Inferring regulatory networks from microarray data

Lecture 3

Claudio Altafini

SISSA

http://people.sissa.it/~altafini

Claudio Altafini, February 14, 2007

– p. 1/60

A

Network inference algorithms

Association networks Linear ODEs networks	 1. BAYESIAN NETWOR attains a prob (exact) compl
	 Association NET learns a graph polynomial comparison
	 3. LINEAR ODES MOD linear complete suffers from ut model-depender
	other methods (no

Claudio Altafini, February 14, 2007

a few methods

- RK
 - babilistic graph through a bayesian learning
 - lexity: superexponential
- WORKS
 - h through a "similarity measure"
 - omplexity
- DELS
 - xity
 - Inderdetermination
 - dent
- ot discussed): boolean, automata & formal languages, PDEs, stochastic master eq. etc....

Association networks

– p. 3/60

Association networks: similarity measures

Reverse enginnering

- Association networks

 Pearson Correlation
- Mutual information
- Partial Pearson correlation
 Conditional mutual information
- Higher order conditioning
- Algorithms evaluation
- NETWORKS FOR HUMAN B CELLS
 ARACNe: the algorithm
- Data available
- Results
- MYC subnetwork

```
    Discussion & Limitations
```

```
Linear ODEs networks
```

• given n genes X_1, \ldots, X_n

- given a set of m expression profiles
- compute a similarity measure between the genes
- associate through edges in a graph genes with the highest similarity measure
- which similarity measure?
- 1. Pearson correlation of X_i and X_j

$$R(X_i, X_j) = \frac{\sum_{\ell=1}^m (x_i(\ell) - \bar{x}_i)(x_j(\ell) - \bar{x}_j)}{(n-1)\sqrt{v_i v_j}} \in [-1, 1]$$

- linear
- variants: Spearman correlation (for the ranks —>non-parametric)
- 2. Mutual information

Claudio Altafini, February 14, 2007

Reverse enginnering

- Association networks

 Pearson Correlation
- Mutual information
- Partial Pearson correlation
- Conditional mutual information
 Higher order conditioning
- Algorithms evaluation
- ARACNe: the algorithm
- Data available
- Results
- MYC subnetworkDiscussion & Limitations

Linear ODEs networks

- **Mutual information**
- X_i = discrete random variable with alphabet A
- Shannon entropy

$$H(X_i) = -\sum_{\phi \in \mathcal{A}} p(\phi) \log p(\phi), \quad \text{where } p(\phi) = Pr(X_i = \phi), \quad \phi \in \mathcal{A}$$

• joint entropy of X_i , X_j

$$H(X_i, X_j) = -\sum_{\phi, \psi \in \mathcal{A}} p(\phi, \psi) \log p(\phi, \psi)$$

• Mutual information of X_i and X_j

$$I(X_i; X_j) = \sum_{\phi, \psi \in \mathcal{A}} p(\phi, \psi) \log \frac{p(\phi, \psi)}{p(\phi)p(\psi)} \ge 0$$

when the joint probability factorizes, the MI vanishes

$$p(\phi, \psi) = p(\phi)p(\psi) \implies I(X_i; X_j) = 0.$$

– p. 5/60

Conditioned similarity measures

Reverse enginnering

Association networks Pearson Correlation

- Mutual information
- Partial Pearson correlation
 Conditional mutual information
- Higher order conditioning
- Algorithms evaluation
- NETWORKS FOR HUMAN B CELLS
- ARACNe: the algorithm
- Data available
- ResultsMYC subnetwork
- Discussion & Limitations

Linear ODEs networks

■ both *R*(*X_i*, *X_j*) and *I*(*X_i*; *X_j*) cannot distinguish between direct and indirect interactions

- graph constructed will have many false positives
- indirect interactions: ∃ X_k that explains all the correlation between X_i and X_j?

