Inferring regulatory networks from microarray data

Lecture 3

Claudio Altafini
SISSA
http://people.sissa.it/~altafini

The "reverse engineering" paradigm

- task:

■ method:

- measured signals: [mRNA], [proteins] [metabolites] - global response: measure the entire "state" vector
- time series (e.g. cell cycle)
- single time point (e.g. steady state)
- perturbations: experimental interventions that alter the state of interest

Network inference algorithms

- Reverse enginnering

Association networks

Linear ODEs networks

- a few methods

1. Bayesian network

- attains a probabilistic graph through a bayesian learning
- (exact) complexity: superexponential

2. Association networks

- learns a graph through a "similarity measure"
- polynomial complexity

3. linear odes models

- linear complexity
- suffers from underdetermination
- model-dependent
- other methods (not discussed): boolean, automata \& formal languages, PDEs, stochastic master eq. etc....

Association networks

Association networks: similarity measures

- Reverse enginnering

Association networks

- Pearson Correlation
- Mutual information
- Partial Pearson correlation - Conditional mutual information - Higher order conditioning
- Algorithms evaluation
- -Networks for human B cells
- ARACNe: the algorithm
- Data available
- Results
- MYC subnetwork
- Discussion \& Limitations

Linear ODEs networks

- given n genes X_{1}, \ldots, X_{n}
- given a set of m expression profiles
- compute a similarity measure between the genes
- associate through edges in a graph genes with the highest similarity measure

■ which similarity measure?

1. Pearson correlation of X_{i} and X_{j}

$$
R\left(X_{i}, X_{j}\right)=\frac{\sum_{\ell=1}^{m}\left(x_{i}(\ell)-\bar{x}_{i}\right)\left(x_{j}(\ell)-\bar{x}_{j}\right)}{(n-1) \sqrt{v_{i} v_{j}}} \in[-1,1]
$$

■ linear
■ variants: Spearman correlation (for the ranks \Longrightarrow non-parametric)
2. Mutual information

Mutual information

- $X_{i}=$ discrete random variable with alphabet \mathcal{A}
- Shannon entropy
$H\left(X_{i}\right)=-\sum_{\phi \in \mathcal{A}} p(\phi) \log p(\phi), \quad$ where $p(\phi)=\operatorname{Pr}\left(X_{i}=\phi\right), \quad \phi \in \mathcal{A}$
■ joint entropy of X_{i}, X_{j}

$$
H\left(X_{i}, X_{j}\right)=-\sum_{\phi, \psi \in \mathcal{A}} p(\phi, \psi) \log p(\phi, \psi)
$$

- Mutual information of X_{i} and X_{j}

$$
I\left(X_{i} ; X_{j}\right)=\sum_{\phi, \psi \in \mathcal{A}} p(\phi, \psi) \log \frac{p(\phi, \psi)}{p(\phi) p(\psi)} \geqslant 0
$$

- when the joint probability factorizes, the MI vanishes

$$
p(\phi, \psi)=p(\phi) p(\psi) \quad \Longrightarrow \quad I\left(X_{i} ; X_{j}\right)=0 .
$$

Conditioned similarity measures

- Reverse enginnering

Association networks

 - Pearson Correlation - Mutual information- Partial Pearson correlation - Conditional mutual information - Higher order conditioning
- Algorithms evaluation
- -Networks for human B cells - ARACNe: the algorithm - Data available - Results
- MYC subnetwork
- Discussion \& Limitations

Linear ODEs networks

- both $R\left(X_{i}, X_{j}\right)$ and $I\left(X_{i} ; X_{j}\right)$ cannot distinguish between direct and indirect interactions
- \Longrightarrow graph constructed will have many false positives
- indirect interactions: $\exists X_{k}$ that explains all the correlation between X_{i} and X_{j} ?

if "yes" then extract the information due to X_{k} by means of conditioning

- Reverse enginnering

Association networks

- Pearson Correlation
- Mutual information
- Partial Pearson correlation
- Conditional mutual information
- Higher order conditioning
- Algorithms evaluation
- -Networks for human b cells
- ARACNe: the algorithm
- Data available
- Results
- MYC subnetwork
- Discussion \& Limitations

Linear ODEs networks

Partial Pearson correlation

- 1st order partial Pearson correlation

$$
R\left(X_{i}, X_{j} \mid X_{k}\right)=\frac{R\left(X_{i}, X_{j}\right)-R\left(X_{i}, X_{k}\right) R\left(X_{j}, X_{k}\right)}{\sqrt{\left(1-R^{2}\left(X_{i}, X_{k}\right)\right)\left(1-R^{2}\left(X_{j}, X_{k}\right)\right)}} \in[-1,1]
$$

■ take the minimum w.r.t all X_{k}

$$
R_{C_{1}}\left(X_{i}, X_{j}\right)=\min _{k \neq i, j}\left|R\left(X_{i}, X_{j} \mid X_{k}\right)\right|
$$

- if $R_{C_{1}}\left(X_{i}, X_{j}\right) \simeq 0$
$\Longrightarrow \exists k$ s.t. X_{i} and X_{j} are conditionally independent
\Longrightarrow Markov triple $X_{i} \longleftrightarrow X_{k} \longleftrightarrow X_{j}$
\Longrightarrow no edge between X_{i} and X_{j} in the graph

Conditional mutual information

- Reverse enginnering

Association networks

- Pearson Correlation
- Mutual information
- Partial Pearson correlation
- Conditional mutual informatior
- Higher order conditioning
- Algorithms evaluation
- -Networks for human B cells
- ARACNe: the algorithm
- Data available
- Results
- MYC subnetwork
- Discussion \& Limitations

Linear ODEs networks

- if $I_{C}\left(X_{i} ; X_{j}\right) \simeq 0$
$\Longrightarrow \exists k$ s.t. X_{i} and X_{j} are conditionally independent
\Longrightarrow Markov triple $X_{i} \longleftrightarrow X_{k} \longleftrightarrow X_{j}$
\Longrightarrow no edge between X_{i} and X_{j} in the graph

- Reverse enginnering

Association networks

- Pearson Correlation
- Mutual information
- Partial Pearson correlation - Conditional mutual informatior - Higher order conditioning - Algorithms evaluation

Association networks v.s. Bayesian netowrks

- Bayesian network structure inference problem: try to learn the positions of the edges on a graph
- exponential complexity
- looks for "true" dependences
- Association networks: guarantees that some edges are missing
- $R\left(X_{i}, X_{j}\right) \simeq 0 \Longrightarrow X_{i}$ and X_{j} independent
- $R\left(\left(X_{i}, X_{j}\right) \neq 0 \nRightarrow X_{i}\right.$ and X_{j} linked, since $R\left(X_{i}, X_{j} \mid X_{k}\right)$ could be $\simeq 0$
- \Longrightarrow guarantees only independencies
- polynomial complexity $R \in O\left(n^{2}\right), R_{C_{1}} \in O\left(n^{3}\right)$

