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Abstract. In this paper we formulate and study scalar wave equations on domains with
arbitrary growing cracks. This includes a zero Neumann condition on the crack sets, and

the only assumptions on these sets are that they have bounded surface measure and are

growing in the sense of set inclusion. In particular, they may be dense, so the weak
formulations must fall outside of the usual weak formulations using Sobolev spaces. We

study both damped and undamped equations, showing existence and, for the damped

equation, uniqueness and energy conservation.
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1. Introduction

The last fifteen years have seen significant advances in the mathematical analysis of
quasi-static fracture [1, 14, 11, 12, 7, 13, 9, 8, 17, 10, 4]. While the mechanical and physical
justifications for the underlying models have been open to some question, it seems that
quasi-static models were a good place to begin the analysis of fracture evolution, as certain
mathematical issues were clearly identified and treated, and good numerical methods were
developed. However, there is little doubt that much better mechanical and physical support
will be available for models of dynamic fracture, which will apply in a much broader range of
circumstances, and which can be used in the end to clarify the appropriateness of different
quasi-static models.

Quasi-static models are based on the assumption that whatever is driving the motion,
e.g., loading, varies slowly in time compared to the elastic wave speed of the material. More
precisely, for a given varying load f(t) on a time interval [0, T ] , one can consider the rescaled
problem corresponding to fε(t) := f(εt) on [0, T/ε] . If the corresponding physical solution
(presumably to the dynamic problem) is uε(t), one needs to rescale again in order to take
the limit, since the limit of fε(t) is constant in time. Therefore, it is natural to define
uε(t) := uε(t/ε) for t ∈ [0, T ] . Setting u(t) to be the limit as ε ↘ 0, it is reasonable to
suppose (assuming some damping in the dynamics) that u(t) is in elastic equilibrium at
every t , corresponding to the load f(t). This idea underlies all quasi-static models, with
the only debate being over whether the overall state, made up of both the displacement and
crack set, should be a global minimizer of the total energy, a local minimizer, or something
in between.

The main problem with the quasi-static fracture models concerns jumps in time of the
crack set, for which the quasi-static assumption – that while the crack grows the material is
always in elastic equilibrium – is dubious. The point is that if in the ε↘ 0 limit the crack
jumps, there is no reason to think that uε(t) varies slowly, even though fε(t) does. Hence, it
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is generally agreed that dynamic models need to be considered, and then quasi-static limits
can be analyzed. This would help clarify whether cracks jump as soon as the material is
not a global minimizer, as proposed in [14], or if jumps only occur to ensure the material is
a local minimizer, or if jumps occur based on a condition somewhere in between global and
local minimality, as in [17].

At this point, unfortunately, there are no generally accepted fundamental mathematical
models for dynamic fracture (by which we mean models with no assumptions on regularity
necessary to define things such as stress intensity factors and J-integrals). Still, we believe
that there can be no real disagreement that any reasonable model must contain three prin-
ciples: i) elastodynamics off the crack, ii) energy-dissipation balance (including the surface
energy dissipated by the crack), and iii) a principle dictating when a crack must grow. Con-
ditions i) and ii) follow, e.g., from [15], and a principle like iii) is necessary, since otherwise
a stationary crack with elastodynamics off of it will always be a solution. In [16] this is
discussed in some more detail, and a maximal dissipation condition is proposed for iii), but
it is too early to claim any acceptance of this principle.

We note that, based on the success of numerical methods for quasi-static fracture using
the Ambrosio-Tortorelli approximation (see, e.g., [3]), a numerical algorithm was proposed
in [5] for dynamic fracture, which was shown in [18] to converge, as the time step tends to
zero, to a solution obeying the appropriate elastodynamics, the total energy (stored elastic,
kinetic, and the surface energy of the crack set) is conserved, and the field modeling the
crack set satisfies a minimality analogous to that in the quasi-static setting. For these phase-
field models, this minimality provides the principle iii), requiring the “crack” to run so as
to maintain minimality. However, in the sharp-interface limit, there is no corresponding
minimality, and so the formulation of this third principle is open.

In this paper, we consider a preliminary issue, namely, given initial conditions and given
a growing-in-time crack set Γ(t) with no assumptions other than finite surface measure
(which corresponds to finite surface energy), does there exist a solution to the corresponding
elastodynamics? We show that there does, both for undamped and damped dynamics. In
particular, we look at weak versions of equations of the form

ü(t)−∆u(t)− γ∆u̇(t) = f(t)

on Ω\Γ(t), with a zero Neumann condition on ∂Ω∪Γ(t), where the dots denote derivatives
with respect to time and the Laplace operator ∆ acts on the space variables. We treat both
the case γ > 0, corresponding to the damped wave equation, and γ = 0, corresponding to
the undamped equation.

We also show an energy balance and uniqueness for the damped problem, but we were
unable to show this for the undamped problem. Indeed, the energy balance we were able to
show for the damped problem is a conservation of kinetic plus elastic plus dissipated energy
due to the damping, but we note that this balance is inconsistent with models we have in
mind for fracture, which balance energy only when the surface energy dissipated by the
crack is also included.

This paper is organized as follows. First, in Section 2, we need to introduce new function
spaces, Vt , containing both our solutions u(t) as well as the test functions at time t . These
spaces are somewhat technical and based on SBV functions with jump set contained in
Γ(t). However, to read this paper, one can think of Vt as the Sobolev space H1(Ω \ Γ(t)),
and in fact, if Γ(t) is closed, this is exactly Vt . The most serious mathematical issues arise
because these spaces are increasing in time, so that test functions at some time t are not
necessarily admissible test functions for times s < t .

In Section 3 we consider the damped wave equation, and we prove existence using discrete
time approximations and passing to the limit as the time step tends to zero. Precisely, the
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function un(ti+1) is the minimizer in Vti+1 of

u 7→
∥∥∥∥u− uinτn

− uin − ui−1
n

τn

∥∥∥∥2

+ ‖∇u‖2 +
γ

τn
‖∇u−∇uin‖2 − 2〈f in, u〉,

where uin = un(ti), all norms and inner products are L2 , and τn is the time step. We are
then able to pass to the limit as τn → 0, and show that the limit u is a weak solution.
Furthermore, we are able to show uniqueness and energy balance.

