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The “reverse engineering” paradigm

■ task:

=⇒

■ method:
?

measured
signals

INPUTS

perturbations
external
stimuli

OUTPUTS

■ measured signals: [mRNA], [proteins] [metabolites]
◆ global response: measure the entire “state” vector

■ time series (e.g. cell cycle)
■ single time point (e.g. steady state)

■ perturbations: experimental interventions that alter the state
of interest

http://people.sissa.it/~altafini
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Network inference algorithms

■ a few methods
1. BAYESIAN NETWORK

◆ attains a probabilistic graph through a bayesian learning
◆ (exact) complexity: superexponential

2. ASSOCIATION NETWORKS

◆ learns a graph through a “similarity measure”
◆ polynomial complexity

3. LINEAR ODES MODELS

◆ linear complexity
◆ suffers from underdetermination
◆ model-dependent

■ other methods (not discussed): boolean, automata & formal
languages, PDEs, stochastic master eq. etc....
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Association networks
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Association networks: similarity measures

■ given n genes X1, . . . , Xn

■ given a set of m expression profiles
■ compute a similarity measure between the genes
■ associate through edges in a graph genes with the highest

similarity measure
■ which similarity measure?
1. Pearson correlation of Xi and Xj

R(Xi, Xj) =

∑m
`=1(xi(`)− x̄i)(xj(`)− x̄j)

(n− 1)
√
vivj

∈ [−1, 1]

■ linear
■ variants: Spearman correlation (for the ranks

=⇒non-parametric)
2. Mutual information
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Mutual information

■ Xi = discrete random variable with alphabet A
■ Shannon entropy

H(Xi) = −
∑

φ∈A

p(φ) log p(φ), where p(φ) = Pr(Xi = φ), φ ∈ A

■ joint entropy of Xi, Xj

H(Xi, Xj) = −
∑

φ, ψ∈A

p(φ, ψ) log p(φ, ψ)

■ Mutual information of Xi and Xj

I(Xi;Xj) =
∑

φ, ψ∈A

p(φ, ψ) log
p(φ, ψ)

p(φ)p(ψ)
> 0

■ when the joint probability factorizes, the MI vanishes

p(φ, ψ) = p(φ)p(ψ) =⇒ I(Xi;Xj) = 0.
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Conditioned similarity measures

■ both R(Xi, Xj) and I(Xi;Xj) cannot distinguish between
direct and indirect interactions

■ =⇒graph constructed will have many false positives
■ indirect interactions: ∃ Xk that explains all the correlation

between Xi and Xj?

??
iX X j

Xk

if “yes” then extract the information due to Xk by means of
conditioning
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Partial Pearson correlation

■ 1st order partial Pearson correlation

R(Xi, Xj |Xk) =
R(Xi, Xj)−R(Xi, Xk)R(Xj , Xk)

√

(1−R2(Xi, Xk))(1−R2(Xj , Xk))
∈ [−1, 1]

■ take the minimum w.r.t all Xk

RC1
(Xi, Xj) = min

k 6=i,j
|R(Xi, Xj |Xk)|

■ if RC1
(Xi, Xj) ' 0

=⇒ ∃ k s.t. Xi and Xj are conditionally independent
=⇒ Markov triple Xi ←→ Xk ←→ Xj

=⇒ no edge between Xi and Xj in the graph
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Conditional mutual information

■ conditional entropy of Xj given Xi

H(Xj |Xi) = H(Xi, Xj)−H(Xi)

■ conditional mutual information given Xk

I(Xi;Xj |Xk) = H(Xi |Xk)−H(Xi |Xj , Xk) > 0

■ take the minimum w.r.t all Xk

IC(Xi;Xj) = min
k 6=i,j

I(Xi;Xj |Xk)

■ if IC(Xi;Xj) ' 0
=⇒ ∃ k s.t. Xi and Xj are conditionally independent
=⇒ Markov triple Xi ←→ Xk ←→ Xj