if "yes" then extract the information due to X_k by means of conditioning

Claudio Altafini, February 14, 2007

Partial Pearson correlation 1st order partial Pearson correlation Reverse enginnering Association networks Pearson Correlation $R(X_i, X_j \mid X_k) = \frac{R(X_i, X_j) - R(X_i, X_k)R(X_j, X_k)}{\sqrt{(1 - R^2(X_i, X_k))(1 - R^2(X_j, X_k))}} \in [-1, 1]$ Mutual information Partial Pearson correlation Conditional mutual informatio Higher order conditioning Algorithms evaluation \blacksquare take the minimum w.r.t all X_k -NETWORKS FOR HUMAN B CELLS ARACNe: the algorithm Data available $\overline{R_{C_1}(X_i, X_j)} = \min_{k \neq i, j} |R(X_i, X_j \mid X_k)|$ Results MYC subnetwork Discussion & Limitations Linear ODEs networks • if $R_{C_1}(X_i, X_j) \simeq 0$ $\implies \exists k \text{ s.t. } X_i \text{ and } X_j \text{ are conditionally independent}$ \implies Markov triple $X_i \longleftrightarrow X_k \longleftrightarrow X_i$ \implies no edge between X_i and X_j in the graph

– p. 7/60

Conditional mutual information

Reverse enginnering

- Association networks

 Pearson Correlation
- Mutual information
- Partial Pearson correlation
 Conditional mutual information
- Higher order conditioning
- Algorithms evaluation
- NETWORKS FOR HUMAN B CELLS
 ARACNe: the algorithm
- Data available
- Results
- MYC subnetworkDiscussion & Limitations
- Linear ODEs networks

• conditional entropy of X_j given X_i

$$H(X_j \mid X_i) = H(X_i, X_j) - H(X_i)$$

• conditional mutual information given X_k

$$I(X_i; X_j | X_k) = H(X_i | X_k) - H(X_i | X_j, X_k) \ge 0$$

• take the minimum w.r.t all X_k

$$I_C(X_i; X_j) = \min_{k \neq i, j} I(X_i; X_j \mid X_k)$$

I if
$$I_C(X_i; X_j) \simeq 0$$

- $\implies \exists k \text{ s.t. } X_i \text{ and } X_j \text{ are conditionally independent}$
- \implies Markov triple $X_i \longleftrightarrow X_k \longleftrightarrow X_j$
- \implies no edge between X_i and X_j in the graph

Claudio Altafini, February 14, 2007

Linear ODEs networks

Association networks v.s. Bayesian netowrks

- Bayesian network structure inference problem: try to learn the positions of the edges on a graph
 - exponential complexity
 - looks for "true" dependences
- Association networks: guarantees that some edges are missing
 - $R(X_i, X_j) \simeq 0 \Longrightarrow X_i$ and X_j independent
 - $R((X_i, X_j) \neq 0 \Rightarrow X_i \text{ and } X_j \text{ linked, since } R(X_i, X_j | X_k) \text{ could be } \simeq 0$
 - ◆ ⇒guarantees only independencies
 - polynomial complexity $R \in O(n^2)$, $R_{C_1} \in O(n^3)$

– p. 9/60

- Association networks
- Pearson Correlation Mutual information
- Partial Pearson correlation
- Conditional mutual information
- Higher order conditioning
- Algorithms evaluation -NETWORKS FOR HUMAN B CELLS
- ARACNe: the algorithm
- Data available
- Results
- MYC subnetwork Discussion & Limitations

Linear ODEs networks

- theory of "Graphical modeling"
 - D. Edwards "Introduction to graphical modelling", Springer, 2000
- \blacksquare given R
- $\Omega(\omega_{ij}) = R^{-1}$ = concentration matrix
- true partial correlation

$$R_{C_{\rm all}}(X_i, X_j) = -\frac{\omega_{ij}}{\sqrt{\omega_{ii}\omega_{jj}}}$$

- \blacksquare $R_{C_{\text{all}}}(X_i, X_j)$ high $\Longrightarrow X_i$ and X_j are linked
- complication: m < n (n. of experiments < n. of genes)
- $\blacksquare \implies R$ is normally not full rank
- $\blacksquare \Longrightarrow$ generalized inverses (ill-conditioned)

Algorithms evaluation

- Association networks

 Pearson Correlation
 Mutual information
 Partial Pearson correlation
 Conditional mutual information
- Higher order conditioning
- Algorithms evaluation
- NETWORKS FOR HUMAN B CELLS
 ARACNe: the algorithm
- Data available
- Results
- MYC subnetwork

Discussion & Limitations

Linear ODEs networks

- to evaluate the power of the algorithms: \rightarrow artificial netowrk
 - known graph (\rightarrow adjacency matrix A)
 - synthetic data as "gene profiles"
 - $A = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$