Finally, in Section 4, we show existence for the undamped equation, following the same
argument as in the damped case. However, we are unable to prove uniqueness or energy
balance. We note that a lack of energy balance, where the energy includes only the kinetic
and elastic energies, is in fact desirable, as only then can the total energy, including the
surface energy of the crack, be balanced, as in the models formulated in [16]. We also note
that a natural idea for proving existence for those models, which in addition to balance of
the total energy have a maximality property of Γ(t), would be to find un(ti+1) and Γn(ti+1)
by minimizing

(u,Γ) 7→
∥∥∥∥u− uinτn

− uin − ui−1
n

τn

∥∥∥∥2

+ ‖∇u‖2 +HN−1(Γ)− 2〈f in, u〉,

with the only restriction that Γ ⊃ Γn(ti) and u has jump set in Γ. This would generate un
and Γn , but methods to prove appropriate properties of limits u and Γ are far from clear
at this time.

2. Notation and preliminary results

For the definition of the space GSBV (Ω) we refer to [2, Definition 4.26]. For every
v ∈ GSBV (Ω) the symbol ∇v denotes its weak approximate differential according to [2,
Definition 4.31 and Theorem 4.34], defined for a.e. x ∈ Ω, while Sv is the approximate
discontinuity set of v according to [2, Definition 4.28 and Theorem 4.34]. HN−1 denotes
the (N − 1)-dimensional Hausdorff measure.

For any Γ ⊂ Ω with HN−1(Γ) <∞ , we define

GSBV 2
2 (Ω,Γ) := {v ∈ GSBV (Ω) ∩ L2(Ω) : ∇v ∈ L2(Ω; RN ), Sv ⊂ Γ}. (2.1)

Here and below, by A ⊂ B we mean HN−1(A \ B) = 0. We endow this space with the
inner product

〈u, v〉L2 + 〈∇u,∇v〉L2 . (2.2)
The corresponding norm is denoted by ‖·‖ . If Γ is closed in Ω, then GSBV 2

2 (Ω,Γ) coincides
with the Sobolev space H1(Ω \ Γ).

Lemma 2.1. The inner product space GSBV 2
2 (Ω,Γ) is a Hilbert space.

Proof. Let {vn} be a Cauchy sequence in GSBV 2
2 (Ω,Γ). Then there exist v ∈ L2(Ω),

w ∈ L2(Ω; RN ) such that vn → v and ∇vn → w strongly in L2 . By GSBV compactness
(see [2, Theorem 4.36]), we have v ∈ GSBV (Ω) and w = ∇v . Moreover Sv ⊂ Γ. If Γ is
closed, this inclusion is a consequence of the mentioned theorem, applied to the open set
Ω\Γ; the general case can be obtained, e.g., from [9, Theorem 2.8]. Hence v ∈ GSBV 2

2 (Ω,Γ)
and vn → v in the norm induced by (2.2). �

The dual of this space, GSBV 2
2 (Ω,Γ)∗ , will not be identified with the underlying Hilbert

space, but instead will be endowed with a pairing consistent with the L2 inner product, as
is usually done for the duals of Sobolev spaces. Since

GSBV 2
2 (Ω,Γ) ⊂ L2(Ω)

is dense, we have
L2(Ω) = L2(Ω)∗ ⊂ GSBV 2

2 (Ω,Γ)∗,
and L2(Ω) is dense in GSBV 2

2 (Ω,Γ)∗ .
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We now fix T > 0 and Γ ⊂ Ω with

HN−1(Γ) <∞ (2.3)

and t 7→ Γ(t) defined on [0, T ] such that Γ(t) is an HN−1 -measurable subset of Γ. We
assume also that

Γ(s) ⊂ Γ(t) if s < t. (2.4)

For simplicity of notation, from now on, we will denote GSBV 2
2 (Ω,Γ) by V and

GSBV 2
2 (Ω,Γ(t)) by Vt . The norm in V is ‖ · ‖ (see (2.2)), while the induced norm in

Vt is ‖ · ‖t . We will also denote L2(Ω) by H and L2(Ω; RN ) by HN . Note that for s < t
we have Vs ⊂ Vt ⊂ V . We also note that, since V ⊂ H and V is dense in H , we have
the embedding H ⊂ V ∗ and the density of H in V ∗ . Similarly, H is a dense subspace
of V ∗t for every t ∈ [0, T ] . We denote the pairing between V ∗ and V by 〈·, ·〉 , producing
the dual norm ‖ · ‖∗ , and the pairing between V ∗t and Vt by 〈·, ·〉t , with dual norm ‖ · ‖∗t .
We note that these pairings are the unique continuous bilinear maps on V ∗×V and V ∗t ×Vt
such that 〈f, v〉 = 〈f, v〉H and 〈f, vt〉t = 〈f, vt〉H whenever f ∈ H , v ∈ V , and vt ∈ Vt .

If s < t , for every f ∈ V ∗t we can consider the element f |Vs of V ∗s defined by 〈f |Vs , v〉s =
〈f, v〉t for every v ∈ Vs . The restriction map f 7→ f |Vs is continuous and coincides with the
adjoint of the embedding Vs ↪→ Vt . Although f 7→ f |Vs

is not injective, in the rest of the
paper we omit the notation |Vs

, since the restriction will be clear from the context.

Lemma 2.2. Let u ∈ W 1,∞(0, T ;H) . Assume that there exists a constant c such that for
every s , t ∈ [0, T ] , with s < t , we have

u ∈W 2,∞(t, T ;V ∗s ) and ‖ü‖L∞(t,T ;V ∗s ) ≤ c. (2.5)

Then there exist a set E ⊂ [0, T ] of full measure and, for every t ∈ E , an element w(t) of
V ∗t , with

‖w(t)‖∗t ≤ c, (2.6)

such that for every t ∈ E we have

lim
h→0
t+h∈E

u̇(t+ h)− u̇(t)
h

= w(t) (2.7)

weakly in V ∗t and strongly in V ∗s for every s < t . Moreover, for every s ∈ [0, T ] the
functions t 7→ u(t) and t 7→ w(t) , considered as a functions from [s, T ] to V ∗s , belong
to W 2,∞(s, T ;V ∗s ) and L∞(s, T ;V ∗s ) , respectively, and satisfy ü(t) = w(t) in V ∗s for a.e.
t ∈ (s, T ) , so that (2.5) holds with s = t .

Before proving this, we give a short technical lemma about increasing sequences of sub-
spaces of separable Hilbert spaces.

Lemma 2.3. Let {Xt : t ∈ [0, T ]} be an increasing family of closed linear subspaces of a
separable Hilbert space X . Then, there exists a countable set S ⊂ [0, T ] such that for all
t ∈ [0, T ] \ S , we have

Xt =
⋃
s<t

Xs.

