lim inf
n→+∞

〈Jr(t, rn(t)ψ(t+ ωn(t)))|ψ̇(t+ ωn(t))〉 dt,

and

0 ≤
∫ T

0
lim sup
n→+∞

〈Jr(t, rn(t)ψ(t+ ωn(t)))|ψ̇(t+ ωn(t))〉 dt,

whence Γ+
3 (ω0) ≤ 0 ≤ Γ+

2 (ω0), in contradiction with the hypothesis.

Remark 6.2. Let us give a geometrical interpretation of conditions (59) and (60).
Defining the two curves Γ± : [0, T ]→ R3 as

Γ−(θ) = (Γ−1 (θ),Γ−2 (θ),Γ−3 (θ)), Γ+(θ) = (Γ+
1 (θ),Γ+

2 (θ),Γ+
3 (θ)),

condition (59) requires that Γ−(θ) never enters the sector {(x, y, z) ∈ R3 | x ≤
0, y ≤ 0, z ≥ 0}, while condition (60) imposes that Γ+(θ) never enters the sector
{(x, y, z) ∈ R3 | x ≥ 0, y ≥ 0, z ≤ 0}. Recall that, in Theorem 2.1, we assumed, in
a more restrictive way, that Γ−(θ) always had to remain in the half-space {x > 0}
and Γ+(θ) in {x < 0}.
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Remark 6.3. It could happen that Γ−2 (θ) = Γ−3 (θ) for every θ ∈ [0, T ] (or Γ+
2 (θ) =

Γ+
3 (θ) for every θ ∈ [0, T ]). In this case, there is no need to define the curve Γ−

in R3, and one could define, instead, Γ− : [0, T ] → R2 as Γ−(θ) = (Γ−1 (θ),Γ−2 (θ)).
Then, condition (59) requires that Γ−(θ) never touches the half-line {(x, y) ∈ R2 |
x ≤ 0, y = 0}. Clearly, in such a situation, the winding number of the curve Γ−,
with respect to the origin, is equal to 0. In the case of simple resonance, it was
shown in [16] that this winding number rot(Γ−, 0) is related to the topological degree
associated to the considered periodic problem. Different examples were given (see
[4, 5, 13, 14, 16, 17]) where rot(Γ−, 0) 6= 0. It can indeed be proved that the degree
associated to the problem is equal to 1− rot(Γ−, 0), see [16]. This agrees with the
fact that, in our situation, the degree is equal to 1.

As in Section 4, we now show some possible applications to a particular class
of planar systems. Consider the T -periodic problem{

Ju̇ = γ̂(t, u)[A+u
+ − A−u−] + r(t, u)

u(0) = u(T ),
(62)

being α ≤ γ̂(t, u) ≤ β for some positive constants α < β, for almost every t ∈ [0, T ]
and every u ∈ R2, and r(t, u) a L2-bounded function of the form (49). Moreover,
we assume that

A+ =

(
a+ c
c A+

)
, and A− =

(
a− c
c A−

)
,

for positive constants a±, A±, and c ∈ R such that

c2 < α2 min{a+A+, a+A−, a−A+, a−A−}.

Notice that, without loss of generality, we can assume α = 1. Hence, we are dealing
with a particular case of the systems treated in Section 4, with B+ = βA+, and
B− = βA−; as a consequence, the functions Γ̃−1 and Γ̃+

1 can be explicitly written
as in (50) and (51). However, in view of Theorem 6.1, it is possible to improve
Corollary 4.1. Being ϕ = (ϕ(1), ϕ(2)), ψ = (ψ(1), ψ(2)), Γ̃−1 (θ) and Γ̃+

