
SUPERCRITICAL CONFORMAL METRICS ON SURFACES WITHCONICAL SINGULARITIES.DANIELE BARTOLUCCI(1), FRANCESCA DE MARCHIS(2), ANDREA MALCHIODI(2)Abstrat. We study the problem of presribing the Gaussian urvature on surfaeswith onial singularities in superritial regimes. Using a Morse-theoretial approahwe prove a general existene theorem on surfaes with positive genus, with a generimultipliity result.Keywords: Conformal metris, onial singularities, Liouville equations with singulardata. 1. IntrodutionThe study of onformal metris on surfaes with onial singularities dates bak at leastto Piard [40℄, and has been widely disussed in the last deades, see for example [10℄, [12℄,[13℄, [14℄, [15℄, [26℄, [31℄, [34℄, [39℄, [43℄, [44℄ and the referenes quoted there. In this paperwe are onerned with the onstrution of onformal metris with presribed Gaussianurvature on surfaes with onial singularities. We refer the reader in partiular to [44℄where a systemati analysis of this problem was initiated.The above mentioned results are the singular analogue of the presribed Gaussian urva-ture and Nirenberg problems, see [1℄, [3℄, [28℄ and [7℄, [8℄, [9℄ and the referenes thereinfor further details.Here and in the rest of this paper we denote by S a losed two dimensional smooth surfaewithout boundary. A onformal metri gs on S is said to have a onial singularity of order
α ∈ (−1, +∞) (or of angle ϑα = 2π(1 + α)) at a given point P0 ∈ S if there exist loaloordinates z(P ) ∈ Ω ⊂ C and u ∈ C0(Ω) ∩ C2(Ω \ {P0}) suh that z(P0) = 0 and

g̃s(z) = |z|2α eu|dz|2, z ∈ Ω,

g̃s is the loal expression of gs. The information onerning �nitely many onial singu-larities is enoded in a divisor, whih is the formal sum
αm =

m
∑

j=1

αjPj , m ∈ N, (1.1)of the orders of the singularities {α1, . . . , αm} times the singular points {P1, · · · , Pm}. Inpartiular, a metri gs on S is said to represent the divisor αm if it has onial singularities2000 Mathematis Subjet lassi�ation: 35J60, 35R05, 53A30, 32Sxx.
(‡)Researh partially supported by FIRB projet: Analysis and Beyond.1



2 DANIELE BARTOLUCCI(1), FRANCESCA DE MARCHIS(2), ANDREA MALCHIODI(2)of order αj at point Pj for any j ∈ {1, . . . , m}. We will denote by (S, αm) the singularsurfae.Let K be any Lipshitz funtion on S. We seek a onformal metri g on (S, αm) whoseGaussian urvature is K.The Euler harateristi of the singular surfae ( S, αm) (see [44℄) is de�ned by
χ(S, αm) = χ(S) +

m
∑

j=1

αj,where χ(S) is the Euler harateristi of S.The Trudinger onstant of the singular surfae ( S, αm) (see [11℄, [44℄) is instead given by
τ(S, αm) = 2 + 2 min

j∈{1,...,m}
min{αj, 0}.Aording to the de�nitions in [44℄ the singular surfae (S, αm) is said to be







subritial if χ(S, αm) < τ(S, αm),ritial if χ(S, αm) = τ(S, αm),superritial if χ(S, αm) > τ(S, αm).As far as one is interested in proving the existene of at least one onformal metri on
(S, αm) with presribed Gaussian urvature, the subritial ase is well understood. Thisis mainly due to the fat that on subritial singular surfaes the problem orresponds tominimizing a oerive funtional, see [44℄. On the ontrary, muh less is known onerningritial and superritial singular surfaes.We refer the reader to [13℄, [14℄, [15℄, [26℄, [32℄, [39℄, [43℄, for some positive results inthis diretion. In the same spirit of [22℄, Bartolui and Tarantello obtained a result ([2℄Corollary 6) whih, ombined with Proposition 1.2 below, implies that: if (S, αm) is asuperritial singular surfae with αj > 0, j ∈ {1, . . . , m}, χ(S) ≤ 0 and 4πχ(S, αm) ∈
(8π, 16π)\{8π(1 + αj), j = 1, . . . , m}, then any positive Lipshitz ontinuous funtion Kon S is the Gaussian urvature of at least one onformal metri on (S, αm). See also [19℄for related issues.In this paper we will obtain a generalization of this result via a Morse theoretial approah.Let
Γ(αm) = {µ ∈ R