Proof. For each t ∈ [0, T ] , set Xt− to be the right hand side above. Then we have

Xs ⊂ Xt− ⊂ Xt (2.8)

for every s < t . Set Yt to be the orthogonal complement of Xt− in Xt . By (2.8), we have
that Ys ⊥ Yt for s 6= t . The separability of X implies that there is at most a countable set
of t such that Yt is nontrivial, which proves the lemma. �
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Proof of Lemma 2.2. We first consider the set S from Lemma 2.3, and we fix a countable,
dense set D ⊂ [0, T ] . The differentiability properties of vector valued Sobolev functions
(see, e.g., [6, Appendix]), together with (2.5), imply that there exists another set of measure
zero M ⊂ [0, T ] such that

u̇(t+ h)− u̇(t)
h

→ ü(t) strongly in V ∗s (2.9)

for all t /∈ M and for all s < t with s ∈ D . The fact that (2.9) holds for all s < t follows
from the density of D and from the continuity properties of the restriction operator from
V ∗σ to V ∗s for s < σ . Note that from (2.5) and (2.9) we have

‖ü(t)‖∗s ≤ c (2.10)

for every t /∈M and every s < t .
Now for t /∈ S ∪M choose sn ↗ t . For φ ∈ Vt , Lemma 2.3 gives a sequence φn ∈ Vsn

such that φn → φ in Vt . We claim that w(t) ∈ V ∗t given by

〈w(t), φ〉t := lim
n→∞

〈ü(t), φn〉sn

is well defined. The fact that this limit exists follows immediately from the uniform bound
on ‖ü(t)‖∗s (see (2.10)) and the strong convergence of φn to φ . This also implies that the
limit is independent of the choice of φn , as well as the linearity and boundedness of the
limit. This gives the claim and proves (2.6).

Note that if φ ∈ Vs for some s < t , by taking φn = φ above for n large enough, we
actually have

〈w(t), φ〉s = 〈w(t), φ〉t = 〈ü(t), φ〉s, (2.11)

which implies that t 7→ w(t), considered as a function from [s, T ] to V ∗s , belongs to
L∞(s, T ;V ∗s ) and satisfies the last assertion of the lemma.

Next, we claim that

u̇(t+ h)− u̇(t)
h

⇀ w(t) weakly in V ∗t .

For φ ∈ Vt , we choose again sn ↗ t and φn ∈ Vsn such that φn → φ strongly in Vt .
Then we have〈
w(t)− u̇(t+ h)−u̇(t)

h
, φ
〉
t
=
〈
w(t)− u̇(t+ h)−u̇(t)

h
, φ−φn

〉
t
+
〈
w(t)− u̇(t+ h)−u̇(t)

h
, φn

〉
t
,

so that∣∣∣∣〈w(t)− u̇(t+ h)− u̇(t)
h

, φ
〉
t

∣∣∣∣ ≤ 2c‖φ− φn‖t +
∣∣∣∣〈ü(t)− u̇(t+ h)− u̇(t)

h
, φn

〉
sn

∣∣∣∣
by (2.10) and (2.11). Passing to the limit first in h (using (2.9)) and then in n we get
(2.7). �

Definition 2.4. Under the assumptions of Lemma 2.2, the element w(t) of V ∗t defined in
(2.7) for a.e. t ∈ [0, T ] is denoted by ü(t).

The last sentence of Lemma 2.2 shows the relationships between this definition and the
standard definition in the sense of distributions on (s, T ). The point is that, under the
assumptions of Lemma 2.2, the theory of distributions defines ü(t) as an element of V ∗s
only for a.e. t ∈ (s, T ), while the study of the wave equation in cracking domains requires
a precise definition of ü(t) as an element of V ∗t .
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3. The Damped Wave Equation

Here we consider a certain weak formulation of the equation

ü−∆u− γ∆u̇ = f (3.1)

on a cracking domain, with γ > 0.

Definition 3.1. Assume (2.3), (2.4), and let γ > 0 and f ∈ L2(0, T ;H). We say that u is
a weak solution of the damped wave equation (3.1) on the time dependent cracking domain
t 7→ Ω \ Γ(t) with homogeneous Neumann boundary conditions if

u ∈ H1(0, T ;V ) ∩W 1,∞(0, T ;H), (3.2)
for every t ∈ [0, T ] we have u(t) ∈ Vt, (3.3)
for every s ∈ [0, T ) we have u ∈W 2,∞(s, T ;V ∗s ), (3.4)

sup
s∈[0,T )

‖ü‖L∞(s,T ;V ∗s ) < +∞, (3.5)

for every s ∈ (0, T ) the functions

t 7→ 1
h
‖u̇(t)− u̇(t− h)‖2H , h ∈ (0, s), (3.6)

are equiintegrable on (s, T ),

and for a.e. t ∈ [0, T ]

〈ü(t), φ〉t + 〈∇u(t) + γ∇u̇(t),∇φ〉HN
= 〈f(t), φ〉H for every φ ∈ Vt, (3.7)

where ü(t) is given by Definition 2.4.

By (3.2) and (3.4) the functions t 7→ u(t) and t 7→ u̇(t) are continuous from [0, T ] to
V and V ∗0 respectively, so that the initial values u(0) and u̇(0) are well defined in V and
V ∗0 respectively. In the next theorem, given u(1) ∈ H , we prescribe the initial condition for
u̇(0) in the stronger form

lim
h→0+

1
h

∫ h

0

‖u̇(t)− u(1)‖2Hdt = 0. (3.8)

Theorem 3.2. Assume (2.3) and (2.4). Let u(0) ∈ V0 , u(1) ∈ H , γ > 0 , and f ∈
L2(0, T ;H) . Then there exists a unique weak solution u of the damped wave equation
considered in Definition 3.1 satisfying the initial conditions u(0) = u(0) and (3.8). Moreover
t 7→ u̇(t) is continuous from [0, T ] to H and u satisfies the energy balance

1
2
‖u̇(t)‖2H +

1
2
‖∇u(t)‖2HN

+ γ

∫ t

0

‖∇u̇(τ)‖2HN
dτ

=
1
2
‖u(1)‖2H +

1
2
‖∇u(0)‖2HN

+
∫ t

0

〈f(τ), u̇(τ)〉Hdτ (3.9)

for every t ∈ [0, T ] .

We shall see in Lemma 3.8 that the energy balance (3.9) implies the equinitegrability of
(3.6). The proof of Theorem 3.2 will be obtained by combining several partial results proved
in the following lemmas.