1 (θ) as in
Section 4, we define, for i, j = 1, 2,

Li,j(θ) =

∫
{ϕ̇(j)
θ >0}

lim inf
s→+∞

ri,j(t, s)ϕ̇
(i)
θ (t) dt+

∫
{ϕ̇(j)
θ <0}

lim sup
s→−∞

ri,j(t, s)ϕ̇
(i)
θ (t) dt,

Ui,j(θ) =

∫
{ψ̇(j)
θ >0}

lim sup
s→+∞

ri,j(t, s)ψ̇
(i)
θ (t) dt+

∫
{ψ̇(j)
θ <0}

lim inf
s→−∞

ri,j(t, s)ψ̇
(i)
θ (t) dt,

and

Mi,j(θ) =

∫
{ϕ̇(j)
θ >0}

lim sup
s→+∞

ri,j(t, s)ϕ̇
(i)
θ (t) dt+

∫
{ϕ̇(j)
θ <0}

lim inf
s→−∞

ri,j(t, s)ϕ̇
(i)
θ (t) dt,

Vi,j(θ) =

∫
{ψ̇(j)
θ >0}

lim inf
s→+∞

ri,j(t, s)ψ̇
(i)
θ (t) dt+

∫
{ψ̇(j)
θ <0}

lim sup
s→−∞

ri,j(t, s)ψ̇
(i)
θ (t) dt.
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Moreover, we set

Γ̃−2 (θ) = L1,1(θ) + L1,2(θ) + L2,1(θ) + L2,2(θ),

Γ̃+
2 (θ) = U1,1(θ) + U1,2(θ) + U2,1(θ) + U2,2(θ),

and
Γ̃−3 (θ) =M1,1(θ) +M1,2(θ) +M2,1(θ) +M2,2(θ),

Γ̃+
3 (θ) = V1,1(θ) + V1,2(θ) + V2,1(θ) + V2,2(θ).

To satisfy (59) and (60), we will then ask, for every θ ∈ [0, T ],

Γ̃−1 (θ) > 0 or Γ̃−2 (θ) > 0 or Γ̃−3 (θ) < 0, (63)

and
Γ̃+

1 (θ) < 0 or Γ̃+
2 (θ) < 0 or Γ̃+

3 (θ) > 0. (64)

For the computation of the periods of the comparison Hamiltonian systems, we
refer again to [17]. With a direct application of Theorem 6.1, we now obtain, in
this particular framework, the following improvement of Corollary 4.1.

Corollary 6.4. Assume that conditions (57), (63) and (64) hold. Then problem
(62) has a solution.

7 Scalar equations with damping in a case of simple
resonance

In this section, we consider a special case of simple resonance and show some appli-
cations to the periodic problem associated to some scalar second order equations.
Let us state the following immediate consequence of Theorem 6.1. We will use the
notations introduced in Section 6.

Corollary 7.1. Consider the problem{
u̇ = −J∇H(u) + r(t, u)
u(0) = u(T ),

(65)

being r(t, u) a L2-bounded function. Suppose that there exists a positive integer N
such that

τ =
T

N
,

being τ the minimal period of the solutions of Ju̇ = ∇H(u). Moreover, assume
that, for every θ ∈ [0, T ],

Γ−1 (θ) > 0, or Γ−2 (θ) > 0, or Γ−3 (θ) < 0. (66)

Then problem (65) has a solution.
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Clearly, assumption (66) can be replaced by the following one:

Γ+
1 (θ) < 0, or Γ+

2 (θ) < 0, or Γ+
3 (θ) > 0. (67)

Notice that, in this situation, since ϕ and ψ coincide and they both solve Ju̇ =
∇H(u), we have that

Γ−1 (θ) ≤ Γ+
1 (θ), and Γ−2 (θ) = Γ+

3 (θ) ≤ Γ−3 (θ) = Γ+
2 (θ),

for every θ ∈ [0, T ].

