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Abstract. We study two variational models recently proposed in the litera-
ture to describe the mechanical behaviour of nematic elastomers either in the

fully nonlinear regime or in the framework of a geometrically linear theory.
We show that, in the small strain limit, the energy functional of the first one

Γ-converges to the relaxation of the second one, a functional for which an

explicit representation formula is available.

1. Introduction

Nematic elastomers show a very rich and intriguing mechanical response, with a
great potential for new technological applications. The properties of these materials,
which were synthesized at the end of the 80s, arise from the interaction of electro-
optical effects typical of nematic liquid crystals with the elasticity of a rubbery
matrix (see [14]). Nematic elastomers exhibit reversible distortions as the material
is heated and cooled through the nematic to isotropic phase transition temperature.
A uniaxial contraction occurs parallel to the nematic director as a consequence of
the ordering of the mesogenic units that are incorporated into a cross-linked polymer
network.

The mathematical modelling of the mechanical response of nematic elastomers is
already well established, see, e. g., [4], [5], [7]. Here we focus on some model elastic
energies: those discussed in [8] and some variants. We work in the framework of
a Frank-type theory, in which the liquid crystal order is supposed to be uniaxial
with fixed degree of orientation. To describe the mechanical implications of such
an order, the following tensor is introduced:

Lε,n := (1 + ε)2n⊗ n+ (1 + ε)−1(I − n⊗ n), (1.1)

where n is a unit vector (nematic director) and ε > 0 is a non-dimensional material
parameter. Tensor (1.1) models the spontaneous deformation one can observe in
a nematic elastomer as a consequence of the isotropic to nematic phase transition:
(1 + ε) is the elongation in the direction along which the nematic director aligns,

(1 + ε)−
1
2 is the contraction along all the orthogonal directions.

Using the notation of Section 4, the energy for isotropic and incompressible
nematic elastomers is written as

µ

2
min
n∈S2

(
FFT · L−1

ε,n − 3
)
, (1.2)

where F ∈ R3×3 is the deformation gradient. This is a classical expression, studied,
e. g., in [5] and [7], and obtained from an earlier proposal by Bladon, Terentjev and
Warner (see [1]) by an affine change of variables, first introduced in [6]. This energy
is non-negative and attains its minimum value of zero precisely if FFT is of the
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form (1.1). The fact these states of deformation are those observed experimentally
(under sufficiently small applied loads) is one of the main justifications for the
physical soundness of the model.

Moving to the compressible case (detF 6= 1), we consider the expression

Wε(F ) = min
n∈S2

Wε,n(F ), (1.3)

where

Wε,n(F ) =

{
µ
2

[
FFT · L−1

ε,n − 3− 2 ln(detF )
]

+ λ
2 (detF − 1)2, if detF > 0

+∞, if detF ≤ 0,
(1.4)

and µ, λ > 0 are material constants. This is a natural generalization of (1.2).
Indeed, observe that for detF = 1 (1.3) reduces to (1.2). Moreover, Wε attains its
minimum value zero on the set of energy wells⋃

n∈S2

{
RL

1
2
ε,n : R ∈ SO(3)

}
=
{
RL

1
2

ε,n̂Q : Q,R ∈ SO(3)
}
,

where n̂ is some fixed unit vector. Matrices F in this set are such that FFT is
of the form (1.1). The term in square brackets in (1.4) is motivated by Flory’s
work on polymer elasticity [9]. The presence of the term λ

2 (detF − 1)2 guarantees
that the Taylor expansion at order two coincides with isotropic elasticity with two
independent natural parameters (shear modulus and bulk modulus, see (1.8) below).

We are interested in providing a justification, via Γ-convergence, of the linearized
elasticity theory proposed in [8] on the basis of Taylor expansion, and of its relax-
ation obtained in [3]. The following theorem achieves this aim.

Theorem 1.1. Let Ω be a bounded and Lipschitz domain, ΓD a subset of ∂Ω
of positive surface measure, h ∈ W 1,∞(Ω,R3) and H1

h,ΓD
(Ω,R3) the closure of

{v ∈W 1,∞(Ω,R3) : v = h on ΓD} in H1(Ω,R3). Consider the energy functionals

Eε(u) =
1

ε2

∫
Ω

Wε(I + ε∇u)−
∫

Ω

lu,

with Wε defined by (1.3) and (1.4). Then {Eε} Γ-converges to

E (u) =

∫
Ω

V qc(sym∇u)−
∫

Ω

lu (1.5)

with respect to both the strong L2- and the weak H1- topology on H1
h,ΓD

(Ω,R3).

Here, V qc is defined on Sym(3) as

V qc(E) = µ min
Q∈Q

|Ed −Q|2 +
k

2
tr2E, (1.6)

where k = λ+ 2
3µ,

Q := {M ∈ Sym(3) with eigenvalues in [−1/2, 1] and trM = 0},

and

Ed = E − 1

3
tr(E)I. (1.7)

We remark (see [3]) that V qc is the quasiconvex envelope (on linear strains) of

V (E) = µ min
n∈S2

|Ed − Un|2 +
k

2
tr2E, E ∈ Sym(3), (1.8)
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where

Un =
3

2

(
n⊗ n− 1

3
I

)
, (1.9)

and E is the relaxation of

E (u) =

∫
Ω

V (sym∇u)−
∫

Ω

lu. (1.10)

Expressions (1.6) and (1.8) show that the parameters µ and k = λ + 2
3µ have the

physical meaning of a shear modulus and a bulk modulus, respectively.
In the engineering literature, it is customary to write small strain theories using

the leading order term of the deviation of the strain from the identity. In other
words, one considers F = I+∇v+o(ε), where |∇v| = ε, and then writes the energy
as a function of v. One easily sees (cfr. Remark 2.2) that this energy is related to
(1.10) by a simple scaling and, modulo terms of order higher than two in ε, one
obtains

E (v) =

∫
Ω

{
µ min
n∈S2

|(sym∇v)d − E0(n)|2 +
k

2
tr2(∇v)

}
−
∫

Ω

lv, (1.11)

where

E0(n) =
3

2
ε

(
n⊗ n− 1

3
I

)
,

and the corresponding relaxation

E (v) =

∫
Ω

{
µ min
Q∈Q

|(sym∇v)d − εQ|2 +
k

2
tr2(∇v)

}
−
∫

Ω

lv.