=⇒ no edge between Xi and Xj in the graph
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Association networks v.s. Bayesian netowrks

■ Bayesian network structure inference problem: try to learn
the positions of the edges on a graph
◆ exponential complexity
◆ looks for “true” dependences

■ Association networks: guarantees that some edges are
missing
◆ R(Xi, Xj) ' 0 =⇒Xi and Xj independent
◆ R((Xi, Xj) 6= 0 ; Xi and Xj linked, since R(Xi, Xj |Xk)

could be ' 0
◆ =⇒guarantees only independencies
◆ polynomial complexity R ∈ O(n2), RC1

∈ O(n3)
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Higher order conditioning

■ Even if R(Xi, Xj |Xk) is high, it could be
R(Xi, Xj |Xk, X`) ' 0

??
iX X j

lXXk

■ =⇒Xk and X` “explain” all the correlation between Xi and
Xj

■ if I could condition over n− 2 variables: “true” independent
correlation between Xi and Xj

■ complication: O(nn) untreatable
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Graphical Gaussian modeling

■ theory of “Graphical modeling”
D. Edwards “Introduction to graphical modelling”, Springer, 2000

■ given R
■ Ω(ωij) = R−1 = concentration matrix
■ true partial correlation

RCall
(Xi, Xj) = − ωij√

ωiiωjj

■ RCall
(Xi, Xj) high =⇒Xi and Xj are linked

■ complication: m < n (n. of experiments < n. of genes)
■ =⇒ R is normally not full rank
■ =⇒ generalized inverses (ill-conditioned)
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Algorithms evaluation

■ to evaluate the power of the algorithms: → artificial netowrk
◆ known graph (→ adjacency matrix A)
◆ synthetic data as “gene profiles”

A =
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Algorithms evaluation

■ for each algorithm:
◆ Input: true connectivity matrix Atrue

◆ Output: matrix of edges weight W
◆ =⇒reconstructed adjacency matrix Â = W > wo

■ parameters

TP (true positives) = correctly identified true edges

FP (false positives) = spurious edges

TN (true negatives) = correctly identified zero edges

FN (false negatives) = not recognized true edges

■ edges(Atrue) = TP + FN , edges(Â) = TP + FP

■ zeros(Atrue) = FP + TN , zeros(Â) = FN + TN
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Algorithms evaluation

recall (or sensitivity) true positive rates = TP
TP+FN

=
TP

edges(Atrue)

specificity true negative rates = TN
TN+FP

=
TN

zeros(Atrue)

precision positive predicted values = TP
TP+FP

=
TP

edges(Â)

ROC PvsR

Receiver Operator Characteristic Precision vs Recall
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Regulatory networks in human B cells

K. Basso, A. A. Margolin, G. Stolovitzky, U. Klein, R. Dalla-Favera, A. Califano. Reverse

engineering of regulatory networks in human B cells, Nature Genetics 37, 382 - 390

(2005)

■ goal: network reverse engineering in mammalian cells (here
human B cells) as a key in understanding cell physiology and
disease

■ challenges of mammalian networks:
◆ integrative approaches are not yet fully applicable given

the very scattered nature of the available mammalian cell
information

◆ e.g.: systematic (experimental) gene perturbations are
technically challenging and time-consuming
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Regulatory networks in human B cells

■ algorithm used ARACNe (algorithm for the reconstruction of
accurate cellular networks)
◆ identifies statistically significant gene-gene coregulation

by mutual information
◆ eliminates indirect relationships, in which two genes are

coregulated through one or more intermediaries, by
means of the ’data processing inequality’ (from
transmission theory)

◆ =⇒relationships included in the network with high
probability represent
■ direct regulatory interactions
■ interactions mediated by post-transcriptional modifiers

(undetectable from gene-expression profiles)
■ algorithm complexity: O(n3) =⇒allows to analyze large

scale networks
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ARACNe: the algorithm

A A. Margolin, I Nemenman, K Basso, U Klein, C Wiggins, G Stolovitzky, R Dalla Favera,

A Califano ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in

a Mammalian Cellular Context, BCM Bioinformatics, 2006

■ assumption: static inter-gene statistical dependencies only
■ joint probability distribution

P ({Xi}) =
1

Z
exp



−
∑

i

Φi(Xi)−
∑

i,j

Φi,j(Xi, Xj)−
∑

i,j,k

Φi,j,k(Xi, Xj , Xk)− h.o.t.