Lemma 3.3. Under the assumptions of Theorem 3.2 there exists a function u satisfying
(3.2)-(3.5), (3.7), the initial conditions u(0) = u(0) and (3.8), and the energy inequality

1
2
‖u̇(t)‖2H +

1
2
‖∇u(t)‖2HN

+ γ

∫ t

0

‖∇u̇(τ)‖2HN
dτ

≤ 1
2
‖u(1)‖2H +

1
2
‖∇u(0)‖2HN

+
∫ t

0

〈f(τ), u̇(τ)〉Hdτ (3.10)

for a.e. t ∈ [0, T ] .
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Proof. For n ∈ N , we set τn := T/n and tin := iτn . For i = 1, 2, . . . , n we define f in ∈ H
by

f in :=
1
τn

∫ tin

ti−1
n

f(t)dt (3.11)

We define uin for i = −1, 0, ..., n inductively by the following: First,

u0
n := u(0), u−1

n := u(0) − τnu(1); (3.12)

then, for i = 0, 1, . . . , n− 1, the function ui+1
n is the minimizer in Vti+1

n
of

u 7→
∥∥∥∥u− uinτn

− uin − ui−1
n

τn

∥∥∥∥2

H

+ ‖∇u‖2HN
+

γ

τn
‖∇u−∇uin‖2HN

− 2〈f in, u〉H

Note that the infimum of this functional is finite, since the sum of the first two terms is of
the form 1

τ2
n
‖u− ain‖2H + ‖∇u‖2H for some ain ∈ H , so that the functional can be bounded

from below by cn‖u‖2ti+1
n
− 1
τ2

n
‖ain‖2H−‖f in‖H‖u‖ti+1

n
, with cn = min{1, 1

2τ2
n
} . It follows that

we have 〈
ui+1
n − uin
τn

− uin − ui−1
n

τn
,
φ

τn

〉
H

+ 〈∇ui+1
n ,∇φ〉HN

+
γ

τn
〈∇ui+1

n −∇uin,∇φ〉HN
= 〈f in, φ〉H (3.13)

for every φ ∈ Vti+1
n

. Note that from (2.4) we can take φ = ui+1
n − uin , and we get∥∥∥∥ui+1

n − uin
τn

∥∥∥∥2

H

−
〈
ui+1
n − uin
τn

,
uin − ui−1

n

τn

〉
H

+ ‖∇ui+1
n ‖2HN

−〈∇ui+1
n ,∇uin〉HN

+
γ

τn
‖∇ui+1

n −∇uin‖2HN
= 〈f in, ui+1

n − uin〉H .

Using the fact that ‖a‖2 − 〈a, b〉 = 1
2‖a‖

2 + 1
2‖a − b‖2 − 1

2‖b‖
2 , multiplying by 2, and

rearranging, we can write∥∥∥∥ui+1
n − uin
τn

∥∥∥∥2

H

+
∥∥∥∥ui+1

n − uin
τn

− uin − ui−1
n

τn

∥∥∥∥2

H

+ ‖∇ui+1
n ‖2HN

+ ‖∇ui+1
n −∇uin‖2HN

+
2γ
τn
‖∇ui+1

n −∇uin‖2HN
=
∥∥∥∥uin − ui−1

n

τn

∥∥∥∥2

H

+ ‖∇uin‖2HN
+ 2〈f in, ui+1

n − uin〉H . (3.14)

Summing from i = 0 to j and using (3.12), we get∥∥∥∥uj+1
n − ujn
τn

∥∥∥∥2

H

+ ‖∇uj+1
n ‖2HN

+
j∑
i=0

∥∥∥∥ui+1
n − uin
τn

− uin − ui−1
n

τn

∥∥∥∥2

H

+
j∑
i=0

‖∇ui+1
n −∇uin‖2HN

+
2γ
τn

j∑
i=0

‖∇ui+1
n −∇uin‖2HN

= ‖u(1)‖2H + ‖∇u(0)‖2HN
+ 2

j∑
i=0

〈f in, ui+1
n − uin〉H . (3.15)

We now define un, ũn, vn : [0, T ]→ V for t ∈ (tin, t
i+1
n ] by

un(t) := uin + (t− tin)
ui+1
n − uin
τn

, (3.16)

ũn(t) := ui+1
n , fn(t) := f in, (3.17)

vn(t) :=
uin − ui−1

n

τn
+
t− tin
τn

[
ui+1
n − uin
τn

− uin − ui−1
n

τn

]
. (3.18)
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Rewriting (3.15) using the above, for every t ∈ (tjn, t
j+1
n ) we now have

‖u̇n(t)‖2H + ‖∇un(tj+1
n )‖2HN

+ τn

∫ tj+1
n

0

‖v̇n(t)‖2H dt+ τn

∫ tj+1
n

0

‖∇u̇n(t)‖2HN
dt

+2γ
∫ tj+1

n

0

‖∇u̇n(t)‖2HN
dt = ‖u(1)‖2H + ‖∇u(0)‖2HN

+ 2
∫ tj+1

n

0

〈fn(t), u̇n(t)〉H dt. (3.19)

The right-hand side above is bounded as long as Mn := maxt ‖u̇n(t)‖H is bounded. From
(3.19) we have that

M2
n ≤ ‖u(1)‖2H + ‖∇u(0)‖2HN

+ 2‖f‖L2(0,T ;H)T
1/2Mn .

This implies that Mn is bounded, and so is the right-hand side of (3.19).
We then have that

∇un(t) and ∇ũn(t) are bounded in HN uniformly in t and n, (3.20)
γ∇u̇n is bounded in L2(0, T ;HN ) uniformly in n, (3.21)
u̇n(t) and vn(t) are bounded in H uniformly in t and n. (3.22)

We note that (3.22) together with the fact that u(0) ∈ H implies that un is bounded in H
uniformly in t and n . This together with (3.20) gives

un(t) is bounded in V uniformly in t and n. (3.23)

Furthermore, using (3.16), (3.17), and (3.18) in (3.13) gives that for all t ∈ (tin, t
i+1
n ),

〈v̇n(t), φ〉H + 〈∇ũn(t) + γ∇u̇n(t),∇φ〉HN
= 〈fn(t), φ〉H (3.24)

for every φ ∈ Vti+1
n

. This together with (3.20) and (3.21) gives that for t ∈ (tin, t
i+1
n ),

‖v̇n(t)‖∗
ti+1
n
≤ c (3.25)

where c is independent of t, i, n . Using the fact that

‖ · ‖∗s ≤ ‖ · ‖∗t for s < t, (3.26)

we get
‖v̇n(t)‖∗s ≤ c (3.27)

for all s < t , and for every n .
Using (3.21), (3.22), (3.23), and (3.27) we get

un is bounded in H1(0, T ;V ) and in W 1,∞(0, T ;H), (3.28)
vn is bounded in L∞(0, T ;H), (3.29)
vn is bounded in W 1,∞(s, T ;V ∗s ) for every s ∈ [0, T ]. (3.30)

Let us fix a countable dense subset D of [0, T ] . By a diagonal argument we obtain a
subsequence, not relabeled, such that

un ⇀ u weakly in H1(0, T ;V ), (3.31)
vn ⇀ v weakly in L2(0, T ;H), (3.32)
vn ⇀ v weakly in H1(s, T ;V ∗s ) for every s ∈ D. (3.33)