Higher order conditioning

- Reverse enginnering

Association networks

- Pearson Correlation - Mutual information - Partial Pearson correlation - Conditional mutual information - Higher order conditioning - Algorithms evaluation
- -Networks for human B cells
- ARACNe: the algorithm
- Data available
- Results
- MYC subnetwork
- Discussion \& Limitations

Linear ODEs networks
Even if $R\left(X_{i}, X_{j} \mid X_{k}\right)$ is high, it could be $R\left(X_{i}, X_{j} \mid X_{k}, X_{\ell}\right) \simeq 0$

■ $\Longrightarrow X_{k}$ and X_{ℓ} "explain" all the correlation between X_{i} and X_{j}
■ if I could condition over $n-2$ variables: "true" independent correlation between X_{i} and X_{j}

- complication: $O\left(n^{n}\right)$ untreatable

Graphical Gaussian modeling

- Reverse enginnering

Association networks

- Pearson Correlation
- Mutual information
- Partial Pearson correlation
- Conditional mutual information - Higher order conditioning
- Algorithms evaluation
- -Networks for human B cells
- ARACNe: the algorithm
- Data available
- Results
- MYC subnetwork
- Discussion \& Limitations

Linear ODEs networks

■ theory of "Graphical modeling"
D. Edwards "Introduction to graphical modelling", Springer, 2000

- given R
- $\Omega\left(\omega_{i j}\right)=R^{-1}=$ concentration matrix
- true partial correlation

$$
R_{C_{\text {all }}}\left(X_{i}, X_{j}\right)=-\frac{\omega_{i j}}{\sqrt{\omega_{i i} \omega_{j j}}}
$$

- $R_{C_{\text {all }}}\left(X_{i}, X_{j}\right)$ high $\Longrightarrow X_{i}$ and X_{j} are linked
- complication: $m<n$ (n . of experiments $<\mathrm{n}$. of genes)
$\square \Longrightarrow \quad R$ is normally not full rank
$■ \quad$ generalized inverses (ill-conditioned)

Algorithms evaluation

- Reverse enginnering

Association networks

- Pearson Correlation
- Mutual information
- Partial Pearson correlation
- Conditional mutual information
- Higher order conditioning
$A=\left[\begin{array}{lllll}1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1\end{array}\right]$

$$
\frac{d x_{i}}{d t}=V_{i} \prod_{j=j_{1}}^{j_{a}} \frac{x_{j}^{\nu}}{x_{j}^{\nu}+\theta_{i j}^{\nu}} \prod_{k=k_{1}}^{k_{b}} \frac{\theta_{i k}^{\nu}}{x_{k}^{\nu}+\theta_{i k}^{\nu}}-\lambda_{i} x_{i}
$$

- Reverse enginnering

Association networks

- Pearson Correlation - Mutual information
- Partial Pearson correlation
- Conditional mutual information
- Higher order conditioning
- Algorithms evaluation
- -Networks for human B Cells
- ARACNe: the algorithm
- Data available
- Results
- MYC subnetwork
- Discussion \& Limitations

Linear ODEs networks

Algorithms evaluation

- for each algorithm:
- Input: true connectivity matrix $A_{\text {true }}$
- Output: matrix of edges weight W
- \Longrightarrow reconstructed adjacency matrix $\hat{A}=W>w_{o}$
- parameters

TP (true positives)	$=$ correctly identifi ed true edges
FP (false positives)	$=$ spurious edges
TN (true negatives)	$=$ correctly identifi ed zero edges
FN (false negatives)	$=$ not recognized true edges

$$
\begin{array}{lc}
\quad \operatorname{edges}\left(A_{\text {true }}\right)=T P+F N, & \operatorname{edges}(\hat{A})=T P+F P \\
\operatorname{zeros}\left(A_{\text {true }}\right)=F P+T N, & \operatorname{zeros}(\hat{A})=F N+T N
\end{array}
$$

- Reverse enginnering

Association networks

- Pearson Correlation
- Mutual information
- Partial Pearson correlation
- Conditional mutual information
- Higher order conditioning
- Algorithms evaluation
- -Networks for human B cells
- ARACNe: the algorithm
- Data available
- Results
- MYC subnetwork
- Discussion \& Limitations

Linear ODEs networks

- Reverse enginnering

Association networks

- Pearson Correlation
- Mutual information
- Partial Pearson correlation
- Conditional mutual information
- Higher order conditioning
- Algorithms evaluation
- -Networks for human B cells
- ARACNe: the algorithm
- Data available
- Results
- MYC subnetwork
- Discussion \& Limitations

Linear ODEs networks

Algorithms evaluation

recall (or sensitivity)	true positive rates	$=\frac{T P}{T P+F N}=\frac{T P}{\operatorname{edges}\left(A_{\text {true }}\right)}$
specifi city	true negative rates	$=\frac{T N}{T N+F P}=\frac{T N}{\operatorname{zeros}\left(A_{\text {true }}\right)}$
precision	positive predicted values	$=\frac{T P}{T P+F P}=\frac{T P}{\operatorname{edges}(\hat{A})}$

ROC
Receiver Operator Characteristic

PvsR
Precision vs Recall

Regulatory networks in human B cells

K. Basso, A. A. Margolin, G. Stolovitzky, U. Klein, R. Dalla-Favera, A. Califano. Reverse engineering of regulatory networks in human B cells, Nature Genetics 37, 382-390 (2005)

- goal: network reverse engineering in mammalian cells (here human B cells) as a key in understanding cell physiology and disease
- challenges of mammalian networks:
- integrative approaches are not yet fully applicable given the very scattered nature of the available mammalian cell information
- e.g.: systematic (experimental) gene perturbations are technically challenging and time-consuming

Regulatory networks in human B cells

- Reverse enginnering

Association networks

- Pearson Correlation - Mutual information - Partial Pearson correlation - Conditional mutual information - Higher order conditioning
- Algorithms evaluation
- algorithm used ARACNe (algorithm for the reconstruction of accurate cellular networks)
- identifies statistically significant gene-gene coregulation by mutual information
- eliminates indirect relationships, in which two genes are coregulated through one or more intermediaries, by means of the 'data processing inequality' (from transmission theory)
- \Longrightarrow relationships included in the network with high probability represent
- direct regulatory interactions
- interactions mediated by post-transcriptional modifiers (undetectable from gene-expression profiles)
- algorithm complexity: $O\left(n^{3}\right) \Longrightarrow$ allows to analyze large scale networks

