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Abstract

The relaxation of a free-energy functional which describes the order-strain interaction
in nematic elastomers is obtained explicitly. We work in the regime of small strains
(linearized kinematics). Adopting the uniaxial order tensor theory (Frank model) to
describe the liquid crystal order, we prove that the minima of the relaxed functional
exhibit an effective biaxial nematic texture, as in the de Gennes order tensor model.
In particular, this implies that, at a sufficiently macroscopic scale, the response of the
material is soft even if the order of the system is assumed to be fixed at the microscopic
scale. The relaxed energy density satisfies a solenoidal quasiconvexification formula.
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1 Introduction

Formation of microstructure in complex materials is a very interesting phenomenon from
both the physical and the mathematical point of view. A paradigmatic case is that of
nematic elastomers, rubbery solids originating from the combination of rod-like liquid crystal
molecules with an elastic medium [27]. To sketch the internal organization of such materials,
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consider that nematic molecules are linked to long polymeric chains, forming an anisotropic
solid structure which has extraordinary properties of deformability. Rods can be directly
attached to the backbone becoming part of the chain (main-chain polymers) or simply be
pendant to it (side-chain polymers). It is well known ([5], [8], [9], [12], [13], [14]) that
mechanical fields can deform the chains and re-arrange the local orientation of the mesogenic
groups, modifying the optical properties of the material as well.

A general consensus on a satisfactory description of the coupling between mechanical
fields and the local order of the liquid crystal in the sense of de Gennes [21] is still missing,
both in the case of linear and non-linear elasticity ([7], [18], [20], [23]). Denoting with Q
the order tensor and F the gradient of the displacement, a possible expression for the energy
density describing nematic elastomers within the framework of linearized elasticity is [5]

fmec(Q,F) := µ
∣∣∣
(F + FT

2

)
− γQ

∣∣∣
2

+
λ

2
(trF)2. (1.1)

The relationship between this expression and the one proposed in the Cambridge group [27]
within the framework of finite elasticity is discussed in [15].

A further development consists in minimizing (1.1) with respect to Q. In this new model
the influence of the internal nematic variable Q is perceived only through its coupling to the
strain. Depending on the choice of the set where Q is allowed to vary, different results are
obtained:

fX(F) := inf
QX

fmec(Q,F), where X stands either for Fr, or U, or B. (1.2)

The sets QFr ⊂ QU ⊂ QB are defined later. For the sake of this discussion, it suffices to
recall that QB is the set of order tensors in the de Gennes model. This is a convex set (this
is a trivial fact, as highlighted e.g. in [5], see the comment after (1.1) therein) which contains
biaxial matrices and the null element. Moreover, QU and QFr are the non-convex sets of
the uniaxial and Frank-like tensors respectively ([16], [17]). An important feature is that QU

contains the null element, while QFr does not. Therefore, in the case X = Fr in (1.2), a
state with biaxial or zero Q cannot be induced mechanically, while in the case X = U the
state Q = 0 is reachable. On the other hand, in the case X = B we can obtain all the biaxial
states, including again Q = 0.

It can happen, however, that biaxial states which may seem unattainable according to
(1.2) in the case when we consider the energy density fFr and fU , are allowed, in a suitable
sense, by formation of microstructure. It turns out that fFr and fU are non-convex energy
densities, while fB is convex. In fact, we show that in the cases where X = Fr or X = U ,
microstructures are possible, and a biaxial order is obtained effectively, via relaxation even
though biaxiality is excluded at the microscopic level. More precisely, using the language of
the Calculus of Variations, we replace a minimization problem for a non-lower semicontinuous
functional F with the problem of minimizing the largest lower semicontinuous functional not
exceeding F , namely, its relaxation.

The energy densities fFr, fU , fB can be respectively interpreted as the square of a distance
function from the subsets QFr,QU ,QB (via the proportionality constant γ) in the space of
symmetric matrices. Our relaxation result is based on the fact that the quasiconvexification
of fFr and fU is the square of the distance from the convex hull of γQFr and γQU , which is
precisely γQB . Without specifying the setting and the technical assumptions, we anticipate
here the main result of this paper. In the following result u represents the mechanical
displacement.
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Theorem. Assume

FX(u) =






∫

Ω

fX(∇u)dx if div u = 0,

+∞ otherwise,

where X stands either for Fr, or U , or B (Frank, Uniaxial, Biaxial) and fX is as in (1.2).
Then, the relaxation of FX is

FB(u) =






∫

Ω

fB(∇u)dx if div u = 0,

+∞ otherwise.

The rest of the paper is organized as follows. In Section 2 we describe the model in detail and
recall some mathematical tools in the theory of relaxation and Gamma-convergence. Then,
in Section 3, we present our main relaxation result (Theorem 2). In Section 4 we discuss
some applications.

2 Preliminaries

Notation and basics facts in linear algebra. We gather here the main symbols and the
notation used throughout the paper. Let N and R denote the set of natural and real numbers
respectively. For any integer n, R

n is the space of n-dimensional vectors with canonical basis
{ii}, i = 1, . . . n and M

n×n the space of square real matrices. The determinant, the trace
and the transpose of the matrix F in M

n×n are denoted by detF, trF, FT respectively.
We endow M

n×n with the usual inner product F : M := tr (FMT ) =
∑

ij FijMij and

the corresponding norm |F| := (F : FT )1/2. Here Fij ,Mij are the cartesian components
of F and M. The identity in M

n×n is denoted with I. Focusing on the case n = 3, we
denote with M

3×3
0 , M

3×3
sym, M

3×3
0sym, M

3×3
skw the subspaces of traceless, symmetric, traceless

and symmetric (deviatoric) and skew-symmetric matrices respectively. We introduce the
projections E : M

3×3 7→ M
3×3
sym, defined as E(F) := (F + FT )/2, E0 : M

3×3 7→ M
3×3
0sym, defined

as E0(F) := E(F) − ((trF)/3)I. In this definition we can consider the trace of E(F) as
well, since trF = tr E(F). This fact will be widely used in what follows. If we introduce

Fsk := (F−FT )/2, we obtain the well known decomposition F = E0(F) + Fsk + (trF)
3 I. We

denote with C : M
3×3
sym 7→ M

3×3
sym the fourth-order tensor of linearized isotropic elasticity, given

as C(A) = 2µA + λtr (A)I, ∀A ∈ M
3×3
sym, with positive µ, λ (Lamé constants). To emphasize

the dependence on λ, we write Cλ. We use the notation ‖·‖Cλ
for the norm on M

3×3
sym induced

by the metric Cλ (see formula (2.1) for an example of this notation).