+ |µ = 8πk + 8π
m
∑

j=1

(1 + αj)nj , k ∈ N ∪ {0}, m ∈ N ∪ {0}, nj ∈ {0, 1}}.Our main result is the followingTheorem 1.1. Let (S, αm) be a superritial singular surfae with αj > 0, j ∈ {1, . . . , m},
χ(S) ≤ 0 and 4πχ(S, αm) /∈ Γ(αm). Then, any positive Lipshitz ontinuous funtion Kon S is the Gaussian urvature of at least one onformal metri on (S, αm).



3We attak this problem by a variational approah as �rst proposed in [3℄ and then pursuedby many authors, see for example [1℄, [13℄, [28℄, [44℄ and the referenes quoted there.Proposition 1.2 below allows to redue the problem to a salar di�erential equation on S.To state it we need to introdue some notation. Let g0 be any smooth onformal metrion S, Q ∈ S be a given point and G(P, Q) be the solution of (see [1℄)
−∆0G(P, Q) = δQ −

1

|S|
in S,

∫

S

G(P, Q)dVg0(P ) = 0,where δQ denotes the Dira delta with pole Q, ∆0 the Laplae-Beltrami operator assoi-ated to g0 and |S| the area of S with respet to the volume form dVg0 indued by g0. Fora given divisor αm we de�ne
hm(P ) = 4π

m
∑

j=1

αjG(P, Pj).Let us also denote by K0 the (smooth) Gaussian urvature indued by g0. Then we haveProposition 1.2. Let αj > 0 for j = 1, . . . , m, K a Hölder ontinuous funtion on Sand suppose that χ(S, αm) > 0. The metri
g = λ

e−hmeu

∫

S
2Ke−hmeu

g0, with λ = 4πχ(S, αm),is a onformal metri on (S, αm) with Gaussian urvature K if and only if u is a lassialsolution to
−∆0u = λ

2Ke−hmeu

∫

S
2Ke−hmeudVg0

− 2K0 −
4π

|S|

m
∑

j=1

αj in S. (1.2)The proof of Proposition 1.2 is rather standard and is postponed to the Appendix. Byusing it, we are redued to �nding a lassial solution of (1.2), that is, by standard elliptiregularity theory, a ritial point u ∈ H(S) of
Jλ(u) =

∫

S

|∇u|2 dVg0 − λ log

(
∫

S

2Ke−hmeu dVg0

)

, (1.3)where H(S) =
{

u ∈ H1(S) |
∫

S
u = 0

} and λ satis�es the Gauss-Bonnet onstraint
λ =

∫

S

2Ke−hmeudVg0 = 4πχ(S) + 4π
m
∑

j=1

αj = 4πχ(S, αm). (1.4)By means of Proposition 1.2, Theorem 1.1 will follow immediately from the next result.Theorem 1.3. Let S be a losed surfae of positive genus, K0 ∈ Ls(S) for some s > 1 and
K any positive Lipshitz funtion on S. Suppose moreover that αj ≥ 0 for j ∈ {1, . . . , m}.Then, for any λ ∈ (8π, +∞) \ Γ(αm) there exists at least one ritial point u ∈ H(S) for
Jλ.



4 DANIELE BARTOLUCCI(1), FRANCESCA DE MARCHIS(2), ANDREA MALCHIODI(2)Remark 1.4. As a onsequene of the results in [30℄ (see also [29℄) and in [2℄, it isstraightforward to verify that our proof of Theorem 1.3 works whenever K is positive andHölder ontinuous in S and Lipshitz ontinuous in a neighborhood of {P1, · · · , Pm}. Weonlude that the result of Theorem 1.1 holds also under these assumptions on K.We notie that in ase αj = 0, j ∈ {1, . . . , m}, sine Γ(αm) = 8πN, we ome up withanother proof of the existene of solutions for the mean �eld equation (1.2) (see [5℄) for
λ ∈ (8π, +∞) \ 8πN, previously obtained in [16℄ and more reently in [24℄, [35℄ (see also[20℄, [42℄). In the same spirit of [23℄, [35℄, other positive results onerning the existene ofsolutions for (1.2) have been derived in [37℄. Other results, in the same diretion of [16℄,have been reently announed in [17℄, see [18℄.Let us observe in partiular that if χ(S, αm) ≤ 0, then (S, αm) is subritial. Therefore,as far as we are onerned with superritiality, there is no loss of generality in assuming
χ(S, αm) > 0. We also remark that if χ(S, αm) ≤ 0 a set of muh more detailed resultsonerning the presribed Gaussian urvature problem are at hand, see [44℄.We are also able to prove the following generi multipliity result, where M stands forthe spae of all C2 Riemannian metris on S equipped with the C2 norm.Theorem 1.5. Under the hypotheses of Theorem 1.3, with λ ∈ (8Nπ, 8(N +1)π)\Γ(αm),and (g0, K) in an open and dense subset of M× C0,1(S), Jλ admits at least (N+g−1