- Reverse enginnering

Association networks

- Pearson Correlation
- Mutual information
- Partial Pearson correlation
- Conditional mutual information - Higher order conditioning
- Algorithms evaluation
- -Networks for human B cells

- ARACNe: the algorithm

- Data available
- Results
- MYC subnetwork
- Discussion \& Limitations

Linear ODEs networks

ARACNe: the algorithm

A A. Margolin, I Nemenman, K Basso, U Klein, C Wiggins, G Stolovitzky, R Dalla Favera, A Califano ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context, BCM Bioinformatics, 2006

- assumption: static inter-gene statistical dependencies only
- joint probability distribution

$$
\begin{aligned}
P\left(\left\{X_{i}\right\}\right) & =\frac{1}{Z} \exp \left[-\sum_{i} \Phi_{i}\left(X_{i}\right)-\sum_{i, j} \Phi_{i, j}\left(X_{i}, X_{j}\right)-\sum_{i, j, k} \Phi_{i, j, k}\left(X_{i}, X_{j}, X_{k}\right)-i\right. \\
& =\frac{1}{Z} \exp \left[-\mathcal{H}\left(\left\{X_{i}\right\}\right)\right]
\end{aligned}
$$

where

- $n=$ \# of genes,
- m = \# of samples,
- $Z=$ partition function
- $\Phi_{i}\left(X_{i}\right)=$ potentials
- $\mathcal{H}\left(\left\{X_{i}\right\}\right)=$ Hamiltonian

ARACNe: the algorithm

simplest possible model: all genes are idependent

$$
\mathcal{H}\left(\left\{X_{i}\right\}\right)=\sum_{i} \Phi_{i}\left(X_{i}\right)
$$

- next: pairwise interactions

$$
\mathcal{H}\left(\left\{X_{i}\right\}\right)=\sum_{i} \Phi_{i}\left(X_{i}\right)-\sum_{i, j} \Phi_{i, j}\left(X_{i}, X_{j}\right)
$$

\rightarrow we take this truncation as our "joint"

- statistical independent vs non-interacting genes
- X_{i}, X_{j} statistically independent if
$P\left(X_{i}, X_{j}\right) \simeq P\left(X_{i}\right) P\left(X_{j}\right)$
- X_{i}, X_{j} non-interacting if $\Phi_{i j}\left(X_{i}, X_{j}\right) \simeq 0$
"statistical independent" $\underset{\nLeftarrow}{\nRightarrow}$ "non-interacting"

$$
\left(P\left(X_{i}, X_{j}\right) \simeq P\left(X_{i}\right) P\left(X_{j}\right) \underset{\nLeftarrow}{\nRightarrow} \Phi_{i j}\left(X_{i}, X_{j}\right) \simeq 0\right)
$$

- when is this happening?
when there are indirect interactions!

ARACNe: the algorithm

- Reverse enginnering

Association networks

- Pearson Correlation
- Mutual information
- Partial Pearson correlation - Conditional mutual information - Higher order conditioning
- Algorithms evaluation
- -Networks for human b cells

- ARACNe: the algorithm

- Data available
- Results
- MYC subnetwork
- Discussion \& Limitations

Linear ODEs networks

- testing all potential interactions $\Phi_{i j}\left(X_{i}, X_{j}\right)$ is computationally heavy and sample demanding \Longrightarrow methods to reduce the cost
- step 1: identify candidate interactions by the pairwise mutual information

$$
I_{i j}=I\left(X_{i}, X_{j}\right)
$$

- put a threshold:

$$
\text { if } I_{i j} \leqslant I_{0} \text { then } \Phi_{i j}=0
$$

- \rightarrow Relevance network approach
- problem: does not detect indirect interactions
- i.e., co-regulated genes may have $I_{i j}>I_{0}$ but still $\Phi_{i j}=0$

ARACNe: the algorithm

- Reverse enginnering

Association networks

- Pearson Correlation
- Mutual information
- Partial Pearson correlation
- Conditional mutual information - Higher order conditioning
- Algorithms evaluation
- -Networks for human B cells - ARACNe: the algorithm
- Data available
- Results
- MYC subnetwork
- Discussion \& Limitations

Linear ODEs networks

- step 2: use the data processing inequality (DPI)
- meaning: if X_{1} and X_{3} interact only through a third gene, then it must be

$$
I\left(X_{1}, X_{3}\right) \leqslant \min \left(I\left(X_{1}, X_{2}\right), I\left(X_{2}, X_{3}\right)\right)
$$

$\Longrightarrow \Phi_{13}$ can be removed (indirect interaction)

- checing all triplets above statistical significance $I_{i j}, I_{j k}$, $I_{k i}$ the DPI removes the least significant arc \Longrightarrow Markov triple $X_{1} \longleftrightarrow X_{2} \longleftrightarrow X_{3}$
■ Theorem: if $I_{i j}$ are correct ("asymptotic behavior," meaning "many data") and if the network is a tree \Longrightarrow the ARACNe reconstructs the network exatly
- meaning of the DPI: interactions decorrelate rather quickly
- caution: 3-node loops are always opened!
- algorithm focuses on a network that locally is a tree
- long loops may survive the "pruning"

Data available

- Reverse enginnering

Association networks

- Pearson Correlation
- Mutual information
- Partial Pearson correlation
- Conditional mutual information - Higher order conditioning
- Algorithms evaluation
- -Networks for human B cells - ARACNe: the algorithm - Data available - Results
- MYC subnetwork
- Discussion \& Limitations

Linear ODEs networks

- ~ 6000 genes
- 336 gene expression profiles representative of perturbations of B cell phenotypes:
- normal cells: resting pre-germinal center naive B cells, proliferating germinal center B cells (centroblasts and centrocytes) and post-germinal center memory B cells
- Transformed cells more than ten subtypes of B cell malignancies
- Experimentally manipulated cells treated in vitro to induce specific signal transduction pathways or engineered for the expression of several transcription factors
- organism- and tissue-specific perturbations \Longrightarrow highly specific interactions

Results

- Reverse enginnering

Association networks

- Pearson Correlation
- Mutual information
- Partial Pearson correlation - Conditional mutual information - Higher order conditioning
- Algorithms evaluation
- -Networks for human B cells - ARACNe: the algorithm - Data available
- Discussion \& Limitations

- Reverse enginnering

Association networks

- Pearson Correlation
- Mutual information
- Partial Pearson correlation
- Conditional mutual information - Higher order conditioning
- Algorithms evaluation
- -Networks for human b cells
- ARACNe: the algorithm
- Data available
- Results

- MYC subnetwork

- Discussion \& Limitations

Linear ODEs networks

- network of ~ 120.000 interactions
- connectivity graph of the network has a power-law tail
- suggests a scale-free network
- few hubs (highly connected)
- many nodes with low connectivity
- 5% of nodes (major hubs) account for ~ 50.000 connections
- hierarchical structure: hubs tend to communicate a lot among each other