2.1 The mechanical model

We recall a model introduced in [5] to describe the coupling between strain and order in
nematic elastomers

fmec(Q,F) :=
1

2

∥∥E(F) − γQ
∥∥2

Cλ
= µ

(
|E(F)|2 + γ2|Q|2 − 2γE(F) : Q

)
+

λ

2
(trF)2 (2.1)

where γ is a positive constant. Labelling with e1(M) ≤ e2(M) ≤ e3(M) the ordered eigen-
values of the symmetric 3×3 matrix M, the order tensor Q can be taken in different subsets
of M

3×3
0sym according to the following models (see [16], [21], [26]):
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• the biaxial theory, namely, the one using as nematic state variable the order tensor Q
of de Gennes

QB :=
{
M ∈ M

3×3
0sym : −

1

3
≤ ei(M) ≤

2

3
, i = 1, 2, 3

}
, (2.2)

• the uniaxial theory, namely, the one obtained when the de Gennes order tensor is
constrained to be uniaxial, i.e. two eigenvalues coincide

QU :=
{
M ∈ QB : e3(M) = −2e1(M) or e1(M) = −2e3(M)

}
, (2.3)

• Frank theory, namely, the one using as nematic state variable only the eigenframe of Q
which is constrained to have eigenvalues 2/3,−1/3,−1/3

QFr :=
{
M ∈ QU : e3(M) = 2/3, e2(M) = e1(M) = −1/3

}
. (2.4)

As explained in the introduction, we minimize (2.1) over the nematic state variables:

fX(F) := inf
Q∈QX

fmec(Q,F) = inf
Q∈QX

1

2
‖E(F) − γQ‖2

Cλ
, (2.5)

where X has to be replaced respectively by the labels Fr, U,B, with obvious meaning. It is
clear that the macroscopic models thus obtained are the measure of the distance from the
set γQX :

inf
Q∈QX

‖E(F) − γQ‖2
Cλ

=
(

inf
Q∈QX

‖E(F) − γQ‖Cλ

)2

=: dist2Cλ
(E(F), γQX). (2.6)

Here we write distCλ
to stress that this is the distance induced by the metric Cλ. The

standard euclidian distance can be obtained for λ = 0 and µ = 1/2. There exists a unique
element Q which minimizes in QB the function ‖E(F) − γQ‖2

Cλ
. This is elementary, since

the term proportional to the square of the trace is not subject to minimization and we are
left with minimizing the square of the euclidian norm over the compact and convex set QB :

min
Q∈QB

1

2

∥∥E(F) − γQ
∥∥2

Cλ
=

(
min

Q∈QB

µ
∣∣E(F) − γQ

∣∣2
)

+
λ

2
(trF)2. (2.7)

The matrix Q is also called the projection of E(F)/γ onto QB and referred as πQB (E(F)/γ).
The projection of E(F) onto γQB is πγQB (E(F)) = γπQB (E(F)/γ). Since QFr ⊂ QU ⊂ QB ,
it follows that fB(F) ≤ fU (F) ≤ fFr(F) and fB(·) is a convex function. In Section 4 we
report the explicit expressions of fFr, fU , fB .

In the following, we discuss the problem of relaxing the integral energies obtained from
fFr and fU considering the constraint of incompressibility.

2.2 Mathematical background

Let Ω be an open, bounded subset of R
n. Letting p ∈ [1,∞), we introduce Lp(Ω), the space

of measurable functions u : Ω 7→ R such that
∫
Ω
|u|pdx < +∞, and moreover Lp(Ω, Rn),

Lp(Ω, Mn×n), respectively the spaces of vectors or matrices with components in Lp(Ω). Anal-
ogously, H1,p(Ω) is the space of scalar-valued Lp-functions whose gradient is in Lp(Ω, Rn)
and H1,p(Ω, Rn) is the space of vector-valued Lp-functions whose gradient is in Lp(Ω, Mn×n).
They are endowed with the usual norms. The space H1,p

o (Ω, Rn) is defined as the closure of
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C∞
c (Ω, Rn) in the topology of H1. In the case p = +∞, we obtain spaces of functions whose

components are essentially bounded. If Ω is Lipschitz we label H1,p
ΓD

(Ω, Rn) the space of

H1,p-functions which vanish in the sense of traces (see [6, Thm 6.1-7]) on ΓD, where ΓD is a
subset of ∂Ω of positive surface measure. We use the notation Ck(Ω), Ck(Ω, Rn), Ck

c (Ω, Rn),
with k ∈ N ∪ {0,+∞} for the spaces of functions with continuous derivatives up to order
k. Focusing on the case n = 3, Ω is the reference domain occupied by a body. We denote
with (x1, x2, x3) the cartesian components of a point x in Ω. The system is described by the
displacement u : Ω 7→ R

3 and the order tensor Q : Ω 7→ QX , where X stands either for Fr,
or U , or B. We recall two inequalities which guarantee the coercivity of functionals even if
the energy density does not control the full gradient of the displacement u.

Korn’s inequalities [6, Thms 6.3-3,6.3-4]. Let Ω be an open, bounded, connected
subset of R

3 with Lipschitz boundary. Let z ∈ H1,2(Ω, R3). Then, there exists a positive
constant C1 = C1(Ω) s.t.

‖∇z‖2
L2(Ω,M3×3) ≤ C1(Ω)

(
‖z‖2

L2(Ω,R3) + ‖E(∇z)‖2
L2(Ω,M3×3)

)
. (2.8)

Let now z ∈ H1,2
ΓD

(Ω, R3). Then, there exists a positive constant C2 = C2(Ω) s.t.

‖∇z‖2
L2(Ω,M3×3) ≤ C2(Ω)

(
‖E(∇z)‖2

L2(Ω,M3×3)

)
. (2.9)

In this paper we deal with requirements of partial convexity. For this subject our main
references are [10], [24]. We recall that f : M

n×n 7→ R ∪ {+∞} is rank-1 convex if by
definition f(sξ1 + (1 − s)ξ2) ≤ sf(ξ1) + (1 − s)f(ξ2) for every s ∈ [0, 1], ξ1, ξ2 ∈ M

3×3 with
rank(ξ1−ξ2) ≤ 1. A function f : M

n×n 7→ R∪{+∞} is said to be polyconvex, if there exists
a convex function h such that f(F) = h(M(F)), where M(F) is the vector of all the minors
of F. We give the definition of quasiconvexity [1].