It is easy to see that in fact

u ∈ H1(0, T ;V ) ∩W 1,∞(0, T ;H), (3.34)
v ∈ L∞(0, T ;H), (3.35)
v ∈W 1,∞(t, T ;V ∗s ) for every s, t ∈ [0, T ] with s < t. (3.36)

Moreover (3.27) gives

‖v̇‖L∞(t,T ;V ∗s ) ≤ c for every s, t ∈ [0, T ] with s < t. (3.37)



EXISTENCE FOR WAVE EQUATIONS ON DOMAINS WITH ARBITRARY GROWING CRACKS 9

We now show that
v(t) = u̇(t) in H for a.e. t ∈ [0, T ]. (3.38)

First, for every t ∈ (tin, t
i+1
n ), we have u̇n(t) = vn(ti+1

n ), so that using (3.25) we have

‖u̇n(t)− vn(t)‖∗
ti+1
n

= ‖vn(ti+1
n )− vn(t)‖∗

ti+1
n
≤
∫ ti+1

n

tin

‖v̇n(τ)‖∗
ti+1
n
dτ ≤ cτn.

From (3.26), we have ‖u̇n(t) − vn(t)‖∗s ≤ cτn for all s < t . Together with (3.32), this
shows that u̇n ⇀ v weakly in L2(s, T ;V ∗s ) for all s ∈ [0, T ] . On the other hand, u̇n ⇀ u̇
weakly in L2(0, T ;H), and so v(t) = u̇(t) in V ∗s for every s ∈ [0, T ] and for a.e. t ∈ (s, T ).
Since v(t) and u̇(t) belong to H , the previous equality means that 〈v(t), φ〉H = 〈v(t), φ〉s =
〈u̇(t), φ〉s = 〈u̇(t), φ〉H for every φ ∈ Vs . The density of Vs in H allows us to conclude that
v(t) = u̇(t) as elements of H . This concludes the proof of (3.38). From (3.36) , (3.37), and
(3.38) we deduce that

u ∈W 2,∞(t, T ;V ∗s ) and ‖ü‖L∞(t,T ;V ∗s ) ≤ c (3.39)

for every s , t ∈ [0, T ] with s < t . This gives (3.4) and (3.5) by Lemma 2.2.
From (3.28) we know that un is Lipschitz with values in H uniformly in n . Now, since

ũn(t) = un(ti+1
n ) for t ∈ (tin, t

i+1
n ] and , we have, as above, that

ũn ⇀ u weakly in L2(0, T ;H).

Since ∇ũn is bounded in L2(0, T ;HN ) by (3.20), we obtain also that

∇ũn ⇀ ∇u weakly in L2(0, T ;HN ). (3.40)

This gives
ũn ⇀ u in L2(0, T ;V ). (3.41)

Furthermore, note that ũn(t− τn) ∈ Vt for every t ∈ [0, T ] , and

ũn(· − τn) ⇀ u weakly in L2(0, T ;V ).

Since the linear subspace {v ∈ L2(0, T ;V ) : v(t) ∈ Vt for a.e. t ∈ [0, T ]} is strongly closed, it
is weakly closed in L2(0, T ;V ). Therefore u(t) ∈ Vt for a.e. t ∈ [0, T ] . For every t ∈ (0, T ]
there exists tn ↗ t such that u(tn) ∈ Vtn ⊂ Vt for every n . Since u(tn)→ u(t) strongly in
V by (3.34), we obtain u(t) ∈ Vt . Together with the inclusion u(0) = u(0) ∈ V0 , this proves
(3.3).

We now prove that (3.7) holds a.e. t ∈ [0, T ] for every φ ∈ Vt . We first claim that for
s ∈ D and for all φ ∈ Vs , we have

〈ü(t), φ〉s + 〈∇u(t) + γ∇u̇(t),∇φ〉HN
= 〈f(t), φ〉H for a.e. t > s. (3.42)

We first fix s ∈ D and φ ∈ Vs . Using (3.24), we have that for a.e. t > s ,

〈v̇n(t), φ〉H + 〈∇ũn(t) + γ∇u̇n(t),∇φ〉HN
= 〈fn(t), φ〉H .

Hence for every s < t1 < t2 < T we have∫ t2

t1

(
〈v̇n(t), φ〉H + 〈∇ũn(t) + γ∇u̇n(t),∇φ〉HN

− 〈fn(t), φ〉H
)
dt = 0. (3.43)

Using (3.11) and (3.17) we obtain that fn → f in L2(0, T ;H), hence∫ t2

t1

〈fn(t), φ〉H dt→
∫ t2

t1

〈f(t), φ〉H dt

We know that v̇n ⇀ v̇ weakly in L2(s, T ;V ∗s ) from (3.33). Since u̇ = v in H1(s, T ;V ∗s ), we
also have that ü = v̇ in L2(s, T ;V ∗s ). Using also (3.31) and (3.40), we can pass to the limit
in (3.43) and we get∫ t2

t1

(
〈ü(t), φ〉s + 〈∇u(t) + γ∇u̇(t),∇φ〉HN

− 〈f(t), φ〉H
)
dt = 0.
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This implies (3.42).
Notice that since Vs is separable, the set Ns of t > s for which (3.42) does not hold can

be taken independent of φ . We set W to be the union over s ∈ D of the sets Ns , so that
W also has measure zero. It follows that for every t /∈ W and for every s ∈ D , s < t , we
have

〈ü(t), φ〉s + 〈∇u(t) + γ∇u̇(t),∇φ〉HN
= 〈f(t), φ〉H . (3.44)

Using Lemma 2.3, it follows that for a.e. t /∈ S , for every φ ∈ Vt , and for every sn ↗ t ,
with sn ∈ D , there exists φn ∈ Vsn

such that φn → φ strongly in Vt . Now note that

〈ü(t), φn〉t + 〈∇u(t) + γ∇u̇(t),∇φn〉HN
− 〈f(t), φn〉H

= 〈ü(t), φn〉sn
+ 〈∇u(t) + γ∇u̇(t),∇φn〉HN

− 〈f(t), φ〉H = 0.