This relaxed functional may prove very useful to set up effective numerical schemes
in applications where one is interested in the behaviour of global energy minimizers,
similarly to what has been done in [4], [5]. When, instead, local minimizers or
dynamics are studied (see, e. g., [2] and [10]), (1.11) describes the correct energetics.

2. Proof of Theorem 1.1

Our result is an application of the abstract theory developed by B. Schmidt in
[13]. In this work, linearized theories are derived from nonlinear elasticity theory
for multi-well energies. More precisely, the author considers a family of frame
indifferent multi-well energies Wε, defined on the space of the deformation gradients
Rd×d, which are minimized and equal to zero at SO(d)U1(ε), ..., SO(d)UN (ε). Here,
for i = 1, ..., N , Ui(ε) is a symmetric matrix of the form

Ui(ε) = I + εUi + o(ε).

Notice that, for ε small enough, Ui(ε) is positive definite. Moreover, standard
regularity conditions and orientation preserving are assumed, together with the
hypothesis that

Wε(F ) ≥ Cdist2(F, SO(d)Uε)

for every F ∈ Rd×d, where Uε =
⋃N
i=1 {Ui(ε)}.

Under these natural assumptions on the (nonlinear) energy densities, suitable
rescalings of the energy functionals are considered:

Eε(u) =
1

ε2

∫
Ω

Wε(I + ε∇u)−
∫

Ω

lu.
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Theorem 2.1 in [13] states what follows: define Vε : Sym(d)→ R as

Vε(E) =
1

ε2
Wε(I + εE),

and suppose that {Vε} converges uniformly on compact sets of Sym(d) to a function
V satisfying

V (E) ≤ α(1 + |E|2) (2.1)

(in this case, V is called the “linear limit” of Wε). Then {Eε} Γ-converges, with
respect to both the strong L2- and the weak H1- topology on H1

h,ΓD
(Ω,R3) (see

Theorem 1.1 for a definition), to the relaxation of

E (u) =

∫
Ω

V (sym∇u)−
∫

Ω

lu,

which is given by

E (u) =

∫
Ω

V qc(sym∇u)−
∫

Ω

lu,

where V qc is the quasiconvexification on linear strains of V (see [13] for a definition).
One class of energy densities which is explicitly analysed in [13] is of the form

Wε(F ) = min
i=1,...N

Wε,i(F ), (2.2)

where, for i = 1, ..., N , Wε,i are admissible single-well energies, minimized and equal
to zero, respectively, at SO(d)Ui(ε). In [13, Proposition 3.3] it is shown that the
linear limit of such a family of energy densities is

V (E) =
1

2
min

i=1,...,N
< ai(E − Ui), E − Ui >,

where ai = d2Wε,i(Ui(ε)). The double-well case N = 2 with a1 = a2 is of particular
interest since, in this case, an explicit formula for the quasiconvex envelope of V is
available [12].

The energy densities (1.3) we consider in this paper can be viewed as an infinite-
dimensional analogue of (2.2). To handle this case, an extension of the theory
for energy densities with wells which vary on a compact is required. For this
purpose, we generalize the results in [13] to the following class of “admissible”
energy densities.

Definition 2.1. We say that Wε is an admissible family of energy densities if, for
every ε small enough, it satisfies:

(i) Wε : Rd×d → [0,+∞] is frame indifferent;
(ii) Wε(F ) = 0 = minRd×d Wε for every F ∈ SO(d)Uε, with

Uε := {U ∈ Sym(d) : U = I + εÛ + o(ε), Û ∈M }, (2.3)

where M is a compact in Rd×d;
(iii) Wε is measurable and continuous in a ε-independent neighbourhood of I;
(iv) there exists a constant C not depending on ε and F such that

Wε(F ) ≥ Cdist2(F, SO(d)Uε); (2.4)

(v) Wε(F ) = +∞, if detF ≤ 0.
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The generalization of [13, Theorem 2.1] to this class of energies does not require
any change in its proof. Indeed, for such a proof, condition (ii) and (iv) of the
previous definition can be replaced by the condition

Wε(F ) ≥ cdist2(F, SO(d))− Cε2,

for some c, C > 0, see [13, Remark 2.9]. Observe that this condition is implied by
(2.3) and (2.4): let

dist(F, SO(d)Uε) = |F −RU |,
for some R ∈ SO(d) and U = I+εÛ +o(ε), Û ∈M . Since Û varies in the compact
M , we have that

|F −R| ≤ |F −RU |+ |U − I| ≤ dist(F, SO(d)Uε) +Kε,

and therefore
dist(F, SO(d)) ≤ dist(F, SO(d)Uε) +Kε,

for some K > 0 and every ε > 0 small enough.
We now move to the specific energies for nematic elastomers and focus on the
three-dimensional case d = 3. Let us introduce

Uε = {Uε,n := L
1
2
ε,n : n ∈ S2}, (2.5)

and observe that, expanding (1.1) in ε around zero, we obtain

Lε,n = I + εLn + o(ε), with Ln = 3

(
n⊗ n− 1

3
I

)
. (2.6)

Similarly, from

Uε,n = (1 + ε)n⊗ n+ (1 + ε)−
1
2 (I − n⊗ n),

we have that
Uε,n = I + εUn + o(ε), (2.7)

with Un = 1
2Ln defined as in (1.9). This shows that Uε is a class of type (2.3).

In order to apply [13, Theorem 2.1], we have to check that {Wε} is an admissible
family of energy densities in the sense of Definition 2.1 and then compute the
limit which defines V and verify that this limit is uniform on compact sets of
Sym(3). Once the expression of V is known, it is easy to check that it satisfies
the growth condition (2.1). Finally, we use the results in [3] to obtain the explicit
characterization (1.6) of the quasiconvex hull (on linear strains) of V . Throughout
this section, we label with λ1(M) ≥ λ2(M) ≥ λ3(M) the ordered eigenvalues of the
3× 3 symmetric matrix M .