Zooming in: MYC subnetwork

- the proto-oncogen MYC is knonw to be an "important node"
- the algorithm confirmed it as a major hub
- 56 first neighbors,
- 2007 second neighbors

■ 30\% of first neighbors are large hubs

- hierarchical structure
- redundacy

■ robustness

Validation of the MYC subnetwork

- Reverse enginnering

- Pearson Correlation
- Mutual information
- Partial Pearson correlation
- Conditional mutual information - Higher order conditioning
- Algorithms evaluation
- -Networks for human B cells - ARACNe: the algorithm - Data available
- Results
- Discussion \& Limitations

Linear ODEs networks

- 29 out of 56 first neighbors were known MYC targets
- known targets are more significant classified as first neighbors (51.8\%) than second neighbors (19.4\%)
- 37.5% of first neighbors were validated in vivo by chromatin immunoprecipitation (ChIP)
\Longrightarrow binding of MYC to their promoter region was shown in new candidate MYC target
\Longrightarrow validation in vivo of the regulatory pathways

- Reverse enginnering

Association networks

- Pearson Correlation
- Mutual information
- Partial Pearson correlation
- Conditional mutual information
- Higher order conditioning
- Algorithms evaluation
- -Networks for human b cells - ARACNe: the algorithm - Data available - Results
- MYC subnetwork - Discussion \& Limitations

Linear ODEs networks

Discussion \& Limitations

- on the positive side:
- resuts are validated experimentally (remarkable)
- large part (40%) of the data collected on a decade on MYC was correctly represented
- limitations (in the paper):
- edges lack directionality (i.e., they do not indicate which gene is 'upstream' or 'downstream');
- some direct connections may involve unknown intermediates, as not all biochemical species participating in cellular interactions are represented on the microarray
- some direct interactions may have been incorrectly removed by the DPI
- futher limitations (in my biased opinion)
- the \# of gene expression profiles they start with is probably too limited
- we do not find the DPI very effective
- Reverse enginnering

Association networks

- Pearson Correlation
- Mutual information
- Partial Pearson correlation
- Conditional mutual information
- Higher order conditioning
- Algorithms evaluation
- -Networks for human B cells
- ARACNe: the algorithm
- Data available
- Results
- MYC subnetwork
- Discussion \& Limitations

Linear ODEs networks

- Reverse enginnering

Association networks

Linear ODEs networks

- Nonlinear Fitting
- Multiple linear regression - Nonlinear Multiple regression
- Inferring a network of ODEs - Linearization
- Information extrapolated from A - Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD
- steady state inference
- model-based drug design

Parameters fitting

- how do you fit the parameters in a model in order to match experimental data?
- \rightarrow linear regression analysis
- simplest case: want to fit a straight line to a set of measured values $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{m}, y_{m}\right)$

Parameters fitting

- Reverse enginnering

Association networks

Linear ODEs network

- Nonlinear Fitting
- Multiple linear regression - Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD - steady state inference - model-based drug design
model to fit

$$
y=\alpha+\beta x+\epsilon
$$

- α, β regression coefficients
- $y=$ response, $x=$ regressor
- $\epsilon \in N\left(0, \sigma^{2}\right)$ random error
\square task: estimate α and β from the measured data $\Longrightarrow \hat{\alpha}, \hat{\beta}$
- solution: least squares

$$
\text { observed } y=\text { fitted } y+\text { residuals }
$$

- fitted y : reflects the straight line $\hat{y}=\hat{\alpha}+\hat{\beta} x$
- residuals: random deviation from the straight line

$$
\begin{aligned}
\min _{\hat{\alpha}, \hat{\beta}} S & =\sum_{i=1}^{m}(\text { observed } y-\text { fitted } y)^{2} \\
& =\sum_{i=1}^{m}\left(y_{i}-\hat{\alpha}-\hat{\beta} x_{i}\right)^{2}
\end{aligned}
$$

- Reverse enginnering

Association networks

Linear ODEs networ

- Nonlinear Fitting
- Multiple linear regression - Nonlinear Multiple regression
- Inferring a network of ODEs - Linearization
- Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD - steady state inference
- model-based drug design

Parameters fitting

- $\hat{\alpha}, \hat{\beta}$ can be computed explicitely from the partial derivatives

$$
\left.\begin{array}{l}
\frac{\partial S}{\partial \hat{\alpha}}=-2 \sum_{i=1}^{m}\left(y_{i}-\hat{\alpha}-\hat{\beta} x_{i}\right)=0 \\
\frac{\partial S}{\partial \hat{\beta}}=-2 \sum_{i=1}^{m} x_{i}\left(y_{i}-\hat{\alpha}-\hat{\beta} x_{i}\right)=0
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
\hat{\beta}=\frac{\sum_{i=1}^{m} x_{i}\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n} x_{i}\left(x_{i}-\bar{x}\right)} \\
\hat{\alpha}=\bar{y}-\hat{\beta} \bar{x}
\end{array}\right.
$$

where $\bar{x}=\frac{1}{m} \sum_{i=1}^{m} x_{i}$ and $\bar{y}=\frac{1}{m} \sum_{i=1}^{m} y_{i}$ (averages)

- meaning of the fitted model $\hat{y}=\hat{\alpha}+\hat{\beta} x$:
line passing through the centroid (\bar{x}, \bar{y}) and rotated until the squared deviations is least.
- in Matlab:
- lsqr function
- regression function (Statistics toolbox)

Least squares fitting of nonlinear models

- Reverse enginnering

Association networks

Linear ODEs networks

- Nonlinear Fitting
- Multiple linear regression
- Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- Information extrapolated from A - Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD - steady state inference
- model-based drug design
- this to fit a straight line: How about fitting a more complicated curve?
- linear regression: linear in the coefficients α, β, etc., not in the model structure
- example: quadratic model

$$
y=\alpha+\beta_{1} x+\beta_{2} x^{2}+\epsilon
$$

is solvable directly by means of linear regression

■ how about nonlinear regression?