g−1

)

=
(N+g−1)!
N !(g−1)!

ritial points, where g is the genus of S.We prove Theorems 1.3 and 1.5 using a variational and Morse-theoretial approah, look-ing at topologial hanges in the struture of sublevels of Jλ. For the regular ase (with
αj = 0, j = 1, . . . , m), it was shown in [36℄ that for ρ ∈ (8Nπ, 8(N + 1)π), N ∈ N,high sublevels have trivial topology, while low sublevels are homotopially equivalent toformal baryenters of S of order N . By this we mean the family of unit measures whihare supported in at most N points of S.Here we use a related argument: even if we do not ompletely haraterize the topologyof low sublevels, we are still able to retrieve some partial information. In partiular weembed a bouquet of irles, Bg, in S whih does not interset the singular points, and weonstrut a global projetion of S onto Bg. The latter map indues a projetion from thebaryenters of S onto those of Bg and we show that the latter set embeds non-triviallyinto arbitrarily low sublevels of Jλ. More preisely, we prove that low sublevels are nonontratible, yielding Theorem 1.3, and that their Betti numbers are omparable to thoseof the baryenters of the bouquet, whih gives Theorem 1.5.The paper is organized as follows. In Setion 2 we reall some preliminary fats regardingsome analytial issues (improved Moser-Trudinger inequalities, ompatness results) andsome topologial ones (notions in algebrai topology and Morse theory). Finally in Setion3 we prove our main theorems analyzing the topology of sublevels of Jλ in terms of thebaryenters of Bg, whose Betti numbers are omputed expliitly.



51.1. Notation. For P ∈ S and Q ∈ S let us denote by d0(P, Q) the geodesi distaneindued by g0 and for any ouple of sets ω1 ∈ S and ω2 ∈ S,dist(ω1, ω2) = inf
P∈ω1, Q∈ω2

d0(P, Q).For a metri spae X and for N ∈ N we de�ne the following family of probability measures,known in literature as formal baryenters of X of order N

XN =

{

N
∑

i=1

tiδxi
: ti ∈ [0, 1],

N
∑

i=1

ti = 1, xi ∈ X

} (1.5)In the rest of this paper we will denote by ∫
S
· the Lebesgue integral with respet to thevolume form indued by g0. 2. PreliminariesWe divide this setion into an analytial part and a topologial one.2.1. Analytial preliminaries. We will need the following Lemmas whose proof an befound in [24℄ (Lemma 3.2). This kind of �distribution of mass� analysis was introdued in[13℄.Lemma 2.1. For any integer ℓ ≥ 1, let ω1, ω2, · · · , ωℓ+1 be open sets in S satisfyingdist(ωi, ωj) ≥ σ0 > 0 ∀ i 6= j,for some σ0 > 0. For any γ0 ∈ (0, 1

ℓ+1
), and for any ε̃0 > 0 there exist C = C(S, ℓ, σ0, ε̃0, γ0)suh that

log

∫

S

eu ≤ C +

∫

S
|∇u|2

16π(ℓ + 1) − ε̃0

, (2.1)for any u ∈ H(S) satisfying
∫

ωj

eu
∫

S
eu

≥ γ0 ∀ j ∈ {1, · · · , ℓ + 1}.Using this result and a overing lemma, one an then haraterize the onentrationproperties of the funtions in H(S) with low energy (see Lemma 3.4 in [24℄).Lemma 2.2. Assuming N ≥ 1 and λ ∈ (8πN, 8π(N + 1)), the following property holds.For any ε > 0 and any r > 0 there exists a large positive onstant L = L(ε, r) suh thatfor every u ∈ H(s) with Jλ(u) ≤ −L, there exists N points {p1,u, p2,u, · · · , pN,u} ⊂ S suhthat
∫

S\∪N
i=1Br(pi,u)

eu
∫

S
eu

< ε. (2.2)Lemma 2.2 implies that the unit measure eu
R

S
eu

resembles a �nite linear ombination ofDira deltas with at most N elements: one is then indued to onsider the family of formalbaryenters of S of order N (see the Notation). These onsiderations an be made rigorousin the sense spei�ed by the following result.