Proof of Theorem 1.1. We start by verifying the admissibility of {Wε}. By the
definition of Wε as a minimum over S2, it is easy to check that Wε is frame-
indifferent, while (iii) and (v) of Definition 2.1 clearly hold. To prove (ii), notice
that, if detF > 0, then

Wε(F ) =
µ

2
foptε (FFT ) +

λ

2
(detF − 1)2,

where foptε is defined as in (4.3) (specialized to dimension 3). By Proposition 4.1,
this is minimal at the value 0 on SO(3)Uε. Notice that SO(3)Uε = UεSO(3). To
prove that (iv) holds for Wε, we restrict attention to the non-trivial case detF > 0
and look separately at three regimes: the case F far from SO(3), the case F close
to SO(3) and the intermediate regime. Thus, we divide the proof into three steps.
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In what follows, we use the standard convention and denote by C a generic positive
constant whose exact value may change from line to line.
Step 1. We prove that there exist α > 0 and C1 > 0 such that, for every ε small
enough and for every F ∈ R3×3,

if dist(F, SO(3)) ≤ α, then Wε(F ) ≥ C1dist2(F, SO(3)Uε).

We can write Wε,n(F ) = W̃ε,n(FFT ), where W̃ε,n is defined on Psym(3) by

W̃ε,n(B) =
µ

2
f(B,Lε,n) +

λ

2
(
√

detB − 1)2, (2.8)

and f defined as in (4.1) with d = 3. Let dist(F, SO(3)) ≤ α, with α > 0 to
be chosen later. Then |FFT − I| ≤ α2 + 2α and FFT belongs to the closed ball
centered in Lε,n and with radius 2α2 + 4α, for every ε small enough. Thus, for α

small enough, we can expand W̃ε,n around Lε,n:

W̃ε,n(FFT ) = W̃ε,n(Lε,n) + dW̃ε,n(Lε,n)[FFT − Lε,n]+

+
1

2
d2W̃ε,n(Lε,n)[FFT − Lε,n]2 +Rα, (2.9)

where

|Rα| ≤ Cα|FFT − Lε,n|3, (2.10)

for a certain positive constant Cα, which depends on α but not on ε and n. From
Proposition (4.1), both W̃ε,n and its differential dW̃ε,n vanish at Lε,n. Moreover,
simple calculations give

dW̃ε,n(B)[H] =
µ

2
[H · L−1

ε,n −B−T ·H] +
λ

2
(
√

detB − 1)
√

detBB−T ·H,

and in turn

d2W̃ε,n(Lε,n)[H]2 =
µ

2
tr(L−1

ε,nH)2 +
λ

4
tr2L−1

ε,nH, (2.11)

for every B ∈ Psym(3) and H ∈ Sym(3). Observe that

d2W̃ε,n(Lε,n)[H]2 ≥ µ

2
tr(L−1

ε,nH)2 ≥ µ

4
|H|2, (2.12)

for every ε sufficiently small and every n. Thus, from (2.9), (2.10) and (2.12) it
turns out that

Wε,n(F ) =
1

2
d2W̃ε,n(Lε,n)[FFT − Lε,n]2 +Rα

≥ µ

8
|FFT − Lε,n|2 +Rα

≥ µ

8
|FFT − Lε,n|2

(
1− 8Cα

µ
|FFT − Lε,n|

)
,

for every ε small enough. Now, it is possible to choose α > 0 such that the
parenthesis in the last inequality is arbitrarily close to one and hence

Wε,n(F ) ≥ C|FFT − Lε,n|2.

Therefore, since |
√
G −

√
H| ≤ C|G − H| for every G, H ∈ Psym(3), if H is

sufficiently near I, then there exists a constant C1 > 0, not depending on F , ε and
n, such that

Wε,n(F ) ≥ C1|
√
FFT − Uε,n|2.
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Then, we can conclude by using the following inequalities:

Wε(F ) := min
n∈S2

Wε,n(F ) ≥ C1 min
n∈S2

|
√
FFT − Uε,n|2 ≥ C1dist2(F, SO(3)Uε).

Step 2. Let α be the constant found in the first step. We now show that there
exists C2 > 0 such that, for every ε small enough,

if dist(F, SO(3)) > α, then Wε(F ) ≥ C2.

Recall that, by polar decomposition, |
√
FFT − I| = dist(F, SO(3)) (see [11, Ex. 7,

p. 17] for more details). Thus, if dist(F, SO(3)) > α, by Lemma 4.3 with B = FFT

and d = 3, there exists δ ∈ (0, 1) such that, if

detFFT ∈ [1− δ, 1 + δ],

then fεopt >
α2

2 for every ε small enough and therefore

Wε(F ) =
µ

2
fεopt(FF

T ) +
λ

2
(detF − 1)2 >

µα2

4
> 0.

On the other hand, if detFFT ∈ R \ [1− δ, 1 + δ], then

Wε(F ) ≥ λ

2
(detF − 1)2 ≥ λ

2
min{1, δ2} > 0.

Step 3. Finally, we prove that there exists β large enough such that,

if dist(F, SO(3)) > β, then Wε(F ) ≥ C3dist2(F, SO(3)Uε)

for a certain C3 > 0 and for every ε small enough.

By using Proposition (4.1) with d = 3 and writing λi = λi(
√
FFT ), we have that

Wε(F ) ≥ µ

2
[(1 + ε)−2λ2

1 + (1 + ε)(λ2
2 + λ2

3)− 3− 2 ln(λ1λ2λ3)].