We now examine an application of this corollary to a scalar equation with
damping, which fits in the framework of system (62). For simplicity, we will consider
only the symmetric case, namely A+ = A−, assuming α = β = 1, and T = 2π.
The same arguments would apply to the asymmetric case, as well. We will take in
consideration the following two problems:{

ẍ+ q(x)ẋ+N2x = e(t)
x(0) = x(2π), ẋ(0) = ẋ(2π),

(68)

and {
ẍ+Q(ẋ) +N2x = e(t),
x(0) = x(2π), ẋ(0) = ẋ(2π),

(69)

being N a positive integer, and e(t) continuous and 2π-periodic. The differential
equation appearing in (68) is a Liénard equation, while the one appearing in (69) is
a Rayleigh equation. Clearly, similar considerations would hold for the T -periodic
problem, with N2 replaced by the corresponding λN .
The differential equations in (68) and (69) are equivalent to the systems{

ẋ = y −Q(x)
ẏ = −N2x+ e(t),

(70)

and {
ẋ = y
ẏ = −N2x−Q(y) + e(t),

(71)

respectively, where in (70) we have set Q(x) =
∫ x

0 q(s) ds. They are thus included
in our framework, with H(x, y) = 1

2(N2x2 + y2). As a structural hypothesis, we
assume that Q is a bounded function. For simplicity, in the following we will deal
only with (68), and hence with (70). The 2π-periodic problem associated to the
Rayleigh equation can be treated in the same way, yielding similar results.

Let us observe that, as a matter of fact, Theorem 2.1 is not suitable to deal with
this kind of systems. Considering (70), if we assume that Q(x) is strictly increasing,
there always exists θ ∈ [0, 2π] such that neither condition (17) nor (18) is satisfied.
To see this, for instance for what concerns (17), set

φ(t) =
1

N
cos(Nt),
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and ϕ(t) = (φ(t), φ̇(t)); after some computations we see that, if (17) holds, the
quantity ∫ 2π

0

(
lim inf
λ→+∞
ω→θ

[−Q(λφω(t))φ̇ω(t)]− e(t)φθ(t)
)
dt

has to be strictly positive for every θ ∈ [0, 2π]. Noticing that, since Q has finite
limits at ±∞, the inferior limit which appears under the integral sign is indeed a
finite limit, this is true if and only if

L(θ) =

∫ 2π

0
e(t)φθ(t) dt < 0, for every θ ∈ [0, T ].

Such a condition, however, is never satisfied, due to the form of φθ : explicitly, it
should be

cos(Nθ)

∫ 2π

0
e(t) cos(Nt) dt− sin(Nθ)

∫ 2π

0
e(t) sin(Nt) dt < 0,

for every θ ∈ [0, T ], which is clearly impossible. In the same way, we see that also
(18) fails.

We now show how it is possible to overcome this problem using Corollary 7.1.
Consider system (70): setting

Q−(+∞) = lim inf
x→+∞

Q(x), Q+(+∞) = lim sup
x→+∞

Q(x),

Q−(−∞) = lim inf
x→−∞

Q(x), Q+(−∞) = lim sup
x→−∞

Q(x),

and

∆Q(+∞) = Q+(+∞)−Q−(+∞), ∆Q(−∞) = Q+(−∞)−Q−(−∞),

the following result holds true:

Corollary 7.2. Assume that, for every θ ∈ [0, 2π],∫ 2π

0
e(t)φθ(t) dt < − 1

N (∆Q(+∞) + ∆Q(−∞)), or∫ 2π

0
e(t)φ̇θ(t) dt < 2(Q−(+∞)−Q+(−∞)), or∫ 2π

0
e(t)φ̇θ(t) dt > 2(Q+(+∞)−Q−(−∞)).

(72)

Then problem (68) has a solution.
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Notice that the statement follows from Corollary 7.1, since (72) implies (66). A
symmetrical result can be stated assuming, for every θ ∈ [0, 2π],∫ 2π

0
e(t)φθ(t) dt >

1
N (∆Q(+∞) + ∆Q(−∞)), or∫ 2π

0
e(t)φ̇θ(t) dt < 2(Q−(+∞)−Q+(−∞)), or∫ 2π

0
e(t)φ̇θ(t) dt > 2(Q+(+∞)−Q−(−∞)),

(73)

since (73) implies (67).