6 DANIELE BARTOLUCCI(1), FRANCESCA DE MARCHIS(2), ANDREA MALCHIODI(2)Lemma 2.3. If λ ∈ (8Nπ, 8(N +1)π) with N ≥ 1, then there exists a ontinuous proje-tion Ψ : {Jλ ≤ −L} → SN .This is exatly the map Ψ de�ned in Lemma 4.9 of [24℄. On the other hand, for whatonerns the embedding of the spae of formal baryenters SN , into arbitrarily low sub-levels, the statement of Proposition 5.1 in [24℄, holding for the regular ase, does not applyentirely. To state the adapted version, we need to introdue the following family of testfuntions.For δ > 0 small, onsider a smooth non-dereasing ut-o� funtion χδ : R+ → R satisfyingthe following properties






χδ(t) = t, for t ∈ [0, δ]
χδ(t) = 2δ for t ≥ 2δ
χδ(t) ∈ [δ, 2δ], for t ∈ [δ, 2δ].Then given σ ∈ SN , σ =

∑N
i=1 tiδxi

(∑N
i=1 ti = 1) and µ > 0, we de�ne ϕµ,σ : S → R by

ϕµ,σ(y) = log

N
∑

i=1

ti

(

µ

1 + µ2χ2
δ(di(y))2

)2

− log(π), (2.3)where we have set
di(y) = d0(y, xi), xi, y ∈ S.We point out that, sine the distane is a Lipshitz funtion, ϕµ,σ(y) is also Lipshitzin y, and hene it belongs to H1(S). Let us denote by ϕ̃µ,σ the normalized funtions

ϕµ,σ − ϕ̄µ,σ ∈ H(S).By using Lemma 2.2 and by arguing as in [23℄ we obtain the following result.Proposition 2.4. Suppose λ ∈ (8Nπ, 8(N + 1)π) with N ≥ 1. Let ϕ̃µ,σ be the funtionsde�ned above and let K be a ompat subset of S \ {P1, . . . , Pm}. Then,
eϕ̃µ,σ

∫

S
eϕ̃µ,σ

⇀ σ and Jλ(ϕ̃µ,σ) → −∞ uniformly for σ ∈ KN as µ → ∞,where Kn denotes the set of formal baryenters of order N supported in K.We will need some ompatness properties for (1.2), relying on the following result (see[2℄).Theorem 2.5. ([2℄) Let K be a positive Lipshitz funtion on S and let h̃ = Ke−hm. Let
ui solve (1.2) with αj > 0, pj ∈ S and λ = λi, λi → λ. Suppose that ∫

S
h̃euidVg ≤ C1 forsome �xed C1 > 0. Then along a subsequene uik one of the following alternatives hold:(i): uik is uniformly bounded from above on S;(ii): maxS

(

uik − log
∫

S
h̃euik

)

→ +∞ and there exists a �nite blow-up set Σ =

{q1, . . . , ql} ⊂ S suh that
(a) for any s ∈ {1, . . . , l} there exist xs

n → qs suh that uik(x
s
n) → +∞ and

uik → −∞ uniformly on the ompat sets of S \ Σ,



7
(b) λik

h̃e
uik

R

S
h̃e

uik dVg
⇀
∑l

s=1 βsδqs
in the sense of measures, with βs = 8π for qs 6=

{p1, . . . , pm}, or βs = 8π(1 + αj) if qs = pj for some j = {1, . . . , m}. In partiularone has that
λ ∈ Γ(αm).From the above result we obtain immediately the following orollary.Corollary 2.6. Suppose we are in the above situation, and that λ 6∈ Γ(αm). Then thesolutions of (1.2) stay uniformly bounded in C2(S).Corollary 2.6 is a ompatness riterion useful to bypass the Palais-Smale ondition, whihis not known for the funtional Jλ. This orollary, ombined with the arguments in [33℄(proved for the regular ase, but adapting in a straightforward way to the singular one)allows to prove the next alternative.Lemma 2.7. If λ /∈ Γ(αm) and if Jλ has no ritial levels inside some interval [a, b], then