=
1

Z
exp [−H({Xi})]

where
◆ n = # of genes,
◆ m = # of samples,
◆ Z = partition function
◆ Φi(Xi) = potentials
◆ H({Xi}) = Hamiltonian
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ARACNe: the algorithm

■ simplest possible model: all genes are idependent
H({Xi}) =

∑

i Φi(Xi)

■ next: pairwise interactions

H({Xi}) =
∑

i

Φi(Xi)−
∑

i,j

Φi,j(Xi, Xj)

→ we take this truncation as our “joint”
■ statistical independent vs non-interacting genes

◆ Xi, Xj statistically independent if
P (Xi, Xj) ' P (Xi)P (Xj)

◆ Xi, Xj non-interacting if Φij(Xi, Xj) ' 0

“statistical independent” =⇒

6⇐=
“non-interacting”

(

P (Xi, Xj) ' P (Xi)P (Xj)
=⇒

6⇐=
Φij(Xi, Xj) ' 0

)

■ when is this happening?
when there are indirect interactions!
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ARACNe: the algorithm

■ testing all potential interactions Φij(Xi, Xj) is
computationally heavy and sample demanding =⇒methods
to reduce the cost

■ step 1: identify candidate interactions by the pairwise mutual
information

Iij = I(Xi, Xj)

◆ put a threshold:

if Iij 6 I0 then Φij = 0

◆ → Relevance network approach
◆ problem: does not detect indirect interactions
◆ i.e., co-regulated genes may have Iij > I0 but still Φij = 0
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ARACNe: the algorithm

■ step 2: use the data processing inequality (DPI)
◆ meaning: if X1 and X3 interact only through a third gene,

then it must be

I(X1, X3) 6 min (I(X1, X2), I(X2, X3))

=⇒Φ13 can be removed (indirect interaction)
◆ checing all triplets above statistical significance Iij , Ijk,
Iki the DPI removes the least significant arc
=⇒ Markov triple X1 ←→ X2 ←→ X3

■ Theorem: if Iij are correct (“asymptotic behavior,” meaning
“many data”) and if the network is a tree =⇒the ARACNe
reconstructs the network exatly
◆ meaning of the DPI: interactions decorrelate rather quickly
◆ caution: 3-node loops are always opened!
◆ algorithm focuses on a network that locally is a tree
◆ long loops may survive the “pruning”
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Data available

■ ∼ 6000 genes
■ 336 gene expression profiles representative of perturbations

of B cell phenotypes:
◆ normal cells: resting pre-germinal center naive B cells, proliferating germinal

center B cells (centroblasts and centrocytes) and post-germinal center memory B

cells

◆ Transformed cells more than ten subtypes of B cell malignancies

◆ Experimentally manipulated cells treated in vitro to induce specific

signal transduction pathways or engineered for the expression of several

transcription factors

■ organism- and tissue-specific perturbations =⇒highly
specific interactions
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Results

■ network of ∼120.000 interactions
■ connectivity graph of the network

has a power-law tail
■ suggests a scale-free network

◆ few hubs (highly connected)
◆ many nodes with low connectivity
◆ 5% of nodes (major hubs) account for ∼ 50.000

connections
◆ hierarchical structure: hubs tend to communicate a lot

among each other
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Zooming in: MYC subnetwork

■ the proto-oncogen MYC is knonw
to be an “important node”

■ the algorithm confirmed
it as a major hub
◆ 56 first neighbors,
◆ 2007 second neighbors