The convergence of the φn to φ gives (3.7).
For every t ∈ (0, T ) and n ∈ N there exists a unique j such that tjn < t ≤ tj+1

n =: t∗n
By (3.11) and (3.17) the sequence fn converges to f strongly in L2(0, T ;H). By (3.31) the
sequence u̇n converges to u̇ strongly in L2(0, T ;H). Therefore∫ t∗n

0

〈fn(τ), u̇n(τ)〉Hdτ →
∫ t

0

〈f(τ), u̇(τ)〉Hdτ

By (3.31) and (3.40), from (3.19) we obtain (3.10) by weak lower semicontinuity.
It remains to prove (3.8). It is enough to show that, if tk are Lebesgue points for

t 7→ ‖u̇(t)‖2H and tk → 0, then

u̇(tk)→ u(1) strongly in H. (3.45)

By (3.4) u̇ belongs to W 1,∞(0, T ;V ∗0 ), so that, if tk → 0, then u̇(tk)→ u(1) in V ∗0 . Since
u̇(tk) is bounded in H by (3.2) and V0 ⊂ H is dense, it follows that u̇(tk) ⇀ u(1) weakly
in H . Therefore (3.45) is equivalent to

lim sup
k→∞

‖u̇(tk)‖H ≤ ‖u(1)‖H . (3.46)

By (3.2) and (3.10) there exists a constant C > 0 such that

‖u̇(t)‖2H + ‖∇u(t)‖2HN
≤ ‖u(1)‖2H + ‖∇u(0)‖2HN

+ Ct1/2 (3.47)

for a.e. t ∈ [0, T ] . Since t 7→ ∇u(t) is continuous from [0, T ] to HN by (3.2), inequality
(3.47) holds in for all Lebesgue points of t 7→ ‖u̇(t)‖2H , in particular for t = tk . By continuity
we have ‖∇u(tk)‖HN

→ ‖∇u(0)‖HN
, so that (3.46) follows from (3.47). This proves (3.45)

and concludes the proof of (3.8). �

The following lemma provides an equivalent formulation of (3.6) in terms of the behavior
of the functions ‖u̇(t)‖2H − ‖u̇(t− h)‖2H .

Lemma 3.4. Assume (3.2)-(3.5). Then there exists a constant C > 0 such that

−C‖u̇(t− h)‖t−h ≤
1
h

(‖u̇(t)‖2H − ‖u̇(t− h)‖2H)

≤ 1
h
‖u̇(t)− u̇(t− h)‖2H + C‖u̇(t− h)‖t−h (3.48)

for every h ∈ (0, T ) and a.e. t ∈ (h, T ) . In particular, the equiintegrability of (3.6) holds if
and only if for every s ∈ (0, T ) the functions

t 7→ 1
h

(‖u̇(t)‖2H − ‖u̇(t− h)‖2H), h ∈ (0, s),

are equiintegrable on (s, T ) .
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Proof. For every h ∈ (0, T ) and for a.e. t ∈ (h, T ) we have

1
h

(‖u̇(t)‖2H − ‖u̇(t− h)‖2H) =
〈 u̇(t)− u̇(t− h)

h
, u̇(t) + u̇(t− h)

〉
t

=
1
h
‖u̇(t)− u̇(t− h)‖2H + 2

〈 u̇(t)− u̇(t− h)
h

, u̇(t− h)
〉
t−h

. (3.49)

By (3.3) and (3.4) the function τ 7→ 〈u̇(τ), u̇(t− h)〉t−h belongs to W 1,∞(t− h, T ) and its
time derivative is τ 7→ 〈ü(τ), u̇(t − h)〉t−h . By (3.5) there exists a constant c independent
of t and h such that the absolute value of the last duality product in (3.49) is bounded
by c‖u̇(t − h)‖t−h . This implies (3.48). Since the family of functions t 7→ ‖u̇(t − h)‖t−h ,
0 < h < s , is equiintegrable in (s, T ) by (3.2), the conclusion follows. �

Lemma 3.5. Under the assumptions of Theorem 3.2, suppose that u satisfies (3.2)-(3.5),
and let s , t ∈ (0, T ] be Lebesgue points for ‖u̇(·)‖2H , with s < t . Then

‖u̇(t)‖2H − ‖u̇(s)‖2H ≥ 2
∫ t

s

〈ü(τ), u̇(τ)〉τ dτ. (3.50)

Proof. Fix 0 < h < s . Integrating both sides of the first equality of (3.49) from s to t , we
get

1
h

∫ t

t−h
‖u̇(τ)‖2Hdτ −

1
h

∫ s

s−h
‖u̇(τ)‖2Hdτ =

∫ t

s

〈 u̇(τ)− u̇(τ − h)
h

, u̇(τ) + u̇(τ − h)
〉
τ
dτ.

Take a sequence h→ 0 such that

u̇(τ) + u̇(τ − h)→ 2u̇(τ) strongly in V

for a.e. τ , which we can do since u̇ ∈ L2(0, T ;V ). By Lemma 2.2 we also have

u̇(τ)− u̇(τ − h)
h

⇀ ü(τ) weakly in V ∗τ

for a.e. τ , so that 〈 u̇(τ)− u̇(τ − h)
h

, u̇(τ) + u̇(τ − h)
〉
τ
→ 〈ü(τ), 2u̇(τ)〉τ .

By (3.48) and (3.49) we can apply the Fatou Lemma (with an equiintegrable minorant) and
we get

lim inf
h→0+

∫ t

s

〈 u̇(τ)− u̇(τ − h)
h

, u̇(τ) + u̇(τ − h)
〉
τ
dτ ≥

∫ t

s

〈ü(τ), 2u̇(t)〉τ dτ,

while
1
h

∫ t

t−h
‖u̇(τ)‖2Hdt−

1
h

∫ s

s−h
‖u̇(τ)‖2Hdτ → ‖u̇(t)‖2H − ‖u̇(s)‖2H ,

since s and t are Lebesgue points for ‖u̇(·)‖2H . �

Lemma 3.6. Under the assumptions of Theorem 3.2, suppose that u satisfies (3.2)-(3.5)
and the initial condition (3.8) for some u(1) ∈ H . Then

‖u̇(t)‖2H − ‖u(1)‖2H ≥ 2
∫ t

0

〈ü(τ), u̇(τ)〉sds. (3.51)

for every Lebesgue point t ∈ (0, T ] of ‖u̇(·)‖2H .

Proof. By (3.8) there exists a sequence hn of positive numbers converging to 0 such that
u̇(hnt) → u(1) strongly in H for a.e. t ∈ [0, T ] . Then we choose t so that tn := hnt is a
Lebesgue point of ‖u̇(·)‖2H for every n and u̇(tn)→ u(1) strongly in H . By Lemma 3.5 we
have

‖u̇(t)‖2H − ‖u̇(tn)‖2H ≥ 2
∫ t

tn

〈ü(τ), u̇(τ)〉τdτ.
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Passing to the limit as n→∞ we get (3.51). �

We now prove that the function u obtained in Lemma 3.3 satisfies the energy balance
for a.e. t ∈ (0, T ).