{Jλ ≤ a} is a deformation retrat of {Jλ ≤ b}.Remark 2.8. As far as we are onerned with the approah presented in this paper itseems not easy to remove the hypothesis on the positivity of K. The di�ulties are inher-ited by the lak of onentration-ompatness-quantization results (in the same spirit of[2℄, [4℄, [29℄) for solutions of (1.2) with K possibly hanging sign or even just nonnegative.Atually, our analysis relies heavily on Theorem 2.5 (see also results in [4℄ and [29℄) wherethis hypothesis is required (see [38℄ for related issues in the regular ase).However the neessary ondition imposed by the Gauss-Bonnet onstraint (1.4) just reads
∫

S

2Ke−hmeu = 4πχ(S, αm),so that in priniple there should be no obstrutions (as in the regular and subritial ases[28℄, [44℄) in �nding onformal metris on superritial singular surfaes of positive genuswith Gaussian urvature just assumed to be positive somewhere.This Remark motivates the following question: is it true that any Lipshitz ontinuousfuntion on S an be realized as the Gaussian urvature of a onformal metri on a su-perritial surfae satisfying the hypotheses of Theorem 1.1?2.2. Topologial and Morse-theoretial preliminaries. This subsetion is devotedto ollet some lassial and more reent results onerning the topologial struture ofthe sublevels of Jλ and of Morse funtionals. We will also give a short review of basinotions of algebrai topology needed to get the multipliity estimate.Throughout, the sign ≃ will refer to homotopy equivalenes, while ∼= will refer to home-omorphisms between topologial spaes or isomorphisms between groups. Given a pairof spaes (X, A) we will denote by Hq(X, A) the relative q-th homology group with o-e�ient in Z and by H̃q(X) := Hq(X, x0) the redued homology with oe�ient in Z,



8 DANIELE BARTOLUCCI(1), FRANCESCA DE MARCHIS(2), ANDREA MALCHIODI(2)where x0 ∈ X. Finally, if X, Y , are two topologial spaes and f : X → Y is a on-tinuous funtion, we will denote by f∗ : Hq(X) → Hq(Y ), for q ∈ N, the pushforwardindued by f .Sine the funtional Jλ stays uniformly bounded on the solutions of (1.2) (by Corollary2.6), the Deformation Lemma 2.7 an be used to prove that it is possible to retrat thewhole Hilbert spae H(S) onto a high sublevel {Jλ ≤ b}, b ≫ 0 (see [36℄, Corollary 2.8for the regular ase: also for this issue, only minor hanges are required). More preiselyone has:Proposition 2.9. If λ 6∈ Γ(αm) and if b is su�iently large positive, the sublevel {Jλ ≤ b}is a deformation retrat of H(S) and hene is ontratible.We reall next a lassial result in Morse theory: Morse inequalities.Theorem 2.10. (see e.g. [6℄, Theorem 4.3) Let M be a Hilbert manifold, f ∈ C2(M ; R) bea Morse funtion (i.e. all ritial points are non degenerate) satisfying the (PS)-ondition.Let a, b (a < b) be regular values for f and
Cq(a, b) := # {ritial points of f in {a ≤ f ≤ b} with index q} ,

βq(a, b) := rank(Hq({f ≤ b} , {f ≤ a})).Then
∑n

q=0(−1)n−qCq(a, b) ≥
∑n

q=0(−1)n−qβq(a, b) n = 0, 1, 2, . . . , (strong inequalities)

Cq(a, b) ≥ βq(a, b) q = 0, 1, 2, . . . . (weak inequalities)As already remarked in [21℄, the (PS)-ondition an be replaed by the request thatappropriate deformation lemmas hold true for f . In partiular a �ow de�ned by Malhiodiin [36℄ allows to adapt to Jλ the lassial deformations lemmas ([6℄, Lemma 3.2 andTheorem 3.2) needed so that Theorem 2.10 an be applied for M = H(S) and f = Jλ,under the further assumption that all the ritial points of Jλ are non-degenerate.To sum up, if Jλ is a Morse funtional and a and b are regular values for Jλ, then the weakand the strong inequalities are veri�ed. For the regular ase De Marhis showed in [21℄ thatis possible to apply a transversality result due to Saut and Temam [41℄ whih guaranteesthat generially all the ritial points of the Euler funtional are non-degenerate. In fatexatly the same proedure allows to obtain the following statement (see the proof ofTheorem 1.5 in [21℄ for details).Proposition 2.11. For λ 6∈ Γ(αm) and for (g0, K) in an open and dense subset of M×
C0,1(S) Jλ is a Morse funtional.Let now reall some well known de�nitions in algebrai topology.Join. The join of two spaes X and Y is the spae of all segments �joining points� in Xto points in Y . It is denoted by X ∗ Y and is the identi�ation spae
X∗Y := X×[0, 1]×Y/(x, 0, y) ∼ (x′, 0, y), (x, 1, y) ∼ (x, 1, y′) ∀x, x′ ∈ X, ∀ y, y′ ∈ Y.