■ 30% of first neighbors
are large hubs

■ hierarchical structure
■ redundacy
■ robustness
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Validation of the MYC subnetwork

■ 29 out of 56 first neighbors were known MYC targets
■ known targets are more significant classified as first

neighbors (51.8%) than second neighbors (19.4%)
■ 37.5% of first neighbors were validated in vivo by chromatin

immunoprecipitation (ChIP)
=⇒binding of MYC to their promoter region was shown in
new candidate MYC target
=⇒validation in vivo of the regulatory pathways
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Discussion & Limitations

■ on the positive side:
◆ resuts are validated experimentally (remarkable)
◆ large part (40%) of the data collected on a decade on

MYC was correctly represented
■ limitations (in the paper):

◆ edges lack directionality (i.e., they do not indicate which
gene is ’upstream’ or ’downstream’);

◆ some direct connections may involve unknown
intermediates, as not all biochemical species participating
in cellular interactions are represented on the microarray

◆ some direct interactions may have been incorrectly
removed by the DPI

■ futher limitations (in my biased opinion)
◆ the # of gene expression profiles they start with is

probably too limited
◆ we do not find the DPI very effective
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Linear ODEs networks
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Parameters fitting

■ how do you fit the parameters in a model in order to match
experimental data?
◆ → linear regression analysis
◆ simplest case: want to fit a straight line to a set of

measured values (x1, y1), (x2, y2), . . . , (xm, ym)
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Parameters fitting

■ model to fit

y = α+ βx+ ε

◆ α, β regression coefficients
◆ y = response, x = regressor
◆ ε ∈ N(0, σ2) random error

■ task: estimate α and β from the measured data =⇒ α̂, β̂
■ solution: least squares

observed y = fitted y + residuals
◆ fitted y: reflects the straight line ŷ = α̂+ β̂x
◆ residuals: random deviation from the straight line

min
α̂, β̂

S =

m∑

i=1

(observed y − fitted y)2

=

m∑

i=1

(yi − α̂− β̂xi)2
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Parameters fitting

■ α̂, β̂ can be computed explicitely from the partial derivatives

∂S
∂α̂

= −2
∑m
i=1(yi − α̂− β̂xi) = 0

∂S

∂β̂
= −2

∑m
i=1 xi(yi − α̂− β̂xi) = 0

}

=⇒
{

β̂ =
P

m

i=1
xi(yi−ȳ)

P

m

i=1
xi(xi−x̄)

α̂ = ȳ − β̂x̄

where x̄ = 1
m

∑m
i=1 xi and ȳ = 1

m

∑m
i=1 yi (averages)

■ meaning of the fitted
model ŷ = α̂+ β̂x:
line passing through the
centroid (x̄, ȳ) and rotated
until the squared deviations
is least.
◆ in Matlab:

■ lsqr function
■ regression function

(Statistics toolbox)
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Least squares fitting of nonlinear models

■ this to fit a straight line: How about fitting a more complicated
curve?

■ linear regression: linear in the coefficients α, β , etc., not in
the model structure
◆ example: quadratic model

y = α+ β1x+ β2x
2 + ε

is solvable directly by means of linear regression

■ how about nonlinear regression?
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Least squares fitting of nonlinear models

■ example: Maltus law x(t) = xoe
−γt

◆ recall that this is the integral of the linear ODE dx
dt

= −γx
and describes for exampe the degradation of a substance

◆ least square fitting: assume I measure a few time values
x(t1) = x1, . . . , x(tm) = xm

◆ how do I find γ?
◆ take the logarithm on both sides of x(t) = xoe

−γt:

ln x(t)
︸ ︷︷ ︸

y(t)

= ln xo
︸ ︷︷ ︸

α

−γt

=⇒ linear regression
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■ alternatively: measure
x(t) and dx

dt
simultaneously

and fit directly on the ODE
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Least squares fitting of nonlinear models

■ how about a Hill function? h+(x, θ, n) = xn

θn+xn

◆ consider dx
dt

= kh+(x, θ, n)