Therefore, since (1 + ε)−2, (1 + ε) tend to 1 as ε tends to zero, we have that, for ε
small enough,

Wε(F ) ≥ µ

2

[
|F |2

2
− 3− ln(λ1λ2λ3)2

]
. (2.13)

By using the inequality between arithmetic and geometric mean, we obtain from
(2.13)

Wε(F ) ≥ µ

2

[
|F |2

2
− 3− 3 ln

|F |2

3

]
>

µ

2

[
|F |2

2
− 3 ln |F |2

]
,

so that, if |F | is sufficiently large, we have that Wε(F ) ≥ µ
8 |F |

2. Thus, if β is large
enough, we have that

Wε(F ) ≥ C|FFT − I|, (2.14)

for a certain constant C > 0. Now, observe that

|
√
FFT − I|2 =

3∑
i=1

(λi − 1)2 ≤

√√√√3

3∑
i=1

(λ2
i − 1)2 + 6 =

√
3|FFT − I|+ 6. (2.15)
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Thus, if ε is small enough, from (2.7) and (2.15) we have that

1

2
|
√
FFT − Uε,n|2 ≤ |

√
FFT − I|2 + |I − Uε,n|2

≤
√

3|FFT − I|+ 6 + |εUn + o(ε)|2

≤
√

3|FFT − I|+ 7
C

β

β

C

<

(√
3 + 7

C

β

)
|FFT − I|, (2.16)

for every n ∈ S2. From (2.14) and (2.16), by choosing β > 0 sufficiently large, we
can conclude that there exists C3 > 0 such that for every ε > 0 small enough

Wε(F ) ≥ C3|
√
FFT − Uε,n|2,

and in turn

Wε(F ) ≥ C3dist2(F, SO(3)Uε).

The quadratic growths established by steps 1 and 3, together with the estimate in
step 2, show that we can bound Wε with a single function, growing with the square
of the distance, so that (2.4) holds.

Next, we compute the linear limit

V (E) = lim
ε→0

1

ε2
Wε(I + εE), E ∈ Sym(3).

Observe that

V (E) = min
n∈S2

lim
ε→0

1

ε2
W̃ε,n((I + εE)(I + εE)T ),

where W̃ε,n is defined as in (2.8). Since W̃ε,n and its gradient vanish at Lε,n, we
have that

V (E) = min
n∈S2

lim
ε→0

{
1

2ε2
d2W̃ε,n(Lε,n)[(I + εE)(I + εE)T − Lε,n]2

+
1

ε2
o(|(I + εE)(I + εE)T − Lε,n|2)

}
,

and then, from (2.6),

V (E) =
1

2
min
n∈S2

d2W̃0,n(I)[2E − Ln]2.

Observe that the limit is uniform on compact subsets of Sym(3). From (2.11), it
turns out that

V (E) =
1

2
min
n∈S2

µ

2
tr(2E − Ln)2 +

λ

4
tr2(2E − Ln)

=
1

2
min
n∈S2

2µtr(E − Un)2 + λtr2(E − Un)

= µ min
n∈S2

|E − Un|2 +
λ

2
tr2E, (2.17)

where in the second identity we used the fact that Ln = 2Un, with Un defined as
in (1.9). Clearly, V satisfies the growth condition (2.1).
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Finally, we establish (1.5) and (1.6). Since Un is traceless, we prefer to write the
second summand of (2.17) in terms of the deviatoric part Ed of E, as defined in
(1.7). Thus, since

|E − Un|2 = |Ed − Un|2 +
tr2E

3
(2.18)

and λ = k − 2
3µ, we obtain (1.8) and in turn

E (u) =

∫
Ω

{
µ min
n∈S2

|(sym∇u)d − Un|2 +
k

2
tr2(∇u)

}
−
∫

Ω

lu, (2.19)

which is the functional that has to be relaxed in order to obtain (1.5). This can be
done by using [3, Theorem 1] with γ = 1, Q in place of QB and the set{

Un =
3

2

(
n⊗ n− 1

3
I

)
: n ∈ S2

}
of 3×3 traceless matrices with eigenvalues 1, − 1

2 , − 1
2 , in place of QFr. Observe that

in [3] the relaxation of (2.19) is obtained by the quasiconvexification of the integrand
seen as a function of F = ∇u ∈ R3×3. This is equivalent to the quasiconvexification
on linear strains of the integrand seen as a function of E = sym∇u ∈ Sym(3).
The proof of Theorem 1.1 is thus concluded. �

Remark 2.2. By frame indifference,

lim
ε→0

Wε(I + ε∇u)

ε2
= lim
ε→0

Wε

(√
(I + ε∇u)(I + ε∇u)T

)
ε2

. (2.20)

Thus, by Taylor expansion,

V (sym∇u) := lim
ε→0

Wε(I + εsym∇u)

ε2
= lim
ε→0

Wε(I + ε∇u)

ε2
.

At the same time, again from (2.20), we have that

V (sym∇u) = lim
ε→0

W̃ε(I + 2εsym∇u)

ε2
,

for a certain W̃ε defined on Sym(3). Notice that, while Wε is defined as a function

of F , W̃ε is defined as a function of B = FFT . Observe also that, from the
definition of V , we have

Wε

(
I + ε

E

|E|

)
= ε2V

(
E

|E|

)
, E ∈ Sym(3) \ {0},

modulo terms of order higher than two in ε. Therefore, if |E| = ε,

Wε

(
I + ε

E

|E|

)
= ε2

{
µ min
n∈S2

∣∣∣∣Edε − Un
∣∣∣∣2 +

k

2ε2
tr2E

}

= µ min
n∈S2

|Ed − εUn|2 +
k

2
tr2E.