9Wedge sum. Given spaes X and Y with hosen points x0 ∈ X and y0 ∈ Y , then thewedge sum X∨Y is the quotient of the disjoint union X∐Y obtained by identifying x0 and
y0 to a single point. If {x0} (resp. {y0}) is a losed subspae of X (resp. Y ) that is a defor-mation retrat of some neighborhood in X (resp. Y ), then H̃q(X∨Y ) ∼= H̃q(X)

⊕

H̃q(Y ),provided that the wedge sum is formed at basepoints x0 and y0.Smash Produt. Inside a produt spae X × Y there are opies of X and Y , namely
X × {y0} and {x0} × Y for points x0 ∈ X and y0 ∈ Y . These two opies of X and Y in
X ×Y interset only at the point (x0, y0), so their union an be identi�ed with the wedgesum X ∨ Y . The smash produt X ∧ Y is then de�ned to be the quotient X × Y/X ∨ Y .For example Sn ∧ Sm ∼= Sn+m.Suspension. The k-fold (unredued) suspension of X is de�ned to be Sk−1 ∗X, while the
k-fold redued suspension is the smash produt Sk ∧X. A useful property of the reduedsuspension is that, for any q, n ≥ 0, H̃q(X) ∼= H̃q+n(Sn ∧ X). It is ruial to notie thatredued and unredued onstrutions are homotopially equivalent onstrutions for thespaes we will deal with. In the following we will often use the latter property for replaingin some results of [27℄ the unredued suspension by the redued one.Redued symmetri produt. We denote by SP

k
(X) the k-th redued symmetriprodut whih is the symmetri smash produt X(k)/Sk, where X(k) is the k-fold smashprodut of X with itself and Sk is the permutation group. We set SP

0
(X) = S0. ATheorem by Dold ([25℄, Theorem 7.2) implies that the homology of redued symmetriproduts only depends on the homology of the underlying spae. Moreover it has beenproved that SP

k
(X ∨ Y ) =

∨

r+s=k SP
r
(X) ∧ SP

s
(Y ); �nally in the ase of the 2-sphere

SP
k
(S2) ∼= S2k (see [27℄, Theorem 1.3 and Corollary 4.3).3. Proof of the TheoremsWe �rst make the following laim, whose proof follows from Propositions 3.1 and 3.2below.Claim. For λ ∈ (8πN, 8π(N + 1)) \ Γ(αm), hoosing L su�iently large positive one hasthat

β2N−1(L,−L) ≥

(

N + g − 1

g − 1

)

=
(N + g − 1)!

N !(g − 1)!
.One the laim is proved, the onlusion of Theorem 1.3 follows from Lemma 2.7. Toprove Theorem 1.5 it is instead su�ient to apply Proposition 2.11 and Theorem 2.10(using the observations after it) with a = −L and b = L.



10 DANIELE BARTOLUCCI(1), FRANCESCA DE MARCHIS(2), ANDREA MALCHIODI(2)Proposition 3.1. There exists L > 0 su�iently large suh that, for any q ∈ N,
βq(L,−L) ≥ βq(B

g

N), where Bg

N is the spae of formal baryenters on a bouquet of girles, with g the genus of S.We reall that a spae Bg is a bouquet of g irles if Bg = ∪g

j=1Aj , with Aj homeomorphito S1 and Ai ∩ Aj = {P}; P is alled the enter of the bouquet. In the above statement
βq(B

g

N) stands for the q-th Betti number of Bg

N , namely the rank of Hq(B
g

N ).Proof. Proposition 2.9 implies that {Jλ ≤ L} is ontratible (for L su�iently large).Thus, from the exatness of the homology sequene
· · · → H̃q({Jλ ≤ −L}) → H̃q({Jλ ≤ L}) → Hq({Jλ ≤ L}, {Jλ ≤ −L}) → H̃q−1({Jλ ≤ −L}) →
· · ·we derive that