The last part of this section will be dedicated to compare Corollary 7.2, and
its symmetric version with (73) instead of (72), with the following result proved by
Frederickson and Lazer in [18], in the particular case N = 1.

Theorem 7.3 (Frederickson-Lazer 1969). Assume that N = 1 and that Q(x) is
strictly increasing. Then, setting

Q(+∞) = lim
x→+∞

Q(x), and Q(−∞) = lim
x→−∞

Q(x),

the condition ∣∣∣∣∫ 2π

0
e(t)e−it dt

∣∣∣∣ < 2(Q(+∞)−Q(−∞)) (74)

is both necessary and sufficient for the existence of a solution of (68).

We thus consider, in our framework, the case when Q is increasing. Since Q
has finite limits at ±∞ (recall that we are assuming Q to be bounded), the inferior
limits appearing under the integral sign in our hypotheses are finite limits. So, by
Corollary 7.2, if for every θ ∈ [0, 2π],∫ 2π

0
e(t)φθ(t) dt < 0 or

∫ 2π

0
e(t)φ̇θ(t) dt 6= 2(Q(+∞)−Q(−∞)), (75)

being φ(t) = cos t, then problem (68) has a solution. It is straightly seen that this
hypothesis follows from the Frederickson-Lazer condition, which implies indeed∫ 2π

0
e(t)φ̇θ(t) dt < 2(Q(+∞)−Q(−∞)),

for every θ ∈ [0, 2π]. Apparently, however, (75) seems to be more general, which
looks strange, as the Frederickson-Lazer condition was also proved to be neces-
sary. We now prove that the two statements are indeed equivalent. Suppose, for
simplicity, e(t) = cos t, and assume that (75) holds, namely

cos θ < 0, or − π sin θ 6= 2(Q(+∞)−Q(−∞)),
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for every θ ∈ [0, T ]. We claim that, necessarily, it will be

2(Q(+∞)−Q(−∞)) > π; (76)

otherwise, we could always find θ0 ∈ [0, 2π] such that

2(Q(+∞)−Q(−∞)) = −π sin θ0, and cos θ0 ≥ 0

hold at the same time, making (75) fail. Being∣∣∣∣∫ 2π

0
(cos t)e−it dt

∣∣∣∣ = π,

we have that (76) implies the Frederickson-Lazer condition, so we are done in the
particular case e(t) = cos t. The reasoning works, in the same way, for e(t) = cos kt
and e(t) = sin kt, for every k ∈ N. Using the fact that {cos kt, sin kt}k∈N is an
orthonormal basis of L2(0, 2π), the previous considerations can be extended to
every continuous forcing term e(t). Summing up, if Q is bounded and increasing,
Corollary 7.2 generalizes Frederickson and Lazer’s result.

Remark 7.4. By the above discussion, we can conclude that Corollary 7.1 gener-
alizes, for the periodic problem, both the Lazer and Leach existence result and the
Frederickson and Lazer one, in the case when Q is bounded (see also [4, 5, 17, 26]).
Notice, however, that, in [18], Q was not assumed to be bounded, and the almost
periodic problem was also considered, obtaining a similar existence result.

Remark 7.5. The above arguments can be adapted to the case when Q is not
bounded, but has sublinear growth, provided that the functions Γ±1 , Γ±2 and Γ±3 are
well defined. Even in this case, if Q is increasing, we have that the Frederickson-
Lazer condition and ours turn out to be equivalent.