- Reverse enginnering

Association networks

Linear ODEs networks

- Nonlinear Fitting
- Multiple linear regression - Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD - steady state inference - model-based drug design

Least squares fitting of nonlinear models

■ example: Maltus law $\quad x(t)=x_{o} e^{-\gamma t}$

- recall that this is the integral of the linear ODE $\frac{d x}{d t}=-\gamma x$ and describes for exampe the degradation of a substance
- least square fitting: assume I measure a few time values $x\left(t_{1}\right)=x_{1}, \ldots, x\left(t_{m}\right)=x_{m}$
- how do I find γ ?
- take the logarithm on both sides of $x(t)=x_{o} e^{-\gamma t}$:

\Longrightarrow linear regression
- alternatively: measure $x(t)$ and $\frac{d x}{d t}$ simultaneously and fit directly on the ODE

- Reverse enginnering

Association networks

Linear ODEs networks

- Nonlinear Fitting
- Multiple linear regression - Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD
- steady state inference
- model-based drug design

Multiple linear regression

- Reverse enginnering

Association networks

Least squares fitting of nonlinear models

■ how about a Hill function?

$$
h^{+}(x, \theta, n)=\frac{x^{n}}{\theta^{n}+x^{n}}
$$

- consider $\frac{d x}{d t}=k h^{+}(x, \theta, n)$
- assume x and $\frac{d x}{d t}$ are measured
- $k=$ value at saturation \Longrightarrow known from $\frac{d x}{d t}$ as $t \rightarrow \infty$
- to find θ and n
- manipulating: $\dot{x}=\frac{k x^{n}}{\theta^{n}+x^{n}} \Longrightarrow x^{n}=\frac{\dot{x} \theta^{n}}{k-\dot{x}}$
- take the logarithm

$$
\ln \left(x^{n}\right)=\ln \left(\frac{\dot{x}}{k-\dot{x}} \theta^{n}\right)=\ln \left(\frac{\dot{x}}{k-\dot{x}}\right)+\ln \left(\theta^{n}\right)
$$

- i.e.,

$$
\underbrace{n}_{\beta} \underbrace{\ln (x)}_{x}=\underbrace{n \ln \theta}_{\alpha}+\underbrace{\ln \left(\frac{\dot{x}}{k-\dot{x}}\right)}_{y}
$$

\Longrightarrow linear regression applies

- when observation depends on 2 or more independent variables

$$
y=\beta_{o}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{n} x_{n}
$$

\rightarrow multiple linear regression model

- procedure is the same:
sample regression equations

$y^{i}=\beta_{o}+\beta_{1} x_{1}^{i}+\beta_{2} x_{2}^{i}+\ldots+\beta_{n} x_{n}^{i} \quad i=1, \ldots, m$
rewritten in matrix form

$$
\mathbf{y}=\mathbf{X} \beta+\epsilon
$$

where

$$
\mathbf{y}=\left[\begin{array}{c}
y^{1} \\
\vdots \\
y^{m}
\end{array}\right], \quad \mathbf{X}=\left[\begin{array}{cccc}
1 & x_{1}^{1} & \ldots & x_{n}^{1} \\
1 & x_{1}^{2} & \ldots & x_{n}^{2} \\
\vdots & \vdots & & \vdots \\
1 & x_{1}^{m} & \ldots & x_{n}^{m}
\end{array}\right], \quad \beta=\left[\begin{array}{c}
\beta_{o} \\
\beta_{1} \\
\vdots \\
\beta_{m}
\end{array}\right], \quad \epsilon=\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{m}
\end{array}\right]
$$

Multiple linear regression

- Reverse enginnering

Association networks

Linear ODEs netwo

- Nonlinear Fitting
- Multiple linear regression
- Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD
- steady state inference
- model-based drug design

■ functional to be minimized
$S(\beta)=\sum_{i=1}^{k} \epsilon^{2}=\|\epsilon\|_{2}=\|\mathbf{y}-\mathbf{X} \beta\|_{2} \quad$ (i.e., $\left.=(\mathbf{y}-\mathbf{X} \beta)^{T}(\mathbf{y}-\mathbf{X} \beta)\right)$

- the least squares problem is solved by $\hat{\beta}$ such that

$$
\left.\frac{\partial S(\beta)}{\partial \beta}\right|_{\hat{\beta}}=-2 \mathbf{X}^{T} \mathbf{y}+2 \mathbf{X}^{T} \mathbf{X} \hat{\beta}=0
$$

i.e., $\quad \mathbf{X}^{T} \mathbf{X} \hat{\beta}=\mathbf{X}^{T} \mathbf{y} \Longrightarrow \quad \hat{\beta}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}$

- fitted model

$$
\hat{\mathbf{y}}=\mathbf{X} \hat{\beta}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}=: \mathbf{H y}
$$

- residuals

$$
\mathbf{r}=\mathbf{y}-\hat{\mathbf{y}}=(\mathbf{I}-\mathbf{H}) \mathbf{y}
$$

- Reverse enginnering

Association networks

Linear ODEs network

- Nonlinear Fitting
- Multiple linear regression
- Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- Information extrapolated from A - Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD - steady state inference
- model-based drug design

Multiple linear regression

- when is $\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}$ well-defined?

$$
\mathbf{X}=\left[\begin{array}{cccc}
1 & x_{1}^{1} & \ldots & x_{n}^{1} \\
1 & x_{1}^{2} & \ldots & x_{n}^{2} \\
\vdots & \vdots & & \vdots \\
1 & x_{1}^{m} & \ldots & x_{n}^{m}
\end{array}\right],
$$

$$
\mathbf{X} \quad m \times(n+1) \text { matrix }
$$

$$
\mathbf{X}^{T} \mathbf{X} \quad(n+1) \times(n+1) \text { matrix }
$$

\square if $\operatorname{rank}\left(\mathbf{X}^{T} \mathbf{X}\right)=n+1$ then $\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}$ exists

- meaning:

1. $m \geqslant n+1$
2. the regressors of \mathbf{X} (i.e., the columns of \mathbf{X}) must be linearly independent

- practical meaning

1. \# of experiments must be \geqslant \# of variables
2. data must be collected in different experimental situations

Nonlinear Multiple regression

- Reverse enginnering

Association networks

Linear ODEs network

- Nonlinear Fitting
- Multiple linear regression
- Inferring a network of ODEs
- Linearization
- Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD
- steady state inference
- model-based drug design

■ how about nonlinear models?

$$
\left.\begin{array}{l}
\frac{d \mathbf{x}}{d t}=\mathbf{f}(\mathbf{x}, \beta), \quad \mathbf{f}(\mathbf{x}, \beta)=\left[\begin{array}{c}
f_{1}(\mathbf{x}, \beta) \\
\vdots \\
f_{n}(\mathbf{x}, \beta)
\end{array}\right]
\end{array}\right]
$$

- if $\mathbf{f}(\mathbf{x}, \beta)$ is "diagonal"

$$
\mathbf{f}(\mathbf{x}, \beta)=\left[\begin{array}{c}
f_{1}\left(x_{1}, \beta\right) \\
\vdots \\
f_{n}\left(x_{n}, \beta\right)
\end{array}\right]
$$

then the ODEs are not coupled
\Longrightarrow each nonlinear problem can be treated separately

- if not, then there is no general rule to deal with it. A common approach it to linearize around an equilibrium point.