Definition 1. A continuous function f : M
n×n 7→ R is quasiconvex if and only if for every

Z ∈ M
n×n, ω open bounded subset of R

n, w ∈ C1
o (ω, Rn), we have

f(Z) ≤ |ω|−1

∫

ω

f
(
Z + ∇w(y)

)
dy. (2.10)

Remark 1. We can take w ∈ C∞
c (ω, Rn) in (2.10) (see [1, Def. I.2] and comment below). If

f is quasiconvex and satisfies growth conditions as (3.25), then (2.10) is true also for any w ∈
H1,2

o (ω, Rn) (see [2, comment after Def. 2.2]) and in particular for any w ∈ H1,∞
o (ω, Rn).

We define the convex envelope of a function f as fc(ξ) := sup{g(ξ) : g ≤ f, g convex}. In
the same way we define the poly-, quasi- and rank-one- convex envelopes, by requiring that
the function g satisfies the corresponding requirement of partial convexity. In order to give a
characterization for frc, which in the following is crucial, we follow [10, Sect. 6.4]. To start,
we need some preliminary definitions (see [10, Sect. 5.2.5]).

Definition 2. Let us write for any integer K

ΛK :=
{

λ = (λ1, . . . , λK) : λi ≥ 0,

K∑

i

λi = 1
}

. (2.11)

Consider λ ∈ ΛK and let ξi ∈ M
n×n, 1 ≤ i ≤ K. We say that {λi, ξi}

K
i=1 satisfy (HK) if (by

induction on the index i)
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• when K = 2, then rank(ξ1 − ξ2) ≤ 1;

• when K > 2, then, up to a permutation, rank(ξ1 − ξ2) ≤ 1 and if, for every 2 ≤ i ≤
K − 1, we define 




µ1 = λ1 + λ2 η1 =

λ1ξ1 + λ2ξ2

λ1 + λ2
µi = λi+1 ηi = ξi+1

then {µi, ηi}
K
i=1 satisfy (HK−1).

Remark 2. When K = 4, λ ∈ Λ4, then {λi, ξi}
4
i=1 satisfy H4 if, up to a permutation






rank(ξ1 − ξ2) ≤ 1, rank(ξ3 − ξ4) ≤ 1

rank(η1 − η2) ≤ 1, η1 :=
λ1ξ1 + λ2ξ2

λ1 + λ2
, η2 :=

λ3ξ3 + λ4ξ4

λ3 + λ4

holds.

Hence, for any f : M
n×n 7→ R ∪ {+∞} one can characterize frc as [10, Thm 6.10]

frc(ξ) = inf
{ K∑

i

λif(ξi) : λ ∈ ΛK ,

K∑

i

λiξi = ξ, {λi, ξi} satisfy (HK)
}

. (2.12)

If we restrict our attention to the case of real valued functions, the following chain of inequal-
ities follows by definition (see [10], page 265)

fc ≤ fpc ≤ fqc ≤ frc. (2.13)

If f : M
n×n 7→ R ∪ {+∞} the inequality fqc ≤ frc needs not hold.

We define some semi-convex hulls of sets. Given any set (not necessarily compact) E ⊂
M

n×n we define Ec the smallest convex set containing E. It can be proved that

Ec =
{

ξ ∈ M
n×n : ξ =

K∑

i

λiξi : ξi ∈ E, λ ∈ ΛK ,K = 1, 2, 3 . . .
}

. (2.14)

We define by induction Elc, the lamination-convex envelope of E as

Elc =

∞⋃

i=0

E(i), (2.15)

where E(0) = E,

E(1) =
{
ξ = sξ1 + (1 − s)ξ2, ξ1, ξ2 ∈ E, rank(ξ1 − ξ2) ≤ 1, s ∈ [0, 1]

}
(2.16)

that is the set of first order laminates of E and

E(i+1) = E(i) ∪
{
ξ = sξ1 + (1 − s)ξ2, ξ1, ξ2 ∈ E(i), rank(ξ1 − ξ2) ≤ 1, s ∈ [0, 1]

}
. (2.17)

Coherently with our definitions, we have this chain of inequalities:

E ⊆ Elc ⊆ Ec. (2.18)

The following proposition, which is due to Bogovskĭi (see [19, Thm 3.1]), has an important
rôle in order to treat the case of incompressible elastomers.
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Proposition 1. Consider N ∋ n ≥ 2 and p ∈ (1,∞). Let Ω be an open, bounded, connected
subset of R

n with Lipschitz boundary. Assume z ∈ H1,p
o (Ω, Rn). Then, there exists at least

one solution to the problem





w ∈ H1,p
o (Ω, Rn),

div w = div z,
‖w‖H1,p(Ω,Rn) ≤ C(Ω, n, p)‖div z‖Lp(Ω).

2.3 Gamma-convergence and relaxation

We follow the theory of Gamma-convergence in a topological space endowed with the weak
topology as proposed in [2]. The general theory can be found in [11].

Definition 3. Let p ∈ (1,∞). Let F be a functional defined on H1,p(Ω, Rn). We define the
relaxation of F in the weak sequential (in brief w.s.) topology of H1,p(Ω, Rn)

F = sup{G : G is H1,p(Ω, Rn) w.s. lower semicontinuous,G ≤ F}. (2.19)

Definition 4. Let {Fh} be a sequence of functionals defined on H1,p(Ω, Rn). We define for
u ∈ H1,p(Ω, Rn)

Γ- lim inf
h→+∞

Fh(u) = sup
A∈S(u)

lim inf
h→+∞

inf{Fh(v) : v ∈ A},

Γ- lim sup
h→+∞

Fh(u) = sup
A∈S(u)

lim sup
h→+∞

inf{Fh(v) : v ∈ A},

where S(u) is the family of all the open sets in the weak sequential topology of H1,p(Ω, Rn).
If we have

Γ- lim inf
h→+∞

Fh(u) = Γ- lim sup
h→+∞

Fh(u),

then the common value is said to be the Γ- limh→+∞ Fh(u).

Proposition 2. Let {Fh} be an increasing sequence of functionals defined on H1,p(Ω, Rn).
Then, for every u ∈ H1,p(Ω, Rn) there exists the

Γ- lim
h→+∞

Fh(u) = Γ- lim
h→+∞

Fh(u) = sup
h

Fh(u),

where Fh is the relaxation of Fh.

Fundamental Theorem of Gamma-convergence

Let {Fh} be a sequence of functionals defined on H1,p(Ω, Rn). Suppose that:

• ∀r ∈ R there exists Kr a compact subset of H1,p(Ω, Rn) such that {u ∈ H1,p(Ω, Rn) :
Fh(u) ≤ r} ⊆ Kr,∀h;

• ∀u ∈ H1,p(Ω, Rn) there exits F(u) = Γ- limh→+∞ Fh(u).