8 Final remarks

In this last section, we are interested in the case where the inferior and superior
limits which appear in the Landesman-Lazer conditions are equal to 0, and so
conditions (17) and (18) do not hold. This problem has already been studied in
the scalar setting, see e.g. [10, Theorem 2], and [30]. We propose here a possible
generalization of this result, based on the main theorem of Section 2, and consisting
in refining conditions (17) and (18). We will use again the notations introduced
there. Moreover, we will also assume as hypotheses the corresponding refinements
of conditions (32) and (33) (the idea is that |r(t, u)| has to be controlled by some
negative power of |u|).

Theorem 8.1. Let us assume that there exist two C1-functions H1, H2 : R2 → R,
satisfying (12), such that (14), (15) and (16) hold. Moreover, assume that there
exists k ≥ 0 such that the following conditions are satisfied:
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• there exists a positive function η ∈ L2(0, T ) with

λk(〈JF (t, λw)|w〉 − 2λH1(w)) ≥ −η(t), (77)

λk(2λH2(w)− 〈JF (t, λw)|w〉) ≥ −η(t), (78)

for almost every t ∈ [0, T ], every w ∈ R2 with |w| ≤ 1 and every λ ≥ 1;

• for every θ ∈ [0, T ],∫ T

0
lim inf
λ→+∞
ω→θ

λk[〈JF (t, λϕ(t+ ω))|ϕ(t+ ω)〉 − 2λH1(ϕ(t))] dt > 0, (79)

∫ T

0
lim inf
λ→+∞
ω→θ

λk[2λH2(ψ(t))− 〈JF (t, λψ(t+ ω))|ψ(t+ ω)〉] dt > 0. (80)

Then problem (P) has a solution.

Proof. It is sufficient to follow the lines of the proof of Theorem 2.1, noticing that,
in view of (19), we have that (31) yields

0 ≥
∫ T

0
rn(t)k

rn(t)− 〈JF (t, rn(t)ψ(t+ ωn(t)))|ψ(t+ ωn(t))〉
(rVn (t))k+1

dt;

using Fatou’s lemma, thanks to (77), (78), this implies that

0 ≥
∫ T

0
lim inf
n→+∞

rn(t)k [rn(t)− 〈JF (t, rn(t)ψ(t+ ωn(t)))|ψ(t+ ωn(t))〉] dt,

and this contradicts (80).

Notice that Theorem 2.1 is a particular case of this result (for k = 0). In
a similar way, moreover, it is possible to obtain, also in this framework, results
analogous to the ones proved in Sections 4, 5, 6 and 7.
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[9] P. Drábek, Landesman-Lazer condition for nonlinear problems with jumping
nonlinearities, J. Differential Equations 85 (1990), 186–199.

[10] C. Fabry, Landesman-Lazer conditions for periodic boundary value problems
with asymmetric nonlinearities, J. Differential Equations 116 (1995), 405–418.

[11] C. Fabry and A. Fonda, Periodic solutions of nonlinear differential equations
with double resonance, Ann. Mat. Pura Appl. 157 (1990), 99–116.

[12] C. Fabry and A. Fonda, Nonlinear equations at resonance and generalized
eigenvalue problems, Nonlinear Anal. 18 (1992), 427–444.

[13] C. Fabry and A. Fonda, Nonlinear resonance in asymmetric oscillators, J.
Differential Equations 147 (1998), 58–78.

[14] C. Fabry and A. Fonda, Periodic solutions of perturbed isochronous Hamilto-
nian systems at resonance, J. Differential Equations 214 (2005), 299–325.

[15] A. Fonda, Positively homogeneous Hamiltonian systems in the plane, J. Dif-
ferential Equations 200 (2004), 162–184.

[16] A. Fonda, Topological degree and generalized asymmetric oscillators, Topol.
Methods Nonlinear Anal. 28 (2006), 171–188.

[17] A. Fonda and J. Mawhin, Planar differential systems at resonance, Adv. Dif-
ferential Equations 11 (2006), 1111–1133.

[18] P. O. Frederickson and A. C. Lazer, Necessary and sufficient damping in a
second order oscillator, J. Differential Equations 5 (1969), 262–270.
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