◆ assume x and dx
dt

are measured
◆ k = value at saturation =⇒ known from dx

dt
as t→∞

◆ to find θ and n
■ manipulating: ẋ = kxn

θn+xn =⇒ xn = ẋ θn

k−ẋ

■ take the logarithm

ln(xn) = ln
(

ẋ
k−ẋ

θn
)

= ln
(

ẋ
k−ẋ

)

+ ln(θn)

■ i.e.,

n
︸︷︷︸

β

ln(x)
︸ ︷︷ ︸

x

= nlnθ
︸︷︷︸

α

+ ln

(
ẋ

k − ẋ

)

︸ ︷︷ ︸

y

=⇒ linear regression applies
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Multiple linear regression

■ when observation depends on 2 or more independent
variables

y = βo + β1x1 + β2x2 + . . .+ βnxn

→ multiple linear regression model

y

x 1

x 2

y = α + β1
x

1
+β

2
x

2

■ procedure is the same:
sample regression equations

yi = βo+β1x
i
1+β2x

i
2+. . .+βnx

i
n i = 1, . . . ,m

rewritten in matrix form y = Xβ + ε

where

y =







y1

...
ym






, X =









1 x1
1 . . . x1

n

1 x2
1 . . . x2

n

...
...

...
1 xm1 . . . xmn









, β =









βo

β1

...
βm









, ε =









ε1

ε2
...
εm
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Multiple linear regression

■ functional to be minimized

S(β) =

k∑

i=1

ε2 = ‖ε‖2 = ‖y −Xβ‖2 (i.e., = (y −Xβ)T (y −Xβ))

■ the least squares problem is solved by β̂ such that

∂S(β)

∂β

∣
∣
∣
∣
β̂

= −2XTy + 2XTXβ̂ = 0

i.e., XTXβ̂ = XTy =⇒ β̂ =
(
XTX

)−1
XTy

■ fitted model

ŷ = Xβ̂ = X
(
XTX

)−1
XTy =: Hy

■ residuals
r = y − ŷ = (I−H)y

● Reverse enginnering

Association networks

Linear ODEs networks

● Nonlinear Fitting

● Multiple linear regression

● Nonlinear Multiple regression

● Inferring a network of ODEs

● Linearization

● Information extrapolated from A

● Inferring linear ODEs

● Continuos vs Discrete time

● Inferring a linear model via SVD

● steady state inference

● model-based drug design

Claudio Altafini, February 14, 2007 – p. 36/60

Multiple linear regression

■ when is
(
XTX

)−1
well-defined?

X =









1 x1
1 . . . x1

n

1 x2
1 . . . x2

n

...
...

...
1 xm1 . . . xmn









,
X m× (n+ 1) matrix

XTX (n+ 1)× (n+ 1) matrix

■ if rank(XTX) = n+ 1 then
(
XTX

)−1
exists

■ meaning:
1. m > n+ 1

2. the regressors of X (i.e., the columns of X) must be
linearly independent

■ practical meaning
1. # of experiments must be > # of variables
2. data must be collected in different experimental situations
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Nonlinear Multiple regression

■ how about nonlinear models?

dx

dt
= f(x, β), f(x, β) =







f1(x, β)
...

fn(x, β)







■ if f(x, β) is “diagonal”

f(x, β) =







f1(x1, β)
...

fn(xn, β)







then the ODEs are not coupled
=⇒ each nonlinear problem can be treated separately

■ if not, then there is no general rule to deal with it. A common
approach it to linearize around an equilibrium point.
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Inferring a network of ODEs

■ network of n genes x1, x2, . . . , xn
■ vector ODEs in general form

dx

dt
= f(x), f(x) =







f1(x)
...

fn(x)







fi(x) = description of how the expression levels of genes
x1, . . . , xn are affecting the transcription rate of xi

■ typically
◆ fi(x) > 0 (activation) for some combination of x1, . . . , xn
◆ fi(x) < 0 (repression) for some other combination
◆ for (x1, . . . , xn) such that fi(x) = 0 for all i = 1, . . . , n then

we have a steady state (rate of all xi stays constant)
■ Inferring the network means finding the functions fi
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Inferring a network of ODEs

■ simplest form: linear model dxi

dt
= fi(x) = ai1x1 + . . .+ ainxn

dx

dt
= Ax, A =









a11 a12 . . . a1n

a21 a22 a2n

...
. . .