Inferring a network of ODEs

- Reverse enginnering

Association networks

- network of n genes $x_{1}, x_{2}, \ldots, x_{n}$
- vector ODEs in general form

$$
\frac{d \mathbf{x}}{d t}=\mathbf{f}(\mathbf{x}), \quad \mathbf{f}(\mathbf{x})=\left[\begin{array}{c}
f_{1}(\mathbf{x}) \\
\vdots \\
f_{n}(\mathbf{x})
\end{array}\right]
$$

$f_{i}(\mathbf{x})=$ description of how the expression levels of genes x_{1}, \ldots, x_{n} are affecting the transcription rate of x_{i}

- typically
- $f_{i}(\mathbf{x})>0$ (activation) for some combination of x_{1}, \ldots, x_{n}
- $f_{i}(\mathbf{x})<0$ (repression) for some other combination
- for $\left(x_{1}, \ldots, x_{n}\right)$ such that $f_{i}(\mathbf{x})=0$ for all $i=1, \ldots, n$ then we have a steady state (rate of all x_{i} stays constant)
- Inferring the network means finding the functions f_{i}

Inferring a network of ODEs

- Reverse enginnering

Association networks

Linear ODEs network

- Nonlinear Fitting
- Multiple linear regression
- Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD
- steady state inference
- model-based drug design

■ simplest form: linear model $\frac{d x_{i}}{d t}=f_{i}(\mathbf{x})=a_{i 1} x_{1}+\ldots+a_{i n} x_{n}$

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x}, \quad A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & & a_{2 n} \\
\vdots & & \ddots & \vdots \\
a_{n 1} & \cdots & & a_{n n}
\end{array}\right]
$$

- $a_{i j}$ measure of the interaction strength of gene j over gene i
- $a_{i j}=0 \Longrightarrow$ gene j is not affecting the transcription rate of gene i
■ finding A means finding the connectivity matrix of the network (i.e., its topology)
- in addition, the $a_{i j}$ also quantify the network of connections

■ typically only a few $a_{i j}$ are $\neq 0$ on each row
\Longrightarrow low connectivity (the matrix A is sparse)

Inferring a network of ODEs

Association networks

■ example
$A=\left[\begin{array}{lll}a_{11} & & a_{13} \\ a_{21} & a_{22} & \\ a_{31} & & a_{33} \\ & & a_{43} \\ & & a_{53}\end{array}\right.$

■ directed graph \Longrightarrow this is causal information

Inferring a network of ODEs

- Reverse enginnering

Association networks

Linear ODEs networks

- Nonlinear Fitting
- Multiple linear regression
- Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD
- steady state inference
- model-based drug design

■ the structure of A also allows do identify independent blocks
$A=\left[\begin{array}{lllll}a_{11} & & & & \\ a_{21} & a_{22} & & & \\ & & a_{33} & & \\ & & a_{43} & & a_{45} \\ & & a_{53} & a_{54} & a_{55}\end{array}\right]$

- as well as "lethal" edges

$$
A=\left[\begin{array}{lllll}
a_{11} & & a_{13} & & \\
a_{21} & a_{22} & & & \\
a_{31} & & a_{33} & & \\
& & a_{43} & & a_{45} \\
& & a_{53} & a_{54} & a_{55}
\end{array}\right]
$$

- Reverse enginnering

Association networks

Linearization

- in reality the function f will typically be nonlinear
- reconstructing f nonlinear: the \# of parameters may be high (ex: each Hill function has 3 parameters) typically then one considers the linear model obtained by means of linearization in a neighbohood of a stable steady state x^{*} (i.e. such that $f\left(x^{*}\right)=0$)
$A=\left.\frac{\partial f}{\partial x}\right|_{x=x^{*}}=\left.\left[\begin{array}{cccc}\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \vdots & & & \\ \frac{\partial f_{n}}{\partial x_{1}} & \cdots & & \frac{\partial f_{n}}{\partial x_{n}}\end{array}\right]\right|_{x=x^{*}}=$ Jacobian

$$
\text { i.e., } \quad a_{i j}=\left.\frac{\partial f_{i}(x)}{\partial x_{j}}\right|_{x=x^{*}}
$$

Linearization

- Reverse enginnering

Association networks

Linear ODEs networ

- Nonlinear Fitting
- Multiple linear regression
- Nonlinear Multiple regression
- Inferring a network of ODEs
- calling $\mathbf{x}=\mathbf{x}^{*}+\delta \mathbf{x} \quad(\delta \mathbf{x}$ small $)$

$$
\Longrightarrow \text { Taylor expansion around } x^{*}
$$

$$
\frac{d \mathbf{x}}{d t}=\underbrace{f\left(\mathbf{x}^{*}\right)}_{=0}+\underbrace{\left.\frac{\partial f}{\partial x}\right|_{x=x^{*}} \mathbf{x}}_{A \mathbf{x}}+\underbrace{o(\delta \mathbf{x})}_{\approx 0}=A \mathbf{x}
$$

■ linearized system = plane tangent to the full nonlinear model computed at x^{*}

- Reverse enginnering

Association networks

Information extrapolated from A

- compute the eigenvalues of A
eigenvalues of $A=$ real or complex numbers λ such that $A \mathbf{v}=\lambda \mathbf{v}$ for some vector \mathbf{v} (called eigenvector): they give the characteristic modes of the ODE $\frac{d \mathrm{x}}{d t}=A \mathrm{x}$

■ A is stable $\Longleftrightarrow \operatorname{Re}[\lambda]<0(\operatorname{Re}[\lambda] \leqslant 0$ and multiplicity $(\lambda) \leqslant 1)$

- \Longrightarrow all modes are decaying
$\bullet \Longrightarrow \mathbf{x}(t) \xrightarrow{t \rightarrow \infty} \mathbf{x}^{*}$ stable stationary steady state
- \Longrightarrow if I disturb the initial condition: $\mathbf{x}(t)+\delta \mathbf{x}(t) \xrightarrow{t \rightarrow \infty} \mathbf{x}^{*}$

■ if $\operatorname{Re}[\lambda]>0$ for some eigenvalue $\lambda \Longrightarrow A$ is unstable and $\mathrm{x}(t)$ may grow unbounded

- λ complex number $\Longrightarrow \mathbf{x}(t)$ has oscillations
- $a_{i i}=$ self-regulating coefficient: includes degradation rate

$$
A=\tilde{A}-\left[\begin{array}{lll}
\gamma_{1} & & \\
& \ddots & \\
& & \gamma_{n}
\end{array}\right]
$$

Inferring linear ODEs

- how to compute A ?
- Reverse enginnering

Association networks

Linear ODEs networ

- Nonlinear Fitting
- Multiple linear regression - Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- Information extrapolated from A - Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD
- steady state inference
- model-based drug design
- If we