Claudio Altafini, February 14, 2007

Reverse enginnering

Association networks

Mutual information
Partial Pearson correlation

MYC subnetworkDiscussion & Limitations

Linear ODEs networks

Conditional mutual information
 Higher order conditioning
 Algorithms evaluation

—Networks for HUMAN B Cells
 ARACNe: the algorithm
 Data available
 Results

– p. 13/60

Algorithms evaluation

- for each algorithm:
 - Input: true connectivity matrix A_{true}
 - Output: matrix of edges weight W
 - \implies reconstructed adjacency matrix $\hat{A} = W > w_o$

parameters

- TP (true positives)=correctly identifi ed true edgesFP (false positives)=spurious edgesTN (true negatives)=correctly identifi ed zero edgesFN (false negatives)=not recognized true edges
- $edges(A_{true}) = TP + FN$, $edges(\hat{A}) = TP + FP$ • $zeros(A_{true}) = FP + TN$, $zeros(\hat{A}) = FN + TN$
- Claudio Altafini, February 14, 2007

Claudio Altafini, February 14, 2007

Reverse enginnering

Association networks Pearson Correlation

- Mutual information
- Partial Pearson correlation
- Conditional mutual information
- Higher order conditioning
- Algorithms evaluation
- ---NETWORKS FOR HUMAN B CELLS
 ARACNe: the algorithm
- Data available
- Results
- MYC subnetwork
- Discussion & Limitations

Linear ODEs networks

Regulatory networks in human B cells

K. Basso, A. A. Margolin, G. Stolovitzky, U. Klein, R. Dalla-Favera, A. Califano. *Reverse engineering of regulatory networks in human B cells*, Nature Genetics 37, 382 - 390 (2005)

- goal: network reverse engineering in mammalian cells (here human B cells) as a key in understanding cell physiology and disease
- challenges of mammalian networks:
 - integrative approaches are not yet fully applicable given the very scattered nature of the available mammalian cell information
 - e.g.: systematic (experimental) gene perturbations are technically challenging and time-consuming

– p. 15/60

Regulatory networks in human B cells

Reverse enginnering

- Association networks
- Mutual information
- Partial Pearson correlation
- Conditional mutual information
- Higher order conditioningAlgorithms evaluation
- NETWORKS FOR HUMAN B CELLS
- ARACNe: the algorithm
- Data available
 Results
- MYC subnetwork
- Discussion & Limitations
- Linear ODEs networks

 algorithm used ARACNe (algorithm for the reconstruction of accurate cellular networks)

- identifies statistically significant gene-gene coregulation by mutual information
- eliminates indirect relationships, in which two genes are coregulated through one or more intermediaries, by means of the 'data processing inequality' (from transmission theory)
- —>relationships included in the network with high probability represent
 - direct regulatory interactions
 - interactions mediated by post-transcriptional modifiers (undetectable from gene-expression profiles)
 - algorithm complexity: $O(n^3) \Longrightarrow$ allows to analyze large scale networks

Claudio Altafini, February 14, 2007

ARACNe: the algorithm

- Reverse enginnering
- Association networks

 Pearson Correlation
- Mutual information
- Partial Pearson correlation
- Conditional mutual information
- Higher order conditioningAlgorithms evaluation
- Algorithms evaluation
 —Networks for human B cells
- ARACNe: the algorithm
- Data available
- Results
- MYC subnetworkDiscussion & Limitations
- Linear ODEs networks

- A A. Margolin, I Nemenman, K Basso, U Klein, C Wiggins, G Stolovitzky, R Dalla Favera,
- A Califano ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in
- a Mammalian Cellular Context, BCM Bioinformatics, 2006
- assumption: static inter-gene statistical dependencies only
- joint probability distribution

$$P(\{X_i\}) = \frac{1}{Z} \exp\left[-\sum_{i} \Phi_i(X_i) - \sum_{i,j} \Phi_{i,j}(X_i, X_j) - \sum_{i,j,k} \Phi_{i,j,k}(X_i, X_j, X_k) - i\right]$$