Then we have

• limh→+∞(inf Fh) = minF (convergence of minima).

• Let {uh} ⊂ H1,p(Ω, Rn) be a minimizing sequence for {Fh} (i.e. limh Fh(uh) =
limh inf Fh). Then, up to subsequences, uh ⇀ u in H1,p, where

F(u) = minF (convergence of minimum points).
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3 Relaxation theorems

As already observed, the energy densities fFr, fU introduced in (2.5) are non-convex and,
consequently, the associated integral functionals are not lower semicontinuous. We character-
ize the infima of the non-convex energies as the minima of the relaxed functionals. According
to well known relaxation theorems (see Acerbi-Fusco Theorem [1] and [2, Theorem 2.3 ]), the
relaxation coincides with the integral of the quasiconvex envelope of the original non-convex
density. Hence, our goal is to obtain the quasiconvexification explicitly. This can be com-
puted in practice by proving that the rank-1 convex envelopes of fFr and fU coincide with
their convex envelopes. In the case of finite-valued functions, this yields that the quasiconvex
envelope coincides with the convex and rank-1 convex envelope, which are easier to compute.

On the other hand, experimental observations show that nematic elastomers are nearly
incompressible (the bulk modulus is orders of magnitude larger than the shear modulus).
The classical way to model such materials in linearized elasticity is to consider the limit
ratio λ/µ = +∞, which is equivalent to restrict the admissible deformation gradients to
the class of traceless matrices, and hence to define an energy functional in the presence of
a linear constraint on the gradient of the displacement. We remark that a general strategy
to treat such problems is to use the tools of A-quasiconvexification [4], the theory which
studies the relaxation of non-convex functionals in the presence of linear (and constant-rank)
constraints. In our particular case, however, an argument due to Braides [2] is sufficient to
compute explicitly the relaxation of the three energies we consider. Indeed, it is possible to
prove that the relaxation of the incompressible models coincides with the Gamma-limit of a
sequence of relaxed models for compressible elastomers as the bulk modulus tends to +∞.
This fact is remarkable: it implies the convergence of minimizers (or almost minimizers)
and minimum (or infimum) values of the energies of compressible rubbers to minimizers and
minimum values of the Gamma-limit of the incompressible material.

We split the proof of our main result into several auxiliary propositions. In particular,
we show that the projection of a constant strain onto γQB can be obtained as a convex
combination of elements which are compatible in the sense of (HK) (see Definition 2 in
Section 2.2) and whose deviators belong to γQFr or γQU . We define the sets of matrices

KX :=
{
M ∈ M

3×3
0 : E(M) ∈ QX

}
(3.1)

where X stands either for Fr, or U , or B. The sets KX inherit from QX some of their
properties. In particular KB is convex and KFr ⊂ KU ⊂ KB . We start by showing that
Klc

U = KB . As a corollary to the following proposition we show that KB coincides with the
set of first order laminates of KU (see (2.16)).

Proposition 3. Denote with e1(A) ≤ e2(A) ≤ e3(A) the ordered eigenvalues of the sym-
metric 3 × 3 matrix A. Let (here t ≤ 0)

Mt
U :=

{
M ∈ M

3×3
0 : e1

(
E(M)

)
= t, e2

(
E(M)

)
, e3

(
E(M)

)
∈ [t,−2t]

}
. (3.2)

Then, the set MU defined by

MU :=
⋃

t∈[−1/3,0]

Mt
U (3.3)

is contained in K
(1)
U , the set of first order laminates of KU .
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Proof. Let M ∈ MU . By the spectral theorem and up to re-labelling the axes, we may
assume that the symmetric part of M is diagonal in the form X = diag (t, µ2, µ3). There is
nothing to prove if µ2 or µ3 are equal to t, because in that case the remaining eigenvalue is
equal to −2t. We show that, for µ2, µ3 ∈ (t,−2t), there exists a positive δ = δ(µ2, µ3) and

KU ∋ V
±

= diag (t, V̂±) where V̂± =

(
µ2 ±2δ
0 µ3

)
,

such that V
+
− V

−
= 4δi2 ⊗ i3 and X = 1

2 (V
+

+ V
−

) ∈ K
(1)
U . We define

X̂± := E(V̂±) =

(
µ2 ±δ
±δ µ3

)
,

X
±

:= E(V
±

). (3.4)

The eigenvalues θα,β of X̂± are the solutions of det(X̂± − θI) = 0, namely

θα,β =
(µ2 + µ3

2

)
±

√
(µ3 − µ2)2

4
+ δ2. (3.5)

By imposing θα to be equal to −2t and recalling that t + µ2 + µ3 = 0, we obtain

δ2 = (2t + µ3)(2t + µ2) > 0 since − 2t > µ2, µ3 > t. (3.6)

By observing that θα + θβ = µ2 + µ3, this choice of δ yields θβ = t and V
±

∈ KU . Now,

define Msk := (M − MT )/2. Hence, M = 1
2 ((V

+
+ Msk) + (V

−
+ Msk)), rank((V

+
+

Msk) − (V
−

+ Msk)) ≤ 1 and M is in K
(1)
U .

Corollary 1.

MU = K
(1)
U = Klc

U = Kc
U ≡ KB . (3.7)

Proof. Since KB is convex and KU ⊂ KB , then Kc
U ⊆ KB . Then, it is straightforward to

verify that KB ⊆ MU .

Remark 3. As a by-product of Proposition 3, we deduce that Qc
U = QB . Trivially, QU ⊆ QB

and Qc
U ⊆ QB. To prove the opposite inclusion, notice that X belongs to QB and it can be

expressed as X = 1
2 (X

+
+ X

−
), with X

±
in QU .

With a similar argument we prove now that KB coincides with the lamination-convex
envelope of KFr. In practice (see Corollary 2), it is enough to show that KB coincides with
the set of second order laminates of KFr.

Proposition 4. Denote with e1(A) ≤ e2(A) ≤ e3(A) the ordered eigenvalues of the sym-
metric 3 × 3 matrix A. The set MFr defined by

MFr :=
{
M ∈ M

3×3
0 : e1

(
E(M)

)
= −

1

3
, e2

(
E(M)

)
, e3

(
E(M)

)
∈

[
−

1

3
,
2

3

]}
(3.8)

is contained in K
(1)
Fr , the se of first order laminates of KFr.