1. can perturb each gene individually
2. measure simultaneously

- gene expression level x
- amount of the perturbation b^{i}
- rate $\frac{d \mathrm{x}}{d t}$

■ \Longrightarrow finding A becomes a multilinear regression problem

- example: choosing a linear additive model for the perturbation

$$
\underbrace{\left[\begin{array}{ccc}
\dot{x}_{1}^{1} & \ldots & \dot{x}_{1}^{n} \\
\dot{x}_{2}^{1} & \ldots & \dot{x}_{1}^{n} \\
\vdots & & \vdots \\
\dot{x}_{n}^{1} & \ldots & \dot{x}_{n}^{n}
\end{array}\right]}_{1^{s t} \text { exp } \ldots . n^{t h} \exp .}=A \underbrace{\left[\begin{array}{ccc}
x_{1}^{1} & \ldots & x_{1}^{n} \\
x_{2}^{1} & \ldots & x_{1}^{n} \\
\vdots & & \vdots \\
x_{n}^{1} & \ldots & x_{n}^{n}
\end{array}\right]}_{1^{s t} \text { exp...n } n^{t h} \exp .}+\underbrace{\left[\begin{array}{ccc}
b^{1} & \ldots & 0 \\
0 & \ldots & 0 \\
\vdots & & \vdots \\
0 & \ldots & b^{n}
\end{array}\right]}_{1^{s t} \text { exp....nth exp. }}
$$

- Reverse enginnering

Association networks

Inferring linear ODEs

$$
\dot{X}=A X+B
$$

$■ \Longrightarrow$ finding A becomes a multilinear regression problem

$$
A=\operatorname{argmin}\|A X+B-\dot{X}\|_{2}
$$

(i.e., for each row a of $\left.A: \hat{\mathbf{a}}^{T}=\left(X X^{T}\right)^{-1} X\left(\dot{\mathbf{x}}_{\text {row }}^{T}-\mathbf{b}_{\text {row }}^{T}\right)\right)$

- properties
- perturbations need not form a diagonal matrix B : all is needed is a matrix X such that $\operatorname{rank}(X) \geqslant n$ i.e., at least n arrays of "independent" measurements
- drawback: A is very sensitive to noise in X and B
- drawback: need to measure the rates $\frac{d \mathrm{x}}{d t} \rightarrow$ this is normally done by finite difference schemes + interpolation/smoothing provided you have a time series of data

Continuos vs Discrete time

- Reverse enginnering

Association networks

Linear ODEs networ

- Nonlinear Fitting
- Multiple linear regression - Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- Information extrapolated from A
- Inferring linear ODEs

■ model to fit

$$
\dot{x}=A x
$$

■ measures (constant sampling time T)

$$
x(T), x(2 T), x(3 T), \ldots, x(m T)
$$

\square fitting a discrete dynamical model:

- since measurements are in discrete time, one can choose to infer a discrete-time state update matrix F :

$$
x((k+1) T)=F x(k T), \quad k=1,2, \ldots
$$

- multilinear regression procedure
$\underbrace{[x(n T) x((n-1) T) \ldots x(2 T)]}_{\text {measured }}=F \underbrace{[x((n-1) T) x((n-2) T) \ldots x(T)]}_{\text {measured }}$
- inferring F needs no observation of the $\frac{d x}{d t}$

Continuos vs Discrete time

- Reverse enginnering

Association networks

Linear ODEs network

- Nonlinear Fitting
- Multiple linear regression - Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- Information extrapolated from A
- Inferring linear ODEs
- what is the relation between A and F ??

$$
F=e^{A T}
$$

- if A sparse $\nRightarrow F$ is sparse
- \Longrightarrow if $A=$ connectivity matrix, $F=e^{A T}$ is not a connectivity matrix!
- not obvious (neither easy) to reconstruct A given F (i.e., to find the network from F)
- example

$$
\begin{aligned}
A= & {\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & -1 & -2 \\
1 & -2 & -3
\end{array}\right] } \\
F=e^{A T} & =\left[\begin{array}{ccc}
2.7 & 1 & 20.1 \\
1 & 0.4 & 0.1 \\
2.7 & 0.1 & 0.1
\end{array}\right]^{1}
\end{aligned}
$$

Continuos vs Discrete time

- how to get A out of F ?

1. exact caculation: matrix logarithm

$$
A=\frac{\ln (F)}{T}
$$

- complication: $m<n$
$\Longrightarrow F$ is not full-rank \Longrightarrow cannot take log

2. approximation 1.: Euler discretization

$$
\begin{aligned}
\frac{d x}{d t} \simeq \frac{x((k+1) T)-x(k T)}{T} \Longrightarrow x((k+1) T) & =(I+T A) x(k T) \\
& =F x(k T) \\
A=\frac{F-I}{T} &
\end{aligned}
$$

3. approximation 2.: bilinear approximation

$$
A=\frac{2 F-I}{T F+I}
$$

■ both approximations are inadequate when T is not very small

- Reverse enginnering

Association networks

Linear ODEs networ

- Nonlinear Fitting
- Multiple linear regression
- Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- steady state inference
- model-based drug design

Inferring a linear model via SVD

Yeung MKS, Tegner J and Collins JJ. Reverse engineering gene networks using singular value decomposition and robust regression. PNAS 99:
6163-6168 (2002)
■ most times: \# of experiments $<$ \# of variables: $m \ll n$
\Longrightarrow reverse engineering problem is underdetermined

- how to recover A ?
- infinitely many possible solutions
- \Longrightarrow many network architectures fit the data
- one possible solution: SVD Singular Value Decomposition

Inferring a linear model via SVD

- Reverse enginnering

Association networks

Linear ODEs network

- Nonlinear Fitting
- Multiple linear regression - Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time O Inferring a linear model via SV - steady state inference
- model-based drug design

■ use SVD to decompose X :

$$
X=U \Lambda V^{T} \quad V m \times m \text { orthogonal } \quad V V^{T}=I_{m}
$$

where $\ell=\operatorname{rank}(X)$
$\lambda_{1}, \ldots, \lambda_{\ell}$ singular values: $\lambda_{j}=\sqrt{\mu_{j}}, \mu_{j}=\operatorname{eig}\left(X X^{T}\right)$

- one particular solution is given by the Moore-Penrose pseudoinverse

$$
A_{o}=(\dot{X}-B) U \Lambda^{\dagger} V^{T},
$$

$U n \times m$ orthogonal $U U^{T}=I_{n}$

Inferring a linear model via SVD

- Reverse enginnering

Association networks

■ SVD solution is still the least squares solution:

$$
A_{o}=\operatorname{argmin}\|A X+B-\dot{X}\|_{2}
$$

- general solution: affine space

$$
A=A_{o}+C V^{T} \quad C=\left[\begin{array}{cccccc}
c_{11} & \ldots & c_{1 \ell} & 0 & \ldots & 0 \\
\vdots & & & & & \vdots \\
c_{n 1} & \ldots & c_{n \ell} & 0 & \ldots & 0
\end{array}\right]
$$