= $\frac{1}{Z} \exp\left[-\mathcal{H}(\{X_i\})\right]$

where

- n = # of genes,
- ♦ m = # of samples,
- Z = partition function
- $\Phi_i(X_i)$ = potentials
- $\mathcal{H}(\{X_i\})$ = Hamiltonian

– p. 17/60

Reverse enginnering

Association networks

Pearson Correlation

- Mutual information
- Partial Pearson correlation
- Conditional mutual information
- Higher order conditioningAlgorithms evaluation
- Algonums evaluation
 Algonums evaluation
 Algonums evaluation
- ARACNe: the algorithm
- Data available
 Results
- MYC subnetwork
- Discussion & Limitations

Linear ODEs networks

- simplest possible model: all genes are idependent $\mathcal{H}(\{X_i\}) = \sum_i \Phi_i(X_i)$
- next: pairwise interactions

$$\mathcal{H}(\{X_i\}) = \sum_i \Phi_i(X_i) - \sum_{i,j} \Phi_{i,j}(X_i, X_j)$$

- \rightarrow we take this truncation as our "joint"
- statistical independent vs non-interacting genes
 - X_i, X_j statistically independent if
 - $P(X_i, X_j) \simeq P(X_i)P(X_j)$
 - X_i , X_j non-interacting if $\Phi_{ij}(X_i, X_j) \simeq 0$

"statistical independent" \Rightarrow "non-interacting"

$$\left(P(X_i, X_j) \simeq P(X_i) P(X_j) \underset{\Leftarrow}{\Longrightarrow} \Phi_{ij}(X_i, X_j) \simeq 0\right)$$

when is this happening? when there are indirect interactions!

Claudio Altafini, February 14, 2007

ARACNe: the algorithm

Reverse enginnering

Association networks Pearson Correlation

- Mutual information
- Partial Pearson correlation
- Conditional mutual information
 Higher order conditioning
- Algorithms evaluation
- NETWORKS FOR HUMAN B CELLS
- ARACNe: the algorithmData available
- Data avai
 Results
- MYC subnetwork
- Discussion & Limitations

Linear ODEs networks

- testing all potential interactions $\Phi_{ij}(X_i, X_j)$ is computationally heavy and sample demanding \Longrightarrow methods to reduce the cost
- step 1: identify candidate interactions by the pairwise mutual information

$$I_{ij} = I(X_i, X_j)$$

• put a threshold:

f
$$I_{ij} \leq I_0$$
 then $\Phi_{ij} = 0$

- → Relevance network approach
- problem: does not detect indirect interactions
- i.e., co-regulated genes may have $I_{ij} > I_0$ but still $\Phi_{ij} = 0$

– p. 19/60

ARACNe: the algorithm

Reverse enginnering

Association networks

Pearson Correlation

- Mutual information
- Partial Pearson correlation
 Conditional mutual information
- Higher order conditioning
- Algorithms evaluation
- ARACNe: the algorithmData available
- Data avail
 Results
- MYC subnetwork
- Discussion & Limitations

Linear ODEs networks

step 2: use the data processing inequality (DPI)

• meaning: if *X*₁ and *X*₃ interact only through a third gene, then it must be

 $I(X_1, X_3) \leq \min(I(X_1, X_2), I(X_2, X_3))$

- $\Longrightarrow \Phi_{13}$ can be removed (indirect interaction)
- checing all triplets above statistical significance I_{ij} , I_{jk} , I_{ki} the DPI removes the least significant arc

 \implies Markov triple $X_1 \longleftrightarrow X_2 \longleftrightarrow X_3$

- Theorem: if I_{ij} are correct ("asymptotic behavior," meaning "many data") and if the network is a tree =>the ARACNe reconstructs the network exatly
 - meaning of the DPI: interactions decorrelate rather quickly
 - caution: 3-node loops are always opened!
 - algorithm focuses on a network that locally is a tree
 - long loops may survive the "pruning"

Claudio Altafini, February 14, 2007

Reverse enginnering

- Association networks
- Pearson Correlation
 Mutual information
- Partial Pearson correlation
- Conditional mutual information
- Higher order conditioningAlgorithms evaluation
- Algorithms evaluation
 —Networks for Human B cells
- ARACNe: the algorithm
- Data available
- Results
 MYC subnetwork
- Discussion & Limitations

Linear ODEs networks

Data available

- ~ 6000 genes
- 336 gene expression profiles representative