We can recognize in the last expression the formula for the energy in the small
deformations regime obtained in [8].
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3. An alternative model

It is natural to explore the small strain behaviour of another class of model
energies, discussed in [8], and obtained from the Warner-Terentjev incompressible
template (1.2), by a procedure which is quite common in rubber elasticity and
computational mechanics. This is based on the additive split of the energy density
into a distortional term (invariant under the transformation F → αF , with α

a positive scalar), obtained from (1.2) by replacing F with (detF )−
1
3F , and a

volumetric term (which only depends on detF ). Using the notation of Section 4,
the resulting energy is of the form

W1,ε(F ) = min
n∈S2

W1,ε,n(F ), (3.1)

where

W1,ε,n(F ) =

{
µ
2 (detF )−

2
3FFT · L−1

ε,n − 3
2µ+ k

2 (detF − 1)2, if detF > 0,
+∞, if detF ≤ 0,

(3.2)
and Lε,n is given by (1.1) for ε > 0 and n ∈ S2. W1,ε is again a natural generaliza-
tion of (1.2) because it coincides with it for detF = 1, it has the same set of energy
wells

SO(3)Uε =
⋃
n∈S2

{
RL

1
2
ε,n : R ∈ SO(3)

}
as (1.3) and the same behaviour near the energy wells (same linear limit (1.8) or,
equivalently, same Taylor expansion at order two). However, W1,ε violates the
hypothesis of quadratic growth with respect to dist(F, SO(3)Uε) (see Remark 3.2).
Therefore, we cannot apply to it the abstract theory of [13]: the characterization
of the Γ-limit of the functionals

E1,ε(u) =
1

ε2

∫
Ω

W1,ε(I + ε∇u)−
∫

Ω

lu (3.3)

requires an extension of Schmidt’s theory.
While Schmidt’s theory does not apply to (3.1), it does apply to energies with

quadratic growth that are obtained from (3.1) by changing its functional form only
for matrices F such that, simultaneously, dist(F, SO(3)) and detF are large. More
in detail, we define, for β > 0,

W β
ε (F ) =

{
W1,ε(F ), if either dist(F, SO(3)) ≤ β or detF ≤ β
W2(F ), otherwise,

(3.4)

where W2 is any function of F such that W2(F ) ≥ Cdist2(F, SO(3)Uε) for some
constant C > 0, whenever detF > β and dist(F, SO(3)) > β. W β

ε has the same set
of energy wells SO(3)Uε of (3.1), for every β > 0. Moreover, W1,ε and W β

ε have the
same linear limit (1.8). Since the threshold β can be made arbitrarily large, (3.4)
modifies energy (3.1) only in a regime in which |F | and detF are very large. It is
well-known from rubber elasticity that, in such extreme regimes, neohookean-type
energies such as (1.2), in which the energy depends linearly on FFT , are unable to
reproduce the experimentally observed behaviour. In fact, expression (1.2) is best
regarded as a conceptual tool to explore the behaviour of nematic elastomers under
small applied forces, i. e., near the energy wells. The correction W2 in (3.4) can
thus be seen as a technical device with no mechanical significance, since it alters
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the values of the energy in a regime of deformations where expression (1.2), and
hence (3.1), is no longer reliable.

Once the legitimacy of the correction (3.4) is accepted, we can compute the small
strain Γ-limit of all energies of this type for every β sufficiently large. They all share
the same Γ-limit, which is independent of β. This is not surprising since, looking
at the proof of Theorem 1.1, it is clear that the important features of the energy
densities involved are their behaviour near the energy wells (the only part which
is involved in the computation of the linear limit: this is given by (1.8), which is
independent of β), and the growth condition (2.4) (which is true for every β large
enough). We thus have the following theorem.

Theorem 3.1. Under the same assumptions of Theorem 1.1, consider the energy
functionals

E β
ε (u) =

1

ε2

∫
Ω

W β
ε (I + ε∇u)−

∫
Ω

lu, (3.5)

with W β
ε defined by (3.1), (3.2) and (3.4) for β > 0. Then, for every β sufficiently

large, {E β
ε } Γ-converges to E , where E is given by (1.5) and (1.6), with respect to

both the strong L2- and the weak H1- topology on H1
h,ΓD

(Ω,R3).

Proof of Theorem 3.1. Let us verify the admissibility of {W β
ε } in the sense of Def-

inition 2.1. It is clear that (i), (iii) and (v) of Definition 2.1 hold. To prove (ii),
consider the non-trivial case detF > 0, and notice that, if dist(F, SO(3)) > β and
detF > β, W β

ε (F ) is non-negative, otherwise

W β
ε (F ) =

µ

2
goptε (FFT ) +

k

2
(detF − 1)2, (3.6)

where goptε is defined as in (4.8) with d = 3. By Proposition 4.2, expression (3.6)
is minimal at the value 0 on SO(3)Uε, where Uε is defined in (2.5). Next, we
prove that (iv) holds for W β

ε , for every β large enough. More precisely, we want to
prove that for every β sufficiently large there exists a constant Cβ > 0 such that

W β
ε (F ) ≥ Cβdist2(f, SO(3)Uε) for every F and every ε > 0 small enough. In view

of the definition of W β
ε , it is enough to prove that there exists β1 > 0 such that,

for every β ≥ β1,

W 1
ε (F ) ≥ Cβdist2(f, SO(3)Uε),

whenever dist(F, SO(3)) ≤ β or detF ≤ β, and ε > 0 is sufficiently small. We
divide the proof of this in the following three steps and restrict attention to the
non-trivial case detF > 0.
Step 1. We prove that there exist α > 0 and C1 > 0 such that, for every ε small
enough and for every F ∈ R3×3,

if dist(F, SO(3)) ≤ α, then W1,ε(F ) ≥ C1dist2(F, SO(3)Uε).

This can be shown as done in step 1 of the proof of Theorem 1.1: we use the
expansion of W̃1,ε,n around Lε,n, where W̃1,ε,n is defined in (4.14) and W1,ε,n(F ) =

W̃1,ε,n(FFT ), and we use Lemma 4.5 to conclude.
Step 2. Let α be the constant found in the first step. We want to show that there
exists C2 > 0 such that, for every ε small enough,

if dist(F, SO(3)) > α, then W1,ε(F ) ≥ C2.



12 V. AGOSTINIANI AND A. DESIMONE

Again, the proof is the same of step 2 of the proof of Theorem 1.1, by using Lemma
4.4 in place of Lemma 4.3.
Step 3. Finally, we prove that there exists β1 large enough such that, for every
β ≥ β1,

if dist(F, SO(3)) > β and detF ≤ β, then W1,ε(F ) ≥ Cβdist2(F, SO(3)Uε),

for every ε small enough.