Proof. The proof follows by taking t identically equal to −1/3 in the proof of Proposition
3.
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Corollary 2.

M
(1)
Fr = K

(2)
Fr = Klc

Fr = Kc
Fr ≡ KB . (3.9)

Proof. As above, Kc
Fr ⊆ KB . Then, it is enough to prove that KB ⊆ M

(1)
Fr . Take

G ∈ KB . Again, it is not restrictive to assume that X := E(G) is diagonal in the form
X = diag (µ2, µ1, µ3) and µ1 ≤ µ2 ≤ µ3. If µ1 = −1/3 there is nothing to prove because
this implies that G ∈ MFr. Similarly, we can assume µ3 6= 2/3, otherwise the other two
eigenvalues must be equal to −1/3. We show that, for µ1, µ3 ∈ (−1/3, 2/3), there exists a
positive δ = δ(µ1, µ3) and

MFr ∋ G± = diag (µ2, Ĝ
±) where Ĝ± =

(
µ1 ±2δ
0 µ3

)
,

such that G+ − G− = 4δi2 ⊗ i3 and X = 1
2 (G+ + G−) ∈ M

(1)
Fr . We define

Ĥ± := E(Ĝ±) =

(
µ1 ±δ
±δ µ3

)
,

H± := E(G±). (3.10)

The eigenvalues θα,β of Ĥ± are the solutions of det(Ĥ± − θI) = 0, namely

θα,β =
(µ1 + µ3

2

)
±

√
(µ3 − µ1)2

4
+ δ2. (3.11)

By imposing θα to be equal to −1/3 and recalling that µ1 + µ2 + µ3 = 0 we obtain

δ2 =
(1

3
+ µ1

)(1

3
+ µ3

)
> 0 since −

1

3
< µ1 ≤ µ3. (3.12)

By observing that θα + θβ = µ1 + µ3, this choice of δ yields θβ = −µ2 + 1
3 , and G± ∈

MFr. Now, define Gsk := (G − GT )/2. Hence, G = 1
2 ((G+ + Gsk) + (G− + Gsk)),

rank((G+ + Gsk) − (G− + Gsk)) ≤ 1 and G is in M
(1)
Fr .

Remark 4. We deduce from Corollary 2 that Qc
Fr = QB . Trivially, Qc

Fr ⊆ QB . To prove
the converse implication, notice that X by definition belongs to QB and is expressed as a

convex combination of two symmetric matrices H± in MFr ⊆ K
(1)
Fr with coefficients equal to

1/2. Hence there exist H±
1,2 ∈ KFr such that H± = 1

2 (H±
1 + H±

2 ). Now, X can be expressed

as a convex combination of the symmetric matrices E(H±
1,2) in QFr with coefficients equal

to 1/4.

The explicit constructions in Corollaries 1 and 2 are used to compute the quasiconvex
envelope of the square of the distance from the sets γQU , γQFr (there is nothing to prove for
the case X = B because the energy density fB is already convex). This is done in the next
Lemma through a lamination construction. Here and in the following, we repeatedly adopt
the notation

(
f(ξ)

)qc
≡ fqc(ξ), and similarly for the other envelopes.

Lemma 1. Denote

fX(ξ) =
1

2
dist2Cλ

(
E(ξ), γQX

)
, (3.13)

where X stands either for Fr or U . Then,
(
fX(ξ)

)qc

= fB(ξ) =
1

2
dist2Cλ

(
E(ξ), γQB

)
. (3.14)
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Proof. This is a consequence of (2.13) and of the chain of inequalities:

(
dist2Cλ

(E(ξ), γQX)
)rc

≤ dist2Cλ
(E(ξ), γQB) ≤

(
dist2Cλ

(E(ξ), γQX)
)c

≤
(
dist2Cλ

(E(ξ), γQX)
)rc

, (3.15)

where X stands either for Fr or U . The last inequality in (3.15) follows by definition. The
second inequality is trivial if we consider that dist2

Cλ
(E(ξ), γQB) ≤ dist2

Cλ
(E(ξ), γQX) and if

we take the convex envelope on both sides. We are left to prove the first inequality. To this
end, we apply (2.12) characterizing the rank-1 convex envelope of a function by exhibiting a
family of matrices and positive coefficients along which the infimum is attained.

Fix ε ∈ R different from zero. For every ξ ∈ M
3×3, X ∈ QB , V ∈ QX , a combination of

the triangular and Young’s inequalities yields

‖E(ξ) − γV‖2
Cλ

≤ (1 + ε2)‖E(ξ) − γX‖2
Cλ

+
(
1 +

1

ε2

)
‖γX − γV‖2

Cλ
. (3.16)

Write X = πQB (E(ξ)/γ) instead of X in (3.16). Now, (3.16) reads

‖E(ξ) − γV‖2
Cλ

≤ (1 + ε2)dist2Cλ

(
E(ξ), γQB

)
+

(
1 +

1

ε2

)
‖γX − γV‖2

Cλ
. (3.17)

We have to distinguish two cases. Suppose X ∈ QX . Taking infV∈QX
on both sides of (3.17),

we obtain

dist2Cλ

(
E(ξ), γQX

)
≤ (1 + ε2)dist2Cλ

(
E(ξ), γQB

)
+ 0, (3.18)

and taking the limit ε → 0 the claim follows. Assume now X ∈ QB\QX and notice that
X ∈ KB\KX as well. Corollaries 1 and 2 show that KB can be laminated in the sense

that KB = K
(1)
U = K

(2)
Fr . Precisely, there exist families of coefficients and matrices {λi}

K
i=1 ×

{Vi}
K
i=1 ∈ [0, 1]×KX , with {λi,Vi}

K
1=1 satisfying (HK) with K finite (K ≤ 2 for X = U and

K ≤ 4 for X = Fr) such that X =
∑

i λiVi. Define Xi := E(Vi) ∈ QX , ξ⊥ := ξ − γX and
ξi := γVi + ξ⊥ for any i = 1, . . . ,K. Trivially, {λi, ξi}

K
1=1 still satisfy (HK) and ξ =

∑
i λiξi.