...
an1 . . . ann









◆ aij measure of the interaction strength of gene j over
gene i

◆ aij = 0 =⇒gene j is not affecting the transcription rate of
gene i

■ finding A means finding the connectivity matrix of the
network (i.e., its topology)

■ in addition, the aij also quantify the network of connections
■ typically only a few aij are 6= 0 on each row

=⇒low connectivity (the matrix A is sparse)
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Inferring a network of ODEs

■ example

A =










a11 a13

a21 a22

a31 a33

a43 a45

a53 a54 a55










x

x

x

x

x

1

2

3

4

a22

a21

a

a

a

a

a
a

31 3 3

31

5

5 5

54a

5 4

53a

4 3

11a

■ directed graph =⇒this is causal information

dx
dt

5
a

x

x

a
55
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a
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Inferring a network of ODEs

■ the structure of A also allows do identify independent blocks

A =










a11

a21 a22

a33

a43 a45

a53 a54 a55










x

x

x

x

x

1

2

3

4

a22

a21

a

a

a
a

3 3

5

5 5

54a

5 4

53a

4 3
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■ as well as “lethal” edges

A =










a11 a13

a21 a22

a31 a33

a43 a45

a53 a54 a55










x

x

x

x

x
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Linearization

■ in reality the function f will typically be nonlinear
■ reconstructing f nonlinear: the # of parameters may be high

(ex: each Hill function has 3 parameters) typically then one
considers the linear model obtained by means of
linearization in a neighbohood of a stable steady state x∗

(i.e. such that f(x∗) = 0)

A =
∂f

∂x

∣
∣
∣
∣
x=x∗

=







∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

...
∂fn

∂x1

. . . ∂fn

∂xn







∣
∣
∣
∣
∣
∣
∣
∣
x=x∗

= Jacobian

i.e., aij =
∂fi(x)

∂xj

∣
∣
∣
∣
x=x∗
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Linearization

■ calling x = x∗ + δx (δx small)
=⇒Taylor expansion around x∗

dx

dt
= f(x∗)

︸ ︷︷ ︸

=0

+
∂f

∂x

∣
∣
∣
∣
x=x∗

x

︸ ︷︷ ︸

Ax

+ o(δx)
︸ ︷︷ ︸

≈0

= Ax

■ linearized system = plane tangent to the full nonlinear model
computed at x∗
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Information extrapolated from A

■ compute the eigenvalues of A

eigenvalues of A = real or complex numbers λ such
that Av = λv for some vector v (called eigenvector):
they give the characteristic modes of the ODE dx

dt
= Ax

■ A is stable ⇐⇒ Re[λ] < 0 (Re[λ] 6 0 and multiplicity(λ)6 1)
◆ =⇒all modes are decaying
◆ =⇒ x(t)

t→∞−−−→ x∗ stable stationary steady state
◆ =⇒if I disturb the initial condition: x(t) + δx(t)

t→∞−−−→ x∗

■ if Re[λ] > 0 for some eigenvalue λ =⇒A is unstable and x(t)
may grow unbounded

■ λ complex number =⇒x(t) has oscillations
■ aii = self-regulating coefficient:

includes degradation rate A = Ã−







γ1

. . .