Lemma 3.7. Under the assumptions of Theorem 3.2, suppose that u satisfies (3.2)-(3.5),
(3.7), (3.10), and the initial conditions u(0) = u(0) and (3.8). Then u satisfies the energy
balance (3.9) for every Lebesgue point t ∈ (0, T ] of ‖u̇(·)‖2H .

Proof. By (3.7) and since u̇(t) ∈ Vt we have that

〈ü(t), u̇(t)〉t + 〈∇u(t),∇u̇(t)〉HN
+ γ‖∇u̇(t)‖2HN

= 〈f(t), u̇(t)〉H
for a.e. t ∈ [0, T ] . Integrating from 0 to t and using Lemma 3.6, for every Lebesgue point
t ∈ [0, T ] of ‖u̇(·)‖2H we get

1
2
‖u̇(t)‖2H −

1
2
‖u(1)‖2H +

1
2

∫ t

0

d

dτ
‖∇u(τ)‖2HN

dτ + γ

∫ t

0

‖∇u̇(τ)‖2HN
dτ ≥

∫ t

0

〈f(τ), u̇(τ)〉Hds.

Together with (3.10) this inequality gives (3.9). �

Lemma 3.8. Under the assumptions of Theorem 3.2, suppose that u satisfies (3.2) and
(3.9) for a.e. t ∈ (0, T ) . Then the functions (3.6) are equiintegrable.

Proof. Let us fix s ∈ (0, T ). By (3.9) for every h ∈ (0, s) and for a.e. t ∈ (s, T ) we have

‖u̇(t)‖2H − ‖u̇(t− h)‖2H + ‖∇u(t)‖2HN
− ‖∇u(t− h)‖2HN

+ 2γ
∫ t

t−h
‖∇u̇(τ)‖2HN

dτ

= 2
∫ t

t−h
〈f(τ), u̇(τ)〉Hdτ

By (3.2) there exists a constant C > 0 such that ‖∇u(t)‖HN
≤ C for a.e. t ∈ (0, T ), so that

the previous equality gives

1
h

∣∣∣‖u̇(t)‖2H − ‖u̇(t− h)‖2H
∣∣∣ ≤ 2C

h

∫ t

t−h
‖∇u̇(τ)‖HN

dτ +
2γ
h

∫ t

t−h
‖∇u̇(τ)‖2HN

dτ

+
2
h

∫ t

t−h
〈f(τ), u̇(τ)〉Hdτ

Since the functions τ 7→ ‖∇u̇(τ)‖HN
, τ 7→ ‖∇u̇(τ)‖2HN

, and τ 7→ 〈f(τ), u̇(τ)〉H belong to
L1(0, T ), the right-hand side of the previous inequality converges in L1(s, T ) as h → 0+.
Therefore it is equiintegrable on (s, T ). By Lemma 3.4 this implies the equiintegrability
of (3.6). �

Lemma 3.9. Under the assumptions of Theorem 3.2, only one weak solution of the damped
wave equation considered in Definition 3.1 satisfies the initial conditions u(0) = u(0) and
(3.8).

Proof. Since (3.6) is preserved by linear combinations, the difference v between two solutions
is a solution with f = 0 satisfying the initial conditions v(0) = 0 and

lim
h→0+

1
h

∫ h

0

‖v̇(t)‖2Hdt = 0.

By Theorem 3.7 we have

1
2
‖v̇(t)‖2H +

1
2
‖∇v(t)‖2HN

+ γ

∫ t

0

‖∇v̇(s)‖2HN
ds = 0

for a.e. t ∈ [0, T ] . This implies that v̇(t) = 0 in H for a.e. t ∈ [0, T ] . Since v ∈
W 1,∞(0, T ;H) by (3.2), and v(0) = 0, we conclude that v(t) = 0 for every t ∈ [0, T ] . �
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Lemma 3.10. Under the assumptions of Theorem 3.2, let u be the weak solution of the
damped wave equation considered in Definition 3.1, with initial conditions u(0) = u(0) and
(3.8). Then t 7→ u̇(t) is continuous from [0, T ] to H and (3.9) holds for every t ∈ [0, T ] .

Proof. By (3.4) the function t 7→ u̇(t) is continuous from [0, T ] to V ∗0 and by (3.2) u̇(t) ∈ H
for a.e. t ∈ [0, T ] , and there exists a constant M such that

‖u̇(t)‖H ≤M for a.e. t ∈ [0, T ]. (3.52)

We claim that

u̇(t) ∈ H and ‖u̇(t)‖H ≤M for every t ∈ [0, T ], (3.53)
t 7→ u̇(t) is weakly continuous from [0, T ] to H. (3.54)

Given t ∈ [0, T ] , by (3.52) there exists a sequence tn in [0, T ] converging to t such that
u̇(tn) is bounded in H . Since u̇(tn) → u̇(t) strongly in V ∗0 and the embedding H ↪→ V ∗0
is continuous, we conclude that u̇(t) ∈ H , ‖u̇(t)‖H ≤ M , and u̇(tn) ⇀ u̇(t) weakly in H .
This proves (3.53). The same argument with an arbitrary tn converging to t gives (3.54).

By Lemmas 3.3, 3.7, 3.8, and 3.9 the function u satisfies the energy balance (3.9) for a.e.
t ∈ (0, T ). Using (3.54) and the weak lower semicontinuity of the norm, we can approximate
an arbitrary t ∈ [0, T ] and we obtain (3.10) for every t ∈ [0, T ] .

Define Γ(t) := Γ(T ) for every t > T and fix t0 ∈ (0, T ] . Since u(t0) ∈ Vt0 by (3.3)
and u̇(t0) ∈ H , by the lemmas mentioned above there exists a unique weak solution v of
the damped wave equation on the interval [t0, T + 1] (Definition 3.1) with initial conditions
v(t0) = u(t0) and

lim
h→0+

1
h

∫ t0+h

t0

‖v̇(τ)− u̇(t0)‖2Hdτ = 0.

Define w : [0, T + 1] → V by w(t) = u(t) for t ≤ t0 and by w(t) = v(t) for t > t0 . It is
easy to check that w satisfies (3.2)-(3.5), (3.7), and the initial conditions w(0) = u(0) and

lim
h→0+

1
h

∫ h

0

‖ẇ(t)− u(1)‖2Hdt = 0.