We can repeat the construction in (3.16) writing ξi and Xi instead of ξ,X and take
infV∈QX

on both sides, yielding for every i = 1, . . . ,K

dist2Cλ

(
E(ξi), γQX

)
≤ (1 + ε2)‖E(ξ⊥)‖2

Cλ
. (3.19)

Here we use the fact that E(ξi) = γXi + E(ξ⊥). Let us multiply both sides of formula (3.19)
by λi and sum up in i yielding

K∑

i

λidist2Cλ

(
E(ξi), γQX

)
≤ (1 + ε2)

K∑

i

λi‖E(ξ⊥)‖2
Cλ

. (3.20)

In view of (2.12) we finally obtain

(
dist2Cλ

(E(ξ), γQX)
)rc

≤ (1 + ε2)‖E(ξ⊥)‖2
Cλ

= (1 + ε2)dist2Cλ

(
E(ξ), γQB

)
. (3.21)

The claim is proved taking the limit ε → 0.
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Remark 5. We summarize some of the properties of the energy density fX , where X stands
either for Fr, or U , or B.

fX(·) is continuous, (3.22)

0 ≤ fX(Z), (3.23)

c1|E(Z)|2 − c2 ≤ fX(Z), (3.24)

fX(Z) ≤ c3|E(Z)|2 + c4, (3.25)

|fX(Z1) − fX(Z2)| ≤ c5

(
c6 + |E(Z1)| + |E(Z2)|

) ∣∣E(Z1) − E(Z2)
∣∣, (3.26)

for every Z,Z1,Z2 ∈ M
3×3 and were ci with i = 1, . . . , 6 are suitable positive constants. To

prove (3.22) and (3.26) we recall that the distance is a Lipschitz function. Then, (3.23−3.25)
are trivial.

Proposition 5 ([1], [2]-Thm. 2.3). Let Ω be any open, bounded subset of R
3. Let f : M

3×3 7→
[0,∞[ verify (3.22), (3.24) and (3.25). Define on H1,2(Ω, R3)

F(u) :=

∫

Ω

f(∇u)dx, Fo(u) :=

{
F(u) on H1,2

o (Ω, R3),
+∞ otherwise.

Then, the relaxation of F and Fo is

F(u) =

∫

Ω

fqc(∇u)dx, Fo(u) =

{
F(u) on H1,2

o (Ω, R3),
+∞ otherwise,

respectively. Moreover

inf
H1,2(Ω,R3)

Fo(u) = min
H1,2(Ω,R3)

Fo(u). (3.27)

After these preparations, we are in a position to discuss our relaxation theorems.

3.1 The case of compressible elastomers

As a by-product of Lemma 1 and Proposition 5, we obtain the relaxation of the non-convex
mechanical energy in the case of compressible materials, for which λ in (2.5) is finite.

Theorem 1. Let Ω be an open, bounded, connected subset of R
3 with Lipschitz boundary and

denote with ΓD an open subset of ∂Ω of positive surface measure. Take fX(·) as defined in
(2.5), where X stands either for Fr, or U , or B and take some function g(x) ∈ H1,2(Ω, R3).
Let us define on H1,2(Ω, R3)

IX(u) =

∫

Ω

fX(∇u)dx. (3.28)

Then, the relaxation of IX is

IB(u) =

∫

Ω

fB(∇u)dx. (3.29)

Moreover, if we define IΓD,g
X by setting IΓD,g

X = IX on g+H1,2
ΓD

(Ω, R3) and +∞ outside, the

relaxation of IΓD,g
X is equal to IB on g + H1,2

ΓD
(Ω, R3) and +∞ outside.
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Proof. For X = B these results are trivial. Define (here X stands either for Fr, or U , or B)

Io
X(u) =

{
IX(u) if u ∈ H1,2

o (Ω, R3),
+∞ otherwise in H1,2(Ω, R3).

In the cases where X = Fr or X = U , the quasiconvex envelope of fX is fB (Lemma 1) and
hence the relaxation of IX , Io

X are IB , Io
B respectively (see Proposition 5). In particular,

the quasiconvexification formula can be expressed as ([22, Remark 5.3, pages 157-158], [3,
Paragr. 6.2, pages 55-59 ])

(
fX

)qc
(Z) = inf

{
|ω|−1

∫

ω

fX

(
Z + ∇w(y)

)
dy : w ∈ H1,2

o (ω, R3)
}

, (3.30)

where ω is any bounded open subset of R
3 with |∂ω| = 0. The infimum in (3.30) can be

taken in C∞
c (ω, R3). This is due to the density of C∞

c and the continuity of IX in the strong
convergence of H1,2. Also, since C∞

c (ω, R3) ⊂ H1,∞
o (ω, R3) ⊂ H1,2

o (ω, R3), we can simply
consider test functions in H1,∞

o (ω, R3).
Now, we can extend the proof to more general boundary conditions. The relaxation result

is true also if we choose some function g(x) ∈ H1,2(Ω, R3) and we define a new functional
Io,g

X equal to
∫
Ω

fX(∇u)dx only on the set {u ∈ g + H1,2
o (Ω, R3)}, and +∞ outside. In fact,

introduce v := u− g and gX(∇v) := fX(∇v +∇g). Defining now (here X stands either for
Fr, or U , or B)

Go
X(v) =






∫

Ω

gX(∇v)dx if v ∈ H1,2
o (Ω, R3),

+∞ otherwise in H1,2(Ω, R3),

we obtain that the relaxation of Go
X is Go

B . Then, we can define IΓD,g
X equal to

∫
Ω

fX(∇u)dx

only on the set {u ∈ g + H1,2
ΓD

(Ω, R3)} and +∞ otherwise in H1(Ω, R3). It is immediate to

see that the relaxation of IΓD,g
X is +∞ outside {u ∈ g + H1,2

ΓD
(Ω, R3)} because this set is

weakly closed. Fix u in g + H1,2
ΓD

(Ω, R3). Recalling that IΓD,g
X = Γ- lim IΓD,g

X , we can write
∫

Ω

fB(∇u)dx = Γ- lim inf IX(u) ≤ Γ- lim inf IΓD,g
X (u) =

Γ- lim inf IΓD,ĝ
X (u) ≤ Γ- lim inf Io,ĝ

X (u) =

∫

Ω

fB(∇u)dx, (3.31)

where ĝ := u. The same inequality holds for the Γ- lim sup, proving the claim.

3.2 The case of incompressible elastomers

Theorem 2. Let Ω be an open, bounded, connected subset of R
3 with Lipschitz boundary

and denote with ΓD an open subset of ∂Ω of positive surface measure. Take fX(·) as in (2.5)
(where X stands either for Fr, or U , or B) and define on H1,2(Ω, R3)

FX(u) =






∫

Ω

fX(∇u)dx if div u = 0,

+∞ otherwise.