By using Proposition (4.2) and writing λi = λi(
√
FFT ), we have that

W1,ε(F ) ≥ µ

2
(detF )−

2
3 [λ2

1(1 + ε)−2 + λ2
2(1 + ε) + λ2

3(1 + ε)]− 3

2
µ

≥ µ

2β
2
3

[λ2
1(1 + ε)−2 + λ2

2(1 + ε) + λ2
3(1 + ε)]− 3

2
µ.

Therefore, since (1 + ε)−2, (1 + ε) tend to 1 as ε tends to zero, we have that, for ε
small enough,

W1,ε(F ) ≥ µ

4β
2
3

[λ2
1 + λ2

2 + λ2
3]− 3

2
µ =

µ

4β
2
3

|FFT | − 3

2
µ. (3.7)

Observe that β < |
√
FFT − I| ≤ C|FFT − I|. Thus, if β1 is large enough, on one

hand, from (3.7), we have that for every β ≥ β1

W1,ε(F ) ≥ C̃β |FFT − I|; (3.8)

on the other hand, proceeding as in (2.15)-(2.16), we obtain again that, for every ε
small enough,

1

2
|
√
FFT − Uε,n|2 <

(√
3 + 7

C

β

)
|FFT − I|, (3.9)

for every n ∈ S2. From (3.8) and (3.9) we can conclude that for every β ≥ β1 and
every ε > 0 sufficiently small,

W1,ε(F ) ≥ Cβ |
√
FFT − Uε,n|2,

for a certain Cβ > 0, from which

W1,ε(F ) ≥ Cβdist2(F, SO(3)Uε).

The quadratic growths established by steps 1 and 3, together with the estimate
in step 2, show that we can bound W1,ε with a single function, growing with the
square of the distance, in the case dist(F, SO(3)) ≤ β or detB ≤ β.

Now, let us compute the linear limit

V̂ (E) = lim
ε→0

1

ε2
W β
ε (I + εE), E ∈ Sym(3).

It is clear that

V̂ (E) = lim
ε→0

1

ε2
W1,ε(I + εE)

= min
n∈S2

lim
ε→0

1

ε2
W1,ε,n(I + εE)

= min
n∈S2

lim
ε→0

1

ε2
W̃1,ε,n((I + εE)(I + εE)T ),
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where W̃1,ε,n is defined as in (4.14). Since W̃1,ε,n and its gradient vanish at Lε,n,
we have that

V̂ (E) = min
n∈S2

lim
ε→0

{
1

2ε2
d2W̃1,ε,n(Lε,n)[(I + εE)(I + εE)T − Lε,n]2

+
1

ε2
o(|(I + εE)(I + εE)T − Lε,n|2)

}
,

and then, from (2.6),

V̂ (E) =
1

2
min
n∈S2

d2W̃1,0,n(I)[2E − Ln]2.

From (4.17) and from the fact that Ln = 2Un, it turns out that

V̂ (E) = µ min
n∈S2

|E − Un|2 +

(
k

2
− µ

3

)
tr2E = V (E), E ∈ Sym(3),

where V is given by (1.8). As done in the proof of Theorem 3.1, by using (2.18)
and [3, Theorem 1], we obtain (1.6) and then the thesis. �

We remark again that, even if the Γ-limits of (3.5) are all the same, inde-
pendent of β, this says nothing about the Γ-limit of (3.3). In fact, W1,ε(F ) ≥
C dist

3
2 (F, SO(3)Uε) for |F | large enough (as can be seen using Young’s inequality)

and W1,ε violates the hypothesis of quadratic growth on R3×3 (see the following
remark), while Schmidt’s theory requires quadratic growth. Characterizing the
Γ-limit of (3.3), and establishing whether this coincides with the Γ-limit of (3.5)
requires an extension of Schmidt’s theory. These are interesting questions, and will
be addressed in future work.

Remark 3.2. W1,ε does not have a quadratic growth in dist(F, SO(3)Uε) in the
regime of large determinant and norm. By Proposition 4.2, we have that

W1,ε(F ) =
µ

2
(detF )−

2
3 [λ2

1(1 + ε)−2 + λ2
2(1 + ε) + λ2

3(1 + ε)]− 3

2
µ+

k

2
(detF − 1)2,

where λi = λi(
√
FFT ). More generally, consider an energy of the form

Gε(F ) =
µ

2
(detF )−

2
3 [λ2

1(1 + ε)−2 + λ2
2(1 + ε) + λ2

3(1 + ε)] + g(detF ),

with g any scalar-valued function which goes to +∞ as detF → +∞. We observe
that Gε cannot satisfy

Gε(F ) ≥ Cdist2(F, SO(3)Uε) for every F ∈ R3×3,

for a certain C > 0 and for any ε small enough. Indeed, Gε doesn’t satisfy this
growth condition if F has both norm and determinant arbitrarily large.
In order to prove this, given a fixed arbitrary constant C > 0, we have to show that
for every ε̂ > 0 there exists ε < ε̂ and F ∈ R3×3 such that

Gε(F ) < Cdist2(F, SO(3)Uε).

Indeed, let F be of the form λg(λ)(1 + ε) 0 0

0 (1+ε)−
1
2

λg(λ) 0

0 0 λ(1 + ε)−
1
2


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with ε < ε̂ and λ ∈ R to be chosen later. It turns out that

Gε(F ) =
µ

2
λ−

2
3

[
λ2g2(λ) +

1

λ2g2(λ)
+ λ2

]
+ g(λ),

which behaves as λ2− 2
3 g2(λ) for λ large. At the same time, when ε→ 0,

dist2(F, SO(3)Uε) −→ (λg(λ)− 1)2 +

(
1

λg(λ)
− 1

)2

+ (λ− 1)2.