γn









● Reverse enginnering

Association networks

Linear ODEs networks

● Nonlinear Fitting

● Multiple linear regression

● Nonlinear Multiple regression

● Inferring a network of ODEs

● Linearization

● Information extrapolated from A

● Inferring linear ODEs

● Continuos vs Discrete time

● Inferring a linear model via SVD

● steady state inference

● model-based drug design

Claudio Altafini, February 14, 2007 – p. 45/60

Inferring linear ODEs

■ how to compute A?
■ If we

1. can perturb each gene individually
2. measure simultaneously

◆ gene expression level x
◆ amount of the perturbation bi

◆ rate dx
dt

■ =⇒finding A becomes a multilinear regression problem
■ example: choosing a linear additive model for the

perturbation
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Inferring linear ODEs

Ẋ = AX +B

■ =⇒finding A becomes a multilinear regression problem

A = argmin‖AX +B − Ẋ‖2
(

i.e., for each row a of A: âT =
(
XXT

)−1
X(ẋTrow − bTrow)

)

■ properties
◆ perturbations need not form a diagonal matrix B: all is

needed is a matrix X such that rank(X) > n i.e., at least n
arrays of “independent” measurements

◆ drawback: A is very sensitive to noise in X and B
◆ drawback: need to measure the rates dx

dt
→ this is

normally done by finite difference schemes +
interpolation/smoothing provided you have a time series of
data
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Continuos vs Discrete time

time2 ......3t t t

■ model to fit
ẋ = Ax

■ measures (constant sampling time T )

x(T ), x(2T ), x(3T ), . . . , x(mT )

■ fitting a discrete dynamical model:
◆ since measurements are in discrete time, one can choose

to infer a discrete-time state update matrix F :

x((k + 1)T ) = Fx(kT ), k = 1, 2, . . .

◆ multilinear regression procedure

[x(nT ) x((n− 1)T ) . . . x(2T )]
︸ ︷︷ ︸

measured

= F [x((n− 1)T ) x((n− 2)T ) . . . x(T )]
︸ ︷︷ ︸

measured

◆ inferring F needs no observation of the dx
dt
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Continuos vs Discrete time

■ what is the relation between A and F??

F = eAT

◆ if A sparse ; F is sparse
◆ =⇒if A = connectivity matrix, F = eAT is not a

connectivity matrix!
◆ not obvious (neither easy) to reconstruct A given F (i.e.,

to find the network from F )
■ example

A =






1 0 3

0 −1 −2

1 −2 −3






x

x

x1

2

3

−1

1

−3

−2

3

1

−2

F = eAT =






2.7 1 20.1

1 0.4 0.1

2.7 0.1 0.1
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Continuos vs Discrete time

■ how to get A out of F?

1. exact caculation: matrix logarithm A =
ln(F )

T
◆ complication: m < n

=⇒F is not full-rank =⇒cannot take log
2. approximation 1.: Euler discretization

dx

dt
' x((k + 1)T )− x(kT )

T
=⇒ x((k + 1)T ) = (I + TA)x(kT )

= Fx(kT )

A =
F − I
T

3. approximation 2.: bilinear approximation

A =
2F − I
TF + I

■ both approximations are inadequate when T is not very small
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Inferring a linear model via SVD

Yeung MKS, Tegner J and Collins JJ. Reverse engineering gene networks

using singular value decomposition and robust regression. PNAS 99:

6163-6168 (2002)

■ most times: # of experiments� # of variables: m� n

=⇒reverse engineering problem is underdetermined
■ how to recover A?

◆ infinitely many possible solutions
◆ =⇒many network architectures fit the data

■ one possible solution: SVD Singular Value Decomposition

Ẋ
︸︷︷︸

n×m

= A X
︸︷︷︸

n×m

+ B
︸︷︷︸

n×m
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Inferring a linear model via SVD

■ use SVD to decompose X:

X = UΛV T
U n×m orthogonal UUT = In

V m×m orthogonal V V T = Im

Λ =












0

. . .

0

λ1

. . .