Then, the relaxation of FX is

FB(u) =






∫

Ω

fB(∇u)dx if div u = 0,

+∞ otherwise.
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Moreover, take g(x) ∈ H1,2(Ω, R3) with div g = 0 a.e. in Ω and define FΓD,g
X by setting

FΓD,g
X = FX on g + H1,2

ΓD
(Ω, R3) and +∞ outside. Then the relaxation of FΓD,g

X is equal to

FB on g+H1,2
ΓD

(Ω, R3) and +∞ outside. Finally, fB satisfies a solenoidal quasiconvexification
formula, namely

fB(Z) = inf
{
|ω|−1

∫

ω

fX

(
Z + ∇w(y)

)
dy : w ∈ H1,2

o (ω, R3),div w = 0
}

∀Z ∈ M
3×3
0 , (3.32)

where ω is any open, bounded, connected, nonempty subset of R
3 with Lipschitz boundary.

Remark 6. Formula (3.32) holds under the hypotheses of Theorem 2 even if we replace
w ∈ H1,2

o (ω, R3) with w ∈ C∞
c (ω, R3), since the closure of {w ∈ C∞

c (ω, R3),div w = 0} in
H1,2 is precisely {w ∈ H1,2

o (ω, R3),div w = 0} (see [25, Thm 1.6], [19, Sect. III.4] and [2])
and FX is continuous in the strong topology of H1,2 on the set {u ∈ H1,2

o (ω, R3),div u = 0}.

Proof of Theorem 2. This relaxation result follows essentially from an idea of Braides (see
[2]). For the reader’s convenience, we give here the main lines of the proof when the functional
is defined on H1,2(Ω, R3).

First of all, in the case when X = B, there is nothing to prove because the energy density
fB(·) is convex. In particular, since FB is lower semicontinuous, then FX(u) ≥ FB(u) (here
X stands either for Fr or U). We are left to prove the reverse inequality, that is

FX(u) ≤ FB(u). (3.33)

To this end, let us introduce for any h ∈ N

Fh
X(u) =

∫

Ω

(
fX(∇u) + h(div u)2

)
dx, where X stands either for Fr, or U, or B. (3.34)

We notice that the energy density appearing in (3.34) is still in the form of the square of the
distance from the set γQX :

fX(F) + h(trF)2 =
1

2
dist2Cλ+2h

(
E(F), γQX

)
. (3.35)

The following chain of equalities has a crucial rôle in order to prove (3.33):

Γ- lim
h→+∞

Fh
X = Γ- lim

h→+∞
Fh

X = sup
h

Fh
X = FB . (3.36)

Line (3.36) follows by Proposition 2. The only point which needs a proof is the last equality.
Theorem 1 applies to Fh

X for any h ∈ N, and hence the relaxation of Fh
X on H1,2(Ω, R3) is

the integral of the quasiconvex envelope of the energy density. The result of Lemma 1 applies
to fX(F) if we replace λ with λ′ := λ + 2h in formula (3.13) yielding

(
fh

X(F)
)qc

=
1

2
dist2Cλ+2h

(
E(F), γQB

)
, where X stands either for Fr or U,

and Fh
X = Fh

B . Now, we take the limit of Fh
B as h → +∞. By Beppo-Levi’s Theorem on

monotone convergence, the supremum of a family of increasing integrals coincides with the
integral of the pointwise limit of the energy densities

lim
h→+∞

[(
fh

X(F)
)qc

]
= sup

h

[
inf
QB

µ|E(F) − γQ|2 +
(λ

2
+ h

)
(trF)2

]
=

{
fB(F) if trF = 0,
+∞ otherwise,
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and hence suph Fh
X = FB . With this, (3.36) is proved.

Now, FX(u) ≤ FB(u) is trivial if divu 6= 0 and in the rest of the proof we suppose
div u = 0. Thanks to the coercivity condition (3.24) it is sufficient to prove that, for any
sequence uh ⇀ u in H1,2(Ω, R3), there exists a sequence {zh} with div zh = 0 and zh ⇀ u
in H1,2(Ω, R3) such that

lim inf
h→+∞

FX(zh) ≤ lim inf
h→+∞

Fh
X(uh). (3.37)

In view of (3.36), taking the infimum over all the sequences {uh} weakly converging to u, we
obtain FB on the right hand side of (3.37). Moreover, thanks to Theorem 1, we may restrict
ourselves to sequences {uh} such that uh − u ∈ H1,2

o (Ω, R3). We apply Proposition 1 with
p = 2, n = 3. For every h ∈ N, let wh ∈ H1,2

o (Ω, R3) such that

{
div wh = div (uh − u) = div uh,
‖wh‖H1,2(Ω,R3) ≤ C‖div uh‖L2(Ω).

(3.38)

Since FB(u) < +∞, we can suppose that Fh
X(uh) ≤ Const for every h so that

‖div uh‖
2
L2(Ω) ≤ Const/h (3.39)

and, by Proposition 1, we have that wh → 0 strongly in H1,2(Ω, R3) as h → +∞. If we
define

zh := uh − wh, (3.40)

we have that zh ⇀ u in H1,2(Ω, R3), zh − uh ∈ H1,2
o (Ω, R3) and div zh = 0. Now, by (3.26)

and Hölder’s inequality, we have

∣∣∣
∫

Ω

fX(∇uh)dx −

∫

Ω

fX(∇zh)dx
∣∣∣ ≤ Const‖E(∇wh)‖L2(Ω,M3×3) (3.41)

and, in conclusion,

FX(u) ≤ lim inf
h→+∞

FX(zh) ≤ lim inf
h→+∞

∫

Ω

fX(uh)dx + lim
h→+∞

∣∣∣
∫

Ω

fX(uh)dx −FX(zh)
∣∣∣ (3.42)

≤ lim inf
h→+∞

Fh
X(uh) + 0.

The relaxation result above holds also if we define a functional Fo
X(u) equal to FX(u)

on H1,2
o (Ω, R3) and equal to +∞ otherwise in H1,2(Ω, R3). By proceeding as above, but

taking all functions in H1,2
o (Ω, R3) we obtain that Fo

X = Fo
B . Moreover, we can extend the

proof to more general boundary conditions. Indeed, the relaxation result is true also if we
choose some function g(x) ∈ H1,2(Ω, R3) with div g = 0 and we define a new functional Fo,g

X

equal to
∫
Ω

fX(∇u)dx only on the set {u ∈ g + H1,2
o (Ω, R3),div u = 0} and +∞ otherwise

in H1,2(Ω, R3). In fact, we can introduce v := u−g and gX(∇v) := fX(∇v+∇g). Defining
now

v 7→






∫

Ω

gX(∇v)dx if v ∈ H1,2
o (Ω, R3),div v = 0,

+∞ otherwise in H1,2(Ω, R3),

we can proceed exactly as in the proof of Theorem 1 where an analogous case is treated.
Finally, formula (3.32) follows as in [2, Proposition 3.4].
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4 Discussion

In this section we apply our relaxation result to some concrete examples and we discuss some
physical implications of our analysis.