Thus, for any δ > 0, we can find ε < ε̂ such that

dist2(F, SO(3)Uε) > (λg(λ)− 1)2 +

(
1

λg(λ)
− 1

)2

+ (λ− 1)2 − δ. (3.10)

Now, if we choose λ large enough such that

Gε(F ) ≤ C

[
(λg(λ)− 1)2 +

(
1

λg(λ)
− 1

)2

+ (λ− 1)2 − δ

]
,

we can conclude from (3.10) that

Gε(F ) < Cdist2(F, SO(3)Uε),

as claimed.

4. Appendix: some results from tensor calculus

We use the following notation: Sym(d), Psym(d), Orth(d) and SO(d) denote
the set of matrices in Rd×d which are symmetric, positive definite and symmetric,
orthogonal, rotations, respectively. We label with λ1(M) ≥ λ2(M) ≥ ... ≥ λd(M)
the ordered eigenvalues of a matrix M ∈ Sym(d), and with B · L = tr(BLT ) the
scalar product between two matrices B, L ∈ Rd×d.

The next proposition is a slight variant of [8, Proposition 1].

Proposition 4.1. Let B, L ∈ Rd×d and consider, where defined, the scalar-valued
function

f(B,L) = B · L−1 − d− ln(detB). (4.1)

The following properties hold:

(i) for every L ∈ Psym(d) with detL = 1, we have that

min
B∈Psym(d)

f(B,L) = f(L,L) = 0;

(ii) assume that L is of the form

 Lε,n := (1 + ε)2n⊗ n+ (1 + ε)−
2

(d−1) (I − n⊗ n), (4.2)

for ε > 0 and n belonging to the unitary sphere Sd−1. Then, for every
B ∈ Psym(d), we have that

fεopt(B) := min
n∈Sd−1

f(B,Lε,n) = (1 + ε)−2λ1(B)

+ (1 + ε)
2

d−1 [trB − λ1(B)]− d− ln(detB); (4.3)
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(iii) for every ε > 0,

min
B∈Psym(d)

fεopt(B) = 0

and this minimum is obtained by any matrix in Psym(d) whose largest
eigenvalue is (1 + ε)2 and whose other eigenvalues are all equal to

(1 + ε)−
2

(d−1) .

Proof. To prove (i), let {b1, ..., bd} and {l1, ..., ld} be the orthonormal bases of eigen-
vectors of B, L ∈ Psym(d), respectively. Then

B · L−1 =

(
d∑
i=1

λi(B)bi ⊗ bi

)
·

 d∑
j=1

λj(L
−1)lj ⊗ lj


=

d∑
i,j=1

λi(B)λj(L
−1)(bilj)

2 ≥
d∑
i=1

λi(B)λi(L
−1)(bili)

2.

Observe that the equality holds if and only if bilj = 0 for all i 6= j; thus, in order
to minimize f(·, L), we restrict our attention to the case in which both B and L
are in diagonal form. Then, by using the well-known inequality between arithmetic
and geometric mean and the fact that detL = 1, we have that

f(B,L) =

d∑
i=1

λi(B)λi(L
−1)− d− ln(detB) (4.4)

≥ d(detBL−1)
1
d − d− ln(detB) (4.5)

= dψ(α), (4.6)

where ψ(α) := α − 1 − lnα and α := (detB)
1
d . Since ψ ≥ 0 and ψ(α) = 0

if and only if α = 1, we have, from (4.4)-(4.6), that f(B,L) = 0 if and only
if λi(B)λi(L

−1) = λj(B)λj(L
−1) for every i, j ∈ {1, ..., d} and α = 1. These

conditions are equivalent to

1 = detB detL−1 =

d∏
i=1

λi(B)λi(L
−1) =

[
λi(B)λi(L

−1)
]d
, for every i = 1, ..., d,

which gives B = L.
To prove (ii), let us fix n̂ ∈ Sd−1 and observe that

L−1
ε,n̂ = (1 + ε)

2
d−1

[
I −

(
1− (1 + ε)−

2d
d−1

)
n̂⊗ n̂

]
.

Clearly,

fεopt(B) = min
R∈Orth(d)

f(B,RLε,n̂R
T ),

thus

fεopt(B) = (1 + ε)
2

d−1 min
R∈Orth(d)

B ·
[
I −

(
1− (1 + ε)−

2d
d−1

)
Rn̂⊗Rn̂

]
− d− ln(detB)

= (1 + ε)
2

d−1 min
R∈Orth(d)

[
trB −

(
1− (1 + ε)−

2d
d−1

)
BRn̂ ·Rn̂

]
− d− ln(detB).

From the last equality we deduce that the minimum is attained when R maps n̂
onto the maximum eigenvalue of B and thus the thesis follows.



16 V. AGOSTINIANI AND A. DESIMONE

To prove (iii), observe that

min
B∈Psym(d)

fεopt(B) = min
n∈Sd−1

min
B∈Psym(d)

f(B,Lε,n)

= min
n∈Sd−1

f(Lε,n, Lε,n) = 0,

where the last equality follows from (i). �

We also use the following result, which we state without proof.

Proposition 4.2. Let B, L ∈ Rd×d and consider, where defined, the scalar-valued
function

g(B,L) = (detB)−
1
dB · L−1 − d. (4.7)

The following statements hold:

(i) for every L ∈ Psym(d) with detL = 1, we have that

min
B∈Psym(d)

g(B,L) = g(αL,L) = 0, for every α > 0;

(ii) assume that L = Lε,n, for some ε > 0 and n ∈ Sd−1, where Lε,n is defined
in (4.2). Then, for every B ∈ Psym(d), we have that

gεopt(B) := min
n∈Sd−1

g(B,Lε,n) = (detB)−
1
d

{
(1 + ε)−2λ1(B)

+ (1 + ε)
2

(d−1) [trB − λ1(B)]
}
− d; (4.8)

(iii) for every ε > 0,

min
B∈Psym(d)

gεopt(B) = 0

and this minimum is obtained by any matrix in Psym(d) whose largest
eigenvalue is α(1 + ε)2 and whose other eigenvalues are all equal to

α(1 + ε)−
2

(d−1) , for some α > 0.