{

Hq+1({Jλ ≤ L} , {Jλ ≤ −L}) ∼= H̃q({Jλ ≤ −L}), q ≥ 0;
H0({Jλ ≤ L} , {Jλ ≤ −L}) = 0.Now to obtain the thesis it su�es to onstrut j : Bg

N → {Jλ ≤ −L} and f : {Jλ ≤
−L} → Bg

N suh that f ◦ j is homotopially equivalent to the Id|Bg

N
. In fat, if this is true,we have that

f∗ ◦ j∗ = Id|H∗(B
g

N
),whih implies that rank(Hq({Jλ ≤ −L})) ≥ rank(Hq(B

g

N)) = βq(B
g

N).In order to build these maps we will regard Bg as an appropriate subset of S: let usunderstand how.Sine any two di�erentiable, ompat, orientable surfaes with the same genus are homeo-morphi, we an onsider an embedding Θ from S to R3 (with oordinates z1, z2, z3) suhthat in any hole passes a line parallel to the z3 axis and moreover suh that the projetionon the plane {z3 = 0} is a irle with } rounds holes as in Figure 1. Let us denote by ̟the map projeting R3 onto the plane {z3 = 0}.In Θ(S \ {P1, . . . , Pm}) it is learly possible to �nd a bouquet of irles, B̃g, verifying:
• ̟|B̃g is an homeomorphism,
• ̟(B̃g) is a bouquet having a hole of ̟(Θ(S)) in eah loop,
• ̟(B̃g) ∩ ̟({P1, . . . , Pm}) = ∅.Then there exists a retration r : ̟(Θ(S)) → ̟(B̃g).Let us set Bg := Θ−1(B̃g), whih is again a bouquet with } loops.We are at last in position of de�ne the desired maps.

j : Bg

N −→ {Jλ ≤ −L}

σ =
∑N

i=1 tiδbi
(bi ∈ Bg) 7−→ ϕµ,σ

(3.1)
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f : {Jλ ≤ −L}

Ψ
−→ SN

Υ
−→ Bg

N

u 7−→ Ψ(u) =
∑N

i=1 tiδxi
7−→

∑N

i=1 tiδΘ−1◦̟−1◦r◦̟◦Θ(xi)

(3.2)The fat that f ◦ j is homotopially equivalent to the identity on Bg

N follows easily fromProposition 2.4 and the uniform ontinuity of Υ on Bg

N . �

PSfrag replaements ̟

Θ(S)

B̃
g

r

̟(Θ(S))

̟(B̃g)Figure 1. B̃g embedded in Θ(S) and their projetions.Proposition 3.2. β2N−1(B
g

N) =
(

N+g−1
g−1

)

= (N+g−1)!
N !(g−1)!

.Proof. Theorems 1.1 and 1.3 in [27℄ imply that for any q ≥ 0

H̃q(B
g

N) ∼= Hq+1(SP
N

(S1 ∧ Bg)).Now notie that S1 ∧ Bg has the same homology of ∨g

j=1 S2; hene, sine the reduedsymmetri produt of a spae only depends on its homology, it follows that for any q ≥ 0

H̃q((B
g)N) ∼= Hq+1(SP

N
(S1 ∧ Bg)) ∼=

∼= Hq+1(SP
N

(

g
∨

j=1

S2)) ∼= [property of the redued symmetri produt℄
∼= Hq+1(

∨

n1+...+ng=N

(

g
∧

j=1

SP
sj

S2)) ∼= [property of the homology of the wedge sum℄
∼=

⊕

n1+...+ng=N

Hq+1(

g
∧

j=1

(SP
sj

S2)) ∼= [SP
n
(S2) ∼= S

2n℄
∼=

⊕

n1+...+ng=N

Hq+1(S
2N) ∼=

∼=

{

Zs, q = (2N − 1),
0, otherwise (3.3)
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(

N+g−1
g−1

) ounts the number of tuples (n1, . . . , ng) suh that ∑g

j=1 nj = N .The proof is thereby omplete. �4. AppendixIn this setion we prove Proposition 1.2.Proof of Proposition 1.2. It is well known ([28℄, [44℄) that g = e2w̃g0 is a onformalmetri on (S, αm) with Gaussian urvature K if and only if


