4.1 Physical implications

In the case when we consider the energy density fFr, we accept a direct coupling between
strain and local orientation of the liquid crystal molecules. Experimental results show that
a uniaxial stretch aligns the molecules along the direction of maximal stretch. Whether a
macroscopic deformation may alter also the local order of the molecules and not only the
local direction is a debated problem. In particular, in the case when we consider the energy
density fU , we admit the possibility to enforce the melting of the order of the system (Q = 0).
Even more optimistically, with fB we allow the whole class of biaxial states. We recall the
main consequences of our relaxation result. In the following corollary, X stands either for
Fr, or U , or B.

Corollary 3. Under the hypotheses of Theorem 1

inf
H1,2(Ω,R3)

IΓD,g
X (u) = min

H1,2(Ω,R3)
IΓD,g

B (u). (4.1)

Moreover, under the hypotheses of Theorem 2

inf
H1,2(Ω,R3)

FΓD,g
X (u) = min

H1,2(Ω,R3)
FΓD,g

B (u). (4.2)

Proof. This is a property of the relaxation (see Proposition 5). The right hand side in (4.1)
and (4.2) is a minimum thanks to Korn’s inequality (2.9) and Poincaré inequality.

Corollary 3 finds an application in traction problems. Let us assume Ω = (−X1,X1) ×
(−X2,X2) × (−X3,X3), ΓD = {−X1} × (−X2,X2) × (−X3,X3) ∪ {X1} × (−X2,X2) ×
(−X3,X3) for some X1,X2,X3 > 0, g(x) = Fx where F is a constant matrix with trF = 0
and x := x − O, where O is the origin. Then, the equilibrium solution to problem (4.2)-left
is characterized by a biaxial tensor field. This is true not only if the elastomer is modelled in
the frame of the de Gennes theory, but also in the case of the uniaxial tensors by developing
an effective biaxial microstructure.

For completeness we report here the expressions of the energy density in the three cases
(see [5] for more details). We denote with E the symmetric part of F, decomposed in spherical
and deviatoric part E = 1

3 (trE)I + ∆E, where ∆E := (E− 1
3 (trE)I) and ∆ei, i = 1, 2, 3 are

the eigenvalues of ∆E, which satisfy ∆e1 ≤ ∆e2 ≤ ∆e3 and ∆e1 + ∆e2 + ∆e3 = 0.

1

µ

(
fFr(F) −

(λ

2
+

µ

3

)
(trF)2

)
=

3

2

(
∆e1 +

γ

3

)2

+
1

2

(
∆e1 + 2∆e3 − γ

)2

on −
1

2
∆e1 ≤ ∆e3 ≤ −2∆e1,

1

µ

(
fU (F) −

(λ

2
+

µ

3

)
(trF)2

)
=






1
2 (∆e3 + 2∆e1)

2 on R1
1
2 (∆e1 + 2∆e3)

2 on N1
3
2 (∆e1 + γ

3 )2+
1
2 (∆e1 + 2∆e3 − γ)2 on R2,
3
2 (∆e3 −

γ
6 )2+

1
2 (∆e3 + 2∆e1 + γ

2 )2 on N2,
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Figure 1: LEFT: Phase diagram and level curves, uniaxial model. RIGHT: level curves,
Frank model. BELOW: Phase diagram and level curves, biaxial model.

1

µ

(
fB(F) −

(λ

2
+

µ

3

)
(trF)2

)
=






0 on Liq
3
2 (∆e1 + γ

3 )2 on Sm
3
2 (∆e1 + γ

3 )2+
1
2 (∆e1 + 2∆e3 − γ)2 on Sol,

where

R1 :=
{(∆e1

γ
,
∆e3

γ

)
: σ

(∆e3

γ

)
≤

∆e1

γ
≤ −

∆e3

2γ
,
∆e3

γ
<

2

3

}

N1 :=
{(∆e1

γ
,
∆e3

γ

)
: −

2∆e3

γ
≤

∆e1

γ
< σ

(∆e3

γ

)
,
∆e1

γ
> −

1

3

}

R2 :=
{(∆e1

γ
,
∆e3

γ

)
: σ

(∆e3

γ

)
≤

∆e1

γ
≤ −

∆e3

2γ
,
∆e3

γ
≥

2

3

}

N2 :=
{(∆e1

γ
,
∆e3

γ

)
: −

2∆e3

γ
≤

∆e1

γ
< σ

(∆e3

γ

)
,
∆e1

γ
≤ −

1

3

}
,

σ(t) :=






−t for t ∈ [0, 1/3)
−1.5t2 − 1/6 for t ∈ [1/3, 2/3)
−2t + 1/2 for t ≥ 2/3,
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Liq :=
{(∆e1

γ
,
∆e3

γ

)
: −

2∆e3

γ
≤

∆e1

γ
≤ −

∆e3

2γ
,
∆e1

γ
> −

1

3

}

Sm :=
{(∆e1

γ
,
∆e3

γ

)
: −

2∆e3

γ
≤

∆e1

γ
< −

2∆e3

γ
+ 1,

∆e1

γ
≤ −

1

3

}

Sol :=
{(∆e1

γ
,
∆e3

γ

)
: −

2∆e3

γ
+ 1 ≤

∆e1

γ
≤ −

∆e3

2γ
,
∆e1

γ
≤ −

1

3

}
.

Remark 7. Let ξ be any matrix in M
3×3. Following [14], if πQB (E(ξ)/γ) belongs to QFr, we

say that ξ belongs to the solid regime of the material. If πQB (E(ξ)/γ) belongs to QB\QFr,
we say that ξ belongs to the smectic regime of the material if only one order of laminations is
required to relax the energy, or to the liquid regime if two order of laminations are required
(see Figure 1-below).

Remark 8. Another by-product of Theorem 2 is implicitly given by (3.36). Notice that this

formula holds trivially when X = B since Fh
B ≡ Fh

B. This proves that the functional FB of
an incompressible material can be approximated in the sense of Gamma-convergence by a
sequence of energies with increasing bulk moduli.

Acknowledgments. The author wishes to thank Prof. A. DeSimone for enlightening dis-
cussions and for many helpful comments on the draft.
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