λ`












where ` = rank(X)
λ1, . . . , λ` singular values:
λj =

√
µj , µj = eig(XXT )

■ one particular solution is given by
the Moore-Penrose pseudoinverse

Ao = (Ẋ −B)UΛ†V T , Λ† =












1

λ1

. . .
1
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Inferring a linear model via SVD

■ SVD solution is still the least squares solution:

Ao = argmin‖AX +B − Ẋ‖2
■ general solution: affine space

A = Ao + CV T C =







c11 . . . c1` 0 . . . 0
...

...
cn1 . . . cn` 0 . . . 0







◆ cij = all degrees of freedom that can be used to optimize
some extra criterion: e.g. the sparsity of A

◆ =⇒maximize # of zeros in A
◆ impose A = 0 i.e., Ao = −CV T
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Inferring a linear model via SVD

■ want to satisfy as many constraints as possible: solution is
different from least squares solution

■ robust regression problem: L1 problem exact fit leaving as
few outlier as possible

Â = argmin‖AX +B − Ẋ‖1

Yeung MKS, Tegner J and Collins JJ. . PNAS 99: 6163 (2002)
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Linear model via steady state measurements

Gardner TS, di Bernardo D, Lorenz D and Collins JJ. Inferring genetic

networks and identifying compound mode of action via expression profiling.

Science 301: 102-105 (2003)
■ problem with previous method: still requires to measure the

rates dx
dt

■ often times there is no time series available: only apply
perturbations and wait for the system to resettle at a new
steady state =⇒ dx

dt
= 0

■ if x∗ is stable, the new steady state is nearby =⇒linear
methods still make sense

■ after a perturbation:

AX +B = 0 =⇒ AX = −B

=⇒still the same multilinear regression problem
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Linear model via steady state measurements

■ SOS pathways in E. coli:
regulates cell survival and
repair after DNA damage

■ network
◆ red: primary pathway

(well studied)
◆ 9 genes
◆ each perturbed singularly
◆ perturbations: overexpression

of one single gene

A
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Linear model via steady state measurements

■ 9 genes, 9 perturbations =⇒enough to compute

A = argmin‖AX +B‖2
although result will be very noisy

■ in general however m� n =⇒underdetermined problem
■ instead of using SVD, assume degree of connectivity is
k ' m (meaning: each row of A has at most k nonzero
elements)
=⇒conditioning is better in presence of a limited number of
experiments

■ solution is still Moore-Penrose pseudoinverse
■ drawbacks of the method

◆ to find the “best” row of k paramters aij is a combinatorial
problem: n!

k!(n−1)! (“n choose k”)
=⇒computational explosion
=⇒heuristic solutions
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Linear model via steady state measurements

■ previously mapped regulatory structure

■ identified network

coverage

false positives
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What lies ahead? Model-based drug design

di Bernardo D, Thompson MJ, Gardner TS, Chobot SE, Eastwood EL,

Wojtovich AP, Elliott SJ, Schaus SE, Collins JJ. Chemogenomic profiling on a

genome-wide scale using reverse-engineered gene networks Nat Biotechnol.

2005 ,23(3):377-83
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What lies ahead? Model-based drug design

■ assume to have identified the matrix A in

ẋ = Ax

■ assume you want to test the effect of an external stimulus u
(e.g. drug ) on the system

■ task: compute the mode of action of u:
◆ applying u to the linear system

ẋ = Ax+ bu

◆ b = n× 1 vector of coefficients = pathways through which
the drug is acting→ directly regulated genes

◆ all indirect regulations must be obtained from A

=⇒fundamental prerequisite:
have a sound knowledge of A

◆ finding b is easier than finding A
(similar procedure)

dx
dt

5
a

x

x

a
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What lies ahead? Model-based drug design

■ task: compute time-depdendent u(t) such that

x(t)→ xdesired

■ xdesired = particular array of expression levels of the genes of
the system that I would like to achieve

■ model can tell you when this is possible / not possible for a
certain u or a linear combination of us:

ẋ = Ax+
[

b1 . . . bp

]







u1

...
up







→ linear (or nonlinear) control theory?
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