We now collect some results from tensor calculus that we used in the Section 2
and 3.

Lemma 4.3. Let B ∈ Psym(d) and suppose that |
√
B − I| > α > 0. There exists

δ ∈ (0, 1) such that, if

detB ∈ [1− δ, 1 + δ],

then, for every ε small enough,

fεopt(B) >
α2

2
> 0,

where fεopt is the function defined in (4.3).

Proof. From the expression of fεopt given in point (ii) of Proposition 4.1, it is clear
that for a parameter η ∈ (0, 1) to be chosen and for every ε small enough, we have
that

fεopt(B) > ηtrB − d− ln(detB). (4.9)

Now, if we write λi = λi(
√
B), the hypothesis |

√
B − I|2 > α2 becomes

d∑
i=1

(λi − 1)2 > α2.
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Expanding the squares and using again the inequality between arithmetic and geo-
metric mean, we obtain

trB =

d∑
i=1

λ2
i > α2 − d+ 2

d∑
i=1

λi

≥ α2 − d+ 2d(detB)
1
2d . (4.10)

From (4.9) and (4.10) it descends that

fεopt(B) > η
[
α2 − d+ 2d(detB)

1
2d

]
− d− ln(detB)

≥ η
[
α2 − d+ 2d(1− δ) 1

2d

]
− d− ln(1 + δ) := K, (4.11)

where in the last inequality we are supposing detB to vary in [1 − δ, 1 + δ], with
δ ∈ (0, 1) a parameter to be chosen. Finally, since the right hand side of (4.11)
tends to α2 as η → 1− and δ → 0+, we can choose η sufficiently near 1 and δ

sufficiently near 0 such that K ≥ α2

2 and the thesis follows. �

Lemma 4.4. Let B ∈ Psym(d) and suppose that |
√
B − I| > α > 0. There exists

δ ∈ (0, 1) such that, if
detB ∈ [1− δ, 1 + δ],

then, for every ε small enough,

gεopt(B) >
α2

2
,

where gεopt is the function defined in (4.8).

Proof. From the expression of gεopt, we have that, for a parameter η ∈ (0, 1) to be
chosen and for any ε small enough,

gεopt(B) > η(detB)−
1
d trB − d. (4.12)

Now, as in the proof of Lemma 4.3, consider (4.10) (where λi = λi(
√
B)), which

descends from the hypothesis. From (4.12) and (4.10) we obtain that

gεopt(B) > η(detB)−
1
d

[
α2 − d+ 2d(detB)

1
2d

]
− d

≥ η

(1 + δ)
1
d

[
α2 − d+ 2d(1− δ) 1

2d

]
− d := K, (4.13)

where in the last inequality we are supposing detB to vary in [1 − δ, 1 + δ], with
δ ∈ (0, 1) a parameter to be chosen. Since the right hand side of (4.13) tends to α2

as η → 1− and δ → 0+, we can choose η sufficiently near 1 and δ sufficiently near

0 such that K ≥ α2

2 and the thesis follows. �

Lemma 4.5. Let µ and k be two positive constants. For ε > 0 and n ∈ S2, let
W̃1,ε,n be the scalar-valued function which, to each B ∈ Psym(3), gives the value

W̃1,ε,n(B) =
µ

2
g(B,Lε,n) +

k

2
(
√

detB − 1)2, (4.14)

where g and Lε,n are defined in (4.7) and (4.2), specialized to dimension 3, respec-
tively. Then, there exists a positive constant C such that

d2W̃1,ε,n(Lε,n)[S]2 ≥ C|S|2

for every n ∈ S2, S ∈ Sym(3), and for every ε small enough.
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Proof. For B ∈ Psym(3), let h1(B) = (detB)−
1
3B and h2(B) = (

√
detB − 1)2.

Then, for every S ∈ Sym(3), we have

dh1(B)[S] = −1

3
(detB)−

1
3 (B−1 · S)B + (detB)−

1
3S,

and

dh2(B)[S] = (detB −
√

detB)B−1 · S.
By some computations, we obtain:

d2h1(B)[S,H] =
1

9
(detB)−

1
3 (B−1 · S)(B−1 ·H)B+

+
1

3
(detB)−

1
3 [(B−1HB−1) · S]B − 1

3
(detB)−

1
3 (B−1 · S)H−

− 1

3
(detB)−

1
3 (B−1 ·H)S,

and

d2h2(B)[S,H] =

(
detB −

√
detB

2

)
(B−1 · S)(B−1 ·H)−

− (detB −
√

detB)(B−1HB−1) · S,

for every S, H ∈ Sym(3). Thus, if L = Lε,n for some ε and n, we have that

d2h1(L)[S]2 =
1

9
(L−1 · S)2L+

1

3
[(L−1SL−1) · S]L− 2

3
(L−1 · S)S, (4.15)

and

d2h2(L)[S]2 =
1

2
(L−1 · S)2, (4.16)

for every S ∈ Sym(3). Since g(B,L) = h1(B) · L−1 − 3, by using (4.15) and (4.16)
we obtain that

d2W̃1,ε,n(L)[S]2 =
µ

2
d2h1(L)[S]2 · L−1 +

k

2
d2h2(L)[S]2

=
µ

2

[
−1

3
(L−1 · S)2 + (L−1SL−1) · S

]
+
k

4
(L−1 · S)2,

and therefore, by the fact that (L−1SL−1) · S = tr(L−1S)2, that

2d2W̃1,ε,n(L)[S]2 =

(
k

2
− µ

3

)
tr2(L−1S) + µtr(L−1S)2. (4.17)

Now, since for every H ∈ Sym(3) one has that tr2H ≤ 3trH2, then

2d2W̃1,ε,n(Lε,n)[S]2 ≥ min

{
µ,

3

2
k

}
tr(L−1

ε,nS)2.

The conclusion follows from the fact that tr(L−1
ε,nS)2 ≥ 1

4 |S|
2 for every ε sufficiently

small. �
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