−∆0w̃ = Ke2w̃ − K0 in S \ {P1, · · · , Pm},

1

2π

∫

S

Ke2w̃ = χ(S) +

m
∑

j=1

αj,

w̃(πj(z)) = αj log |z − zj | + O(1), z ∈ Br(zj), j ∈ 1, . . . , m

(4.1)where πj is a set of loal (omplex) isothermal oordinates around zj = π−1
j (Pj) (asindued by the g0 partition of unity onstrution) and r > 0 a suitably hosen positivesmall enough number. Let us de�ne

w(P ) = w̃(P ) + 2π

m
∑

j=1

αjG(P, Pj). (4.2)Then w is a distributional solution of the equation
−∆0w = Ke−hme2w − K0 −

2π

|S|

m
∑

j=1

αj in S \ {P1, · · · , Pm}, (4.3)whih also satis�es
1

2π

∫

S

Ke−hme2w = χ(S) +

m
∑

j=1

αj , (4.4)and
w(πj(z)) = αj log |z − zj| + 2π

m
∑

ℓ=1

αℓG(πj(z), πℓ(zℓ)) + O(1), z ∈ Br(zj), j ∈ 1, . . . , m.However it is also well known [1℄ that
G(P, Pj) =

1

2π
log (d0(P, Pj)) + O(1), P ≃ Pj,where d0(·, ·) is the geodesi distane de�ned by g0. In partiular it is not too di�ult toverify that

G(πj(z), πj(zj)) = −
1

2π
log |z − zj| + O(1), z ≃ zj , (4.5)and we readily onlude that

w(πj(z)) = O(1), z ∈ Br(zj), j ∈ 1, . . . , m.



13By standard ellipti theory this ondition implies that w is a distributional solution for(4.3) on S. In partiular, by using (4.5) and the expliit expression of hm we see that e−hmis Hölder ontinuous in S, and the standard ellipti regularity theory shows that w is alassial solution for (4.3).At this point we onlude that if u = 2w then u is a lassial solution for
−∆0u = 2Ke−hmeu − 2K0 −

4π

|S|

m
∑

j=1

αj in S, (4.6)and then setting
λ = 4π

(

χ(S) +

m
∑

j=1

αj

)

,and by using (4.4) we onlude that u is a lassial solution for (1.2). Therefore, if
g = e2w̃g0 = e−hmeug0 ≡ λ

e−hmeu

∫

S
2Ke−hmeu

g0,is a onformal metri on (S, αm) with Gaussian urvature K, then u is a lassial solutionfor (1.2).On the other side, if u is a lassial solution for (1.2) then (1.4) holds. Thus, we an de�ne
w by

2w = u + log λ − log

(
∫

S

2Ke−hmeu

)

,and ome up with a lassial solution for (4.3) on all S. At this point we an use (4.2) tode�ne w̃ and onlude that
λ

e−hmeu

∫

S
2Ke−hmeu

g0 = e−hme2wg0 = e2w̃g0is a onformal metri on (S, αm) with Gaussian urvature K. �Remark 4.1. We remark that if αi ∈ (−1, 0) for some i ∈ I ⊆ {1, . . . , m}, then thestatement of Proposition 1.2 still holds but for the ondition of u being a lassial solution,whih should be replaed by u ∈ C2(S \ {∪i∈IPi}) ∩ C0(S).Referenes[1℄ T. Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Springer-Verlag, New-York,(1982).[2℄ D. Bartolui & G. Tarantello, Liouville type equations with singular data and their appliations toperiodi multivorties for the eletroweak theory, Comm. Math. Phys. 229 (2002), 3�47.[3℄ M.S. Berger Riemannian struture of presribed Gaussian urvature for ompat two manifolds, J.Di�erential Geom. 5 (1971), 325-332.[4℄ H. Brezis & F. Merle, Uniform estimates and blow-up behaviour for solutions of −∆u = V (x)eu intwo dimensions, Comm. in P.D.E., 16(8,9) (1991), 1223�1253.[5℄ E. Caglioti, P.L. Lions, C. Marhioro & M. Pulvirenti, A speial lass of stationary �ows for twodimensional Euler equations: a statistial mehanis desription. II, Comm. Math. Phys. 174 (1995),229�260.
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