Moreover it satisfies the energy inequality (3.10) for a.e. t ∈ (0, T + 1). By Lemmas 3.7 and
3.8 the function w satisfies also the equiintegrability condition (3.6), so that it is a weak
solution of the damped wave equation on [0, T + 1] (Definition 3.1). Let t ∈ (t0, T + 1] be
a Lebesgue point of ‖v̇(·)‖2H . By Theorem 3.7 we have

1
2
‖ẇ(t)‖2H +

1
2
‖∇w(t)‖2HN

+ γ

∫ t

0

‖∇ẇ(τ)‖2HN
dτ

=
1
2
‖u(1)‖2H +

1
2
‖∇u(0)‖2HN

+
∫ t

0

〈f(τ), ẇ(τ)〉H dτ

and
1
2
‖v̇(t)‖2H −

1
2
‖u̇(t0)‖2H +

1
2
‖∇v(t)‖2HN

− 1
2
‖∇u(t0)‖2HN

+ γ

∫ t

t0

‖∇v̇(τ)‖2HN
dτ

=
∫ t

t0

〈f(τ), v̇(τ)〉H dτ.

Subtracting the second equation from the first one we get

1
2
‖u̇(t0)‖2H +

1
2
‖∇u(t0)‖2HN

+ γ

∫ t0

0

‖∇u̇(τ)‖2HN
dτ

=
1
2
‖u(1)‖2H +

1
2
‖∇u(0)‖2HN

+
∫ t0

0

〈f(τ), u̇(τ)〉H dτ.

This shows that (3.9) holds for t = t0 . The arbitrariness of t0 implies that (3.9) holds
for every t ∈ [0, T ] . Since t 7→ ‖∇u(t)‖2HN

is continuous by (3.2), we deduce from (3.9)



14 GIANNI DAL MASO AND CHRISTOPHER J. LARSEN

holds for that t 7→ ‖u̇(t)‖2H is continuous. Together with (3.54), this proves that t 7→ u̇(t)
is continuous from [0, T ] to H . �

Proof of Theorem 3.2. By Lemma 3.3 there exists a function u satisfying (3.2)-(3.5), (3.7),
the initial conditions u(0) = u(0) and (3.8), and the energy inequality (3.10) for a.e. t ∈
[0, T ] . By Lemma 3.7 this function satisfies also the energy equality (3.9) for a.e. t ∈ [0, T ] .
By Lemma 3.8 the functions (3.6) are equiintegrable, so that u is a weak solution of the
damped wave equation according to Definition 3.1. The uniqueness is proved in Lemma 3.9.
The continuity of t 7→ u̇(t) from [0, T ] to H and the energy equality (3.9) for every t ∈ [0, T ]
follow from Lemma 3.10. �

4. The Undamped Wave Equation

In this section we study weak solutions of the undamped wave equation

ü−∆u = f (4.1)

on a cracking domain.

Definition 4.1. Assume (2.3) and (2.4), and let f ∈ L2(0, T ;H). We say that u is a weak
solution of the wave equation (4.1) on the time dependent cracking domain t 7→ Ω \ Γ(t) if

u ∈ L∞(0, T ;V ) ∩W 1,∞(0, T ;H), (4.2)
for every t ∈ [0, T ] we have u(t) ∈ Vt, (4.3)
for every s ∈ [0, T ) we have u ∈W 2,∞(s, T ;V ∗s ), (4.4)

sup
s∈[0,T )

‖ü‖L∞(s,T ;V ∗s ) < +∞, (4.5)

and for a.e. t ∈ [0, T ]

〈ü(t), φ〉t + 〈∇u(t),∇φ〉HN
= 〈f(t), φ〉H for every φ ∈ Vt, (4.6)

where ü(t) is given by Definition 2.4.

In the next theorem we will prove that there exist solutions satisfying the initial condition
for u in the strong form

lim
h→0+

1
h

∫ h

0

(
‖u(t)− u(0)‖2H + ‖∇u(t)−∇u(0)‖2HN

)
dt = 0, (4.7)

and that for u̇ in the sense of (3.8).

Theorem 4.2. Assume (2.3) and (2.4), and let u(0) ∈ V0 , u(1) ∈ H , and f ∈ L2(0, T ;H)
be given. Then there exists a weak solution of the wave equation considered in Definition
4.1 satisfying the initial conditions (4.7) and (3.8).

Proof. We proceed exactly as in the proof of Lemma 3.3. In fact, the proof is identical, with
γ = 0, through (3.19).

We then continue as in Lemma 3.3 with γ = 0, where (3.21) is useless, and (3.28) is
replaced by

un is bounded in L∞(0, T ;V ) and in W 1,∞(0, T ;H). (4.8)
As a consequence of this change, (3.31) is replaced by

un ⇀ u weakly in L2(0, T ;V ) and in H1(0, T ;H), (4.9)

and (3.34) is replaced by u ∈ L∞(0, T ;V ) ∩W 1,∞(0, T ;H). The proof that u is a solution
proceeds as in the damped case.

It remains to prove that u satisfies the initial conditions (4.7) and (3.8). It is enough
to show that, if tk are Lebesgue points for both t 7→ ‖u̇(t)‖2H and t 7→ ‖∇u(t)‖2HN

, and
tk → 0, then

∇u(tk)→ ∇u(0) strongly in HN and u̇(tk)→ u(1) strongly in H. (4.10)
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As in the proof of Theorem 3.2 we can show that u̇(tk) ⇀ u(1) weakly in H . Moreover (4.2)
implies that u(tk) → u(0) = u(0) strongly in H and that ∇u(tk) is bounded in HN . This
imples that ∇u(tk) ⇀ ∇u(0) weakly in HN .

Therefore (4.10) is equivalent to

lim sup
k→∞

(
‖∇u(tk)‖2HN

+ ‖u̇(tk)‖2H
)
≤ ‖∇u(0)‖2HN

+ ‖u(1)‖2H . (4.11)

For every t ∈ (0, T ) and n ∈ N there exists a unique j such that tjn < t ≤ tj+1
n =: t∗n . From

(3.19), we have that

‖u̇n(t)‖2H + ‖∇ũn(t)‖2HN
≤ ‖u(1)‖2H + ‖∇u(0)‖2HN

+ 2M
(∫ t∗n

0

‖u̇n(s)‖2Hds
)1/2

,

where M := ‖f‖L2(0,T ;H) . Since ‖u̇n(t)‖H is uniformly bounded by (4.8), there exists
C > 0 such that

‖u̇n(t)‖2H + ‖∇ũn(t)‖2HN
≤ ‖u(1)‖2H + ‖∇u(0)‖2HN

+ C(t∗n)1/2.

Therefore, from (3.32) and (3.40) and the fact that the chosen tk are Lebesgue points,
we get

‖u̇(tk)‖2H + ‖∇u(tk)‖2HN
≤ ‖u(1)‖2H + ‖∇u(0)‖2HN

+ Ct
1/2
k

for every k . This proves (4.11) and concludes the proof of the theorem. �
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