- $c_{i j}=$ all degrees of freedom that can be used to optimize some extra criterion: e.g. the sparsity of A
- \Longrightarrow maximize \# of zeros in A
- impose $A=0$ i.e., $A_{o}=-C V^{T}$

Inferring a linear model via SVD

- Reverse enginnering

Association networks

Linear ODEs networks

- Nonlinear Fitting
- Multiple linear regression - Nonlinear Multiple regression - Inferring a network of ODEs - Linearization
- Information extrapolated from A - Inferring linear ODEs
- Continuos vs Discrete time O Inferring a linear model via SV - steady state inference - model-based drug design
- want to satisfy as many constraints as possible: solution is different from least squares solution
- robust regression problem: L_{1} problem exact fit leaving as few outlier as possible

$$
\hat{A}=\operatorname{argmin}\|A X+B-\dot{X}\|_{1}
$$

Yeung MKS, Tegner J and Collins JJ. . PNAS 99: 6163 (2002)

- Reverse enginnering

Association networks

Linear ODEs networks

- Nonlinear Fitting
- Multiple linear regression - Nonlinear Multiple regression
- Inferring a network of ODEs - Linearization - Information extrapolated from A - Inferring linear ODEs

Linear model via steady state measurements

Gardner TS, di Bernardo D, Lorenz D and Collins JJ. Inferring genetic networks and identifying compound mode of action via expression profi ling.
Science 301: 102-105 (2003)
■ problem with previous method: still requires to measure the rates $\frac{d \mathbf{x}}{d t}$

- often times there is no time series available: only apply perturbations and wait for the system to resettle at a new steady state $\Longrightarrow \frac{d \mathrm{x}}{d t}=0$
■ if x^{*} is stable, the new steady state is nearby \Longrightarrow linear methods still make sense
- after a perturbation:

$$
A X+B=0 \quad \Longrightarrow A X=-B
$$

\Longrightarrow still the same multilinear regression problem

Linear model via steady state measurements

- Reverse enginnering

Association networks

Linear ODEs network

- Nonlinear Fitting
- Multiple linear regression - Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- Information extrapolated from A - Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD
- steady state inference
- model-based drug design
- SOS pathways in E. coli: regulates cell survival and repair after DNA damage

- network

- red: primary pathway (well studied)
- 9 genes
- each perturbed singularly
- perturbations: overexpression of one single gene

$$
A \underbrace{\left[\begin{array}{ccc}
x_{1}^{1} & \ldots & x_{1}^{9} \\
x_{2}^{1} & \ldots & x_{1}^{9} \\
\vdots & & \vdots \\
x_{9}^{1} & \ldots & x_{9}^{9}
\end{array}\right]}_{1^{s t} \text { exp....9 }{ }^{t h} \exp .}=-\underbrace{\left[\begin{array}{ccc}
b^{1} & \ldots & 0 \\
0 & \ldots & 0 \\
\vdots & & \vdots \\
0 & \ldots & b^{9}
\end{array}\right]}_{1^{s t} \text { exp. ...9 }{ }^{t h} \exp .}
$$

- Reverse enginnering

Association networks

Linear ODEs network

- Nonlinear Fitting
- Multiple linear regression - Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD
- steady state inference
- model-based drug design

Linear model via steady state measurements

■ 9 genes, 9 perturbations \Longrightarrow enough to compute

$$
A=\operatorname{argmin}\|A X+B\|_{2}
$$

although result will be very noisy
■ in general however $m \ll n \Longrightarrow$ underdetermined problem

- instead of using SVD, assume degree of connectivity is $k \simeq m$ (meaning: each row of A has at most k nonzero elements)
\Longrightarrow conditioning is better in presence of a limited number of experiments
- solution is still Moore-Penrose pseudoinverse
- drawbacks of the method
- to find the "best" row of k paramters $a_{i j}$ is a combinatorial problem: $\frac{n!}{k!(n-1)!}$ (" n choose k ")
\Longrightarrow computational explosion
\Longrightarrow heuristic solutions

Linear model via steady state measurements

- Reverse enginnering

Association networks

Linear ODEs networks

- Nonlinear Fitting
- Multiple linear regression - Nonlinear Multiple regression - Inferring a network of ODEs - Linearization
- Information extrapolated from A - Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD
- steady state inference
- model-based drug design
previously mapped regulatory structure

	recA	lexA	$s s b$	recF	dinI	umuiDC	rpoD	rpoH	rpos
recA	+	-	-	+	+	-	+	0	0
lexA	+	-	-	+	+	-	+	0	0
ssb	+	-	-	+	+	-	+	0	0
recF	0	0	0	0	0	0	+	0	+
dinI	+	-	-	+	+	-	+	0	0
umuDC	+	-	-	+	+	-	+	0	0
rроD	+	-	-	+	+	-	+	+	0
rроH	0	0	0	0	0	0	+	+	0
rроS	0	0	0	0	0	0	+	0	+

false positives

What lies ahead? Model-based drug design

- Reverse enginnering

Association networks

Linear ODEs networks

- Nonlinear Fitting
- Multiple linear regression - Nonlinear Multiple regression - Inferring a network of ODEs - Linearization
- Information extrapolated from A - Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD
- steady state inference
di Bernardo D, Thompson MJ, Gardner TS, Chobot SE, Eastwood EL, Wojtovich AP, Elliott SJ, Schaus SE, Collins JJ. Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks Nat Biotechnol. 2005,23(3):377-83

What lies ahead? Model-based drug design

- Reverse enginnering

Association networks

- applying u to the linear system

$$
\dot{x}=A x+b u
$$

- $b=n \times 1$ vector of coefficients $=$ pathways through which the drug is acting \rightarrow directly regulated genes
- all indirect regulations must be obtained from A \Longrightarrow fundamental prerequisite: have a sound knowledge of A
- finding b is easier than finding A (similar procedure)

- Reverse enginnering

Association networks

What lies ahead? Model-based drug design

- task: compute time-depdendent $u(t)$ such that

$$
x(t) \rightarrow x_{\text {desired }}
$$

- $x_{\text {desired }}=$ particular array of expression levels of the genes of the system that I would like to achieve
- model can tell you when this is possible / not possible for a certain u or a linear combination of $u \mathrm{~s}$:

$$
\dot{x}=A x+\left[b_{1} \ldots b_{p}\right]\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{p}
\end{array}\right]
$$

\rightarrow linear (or nonlinear) control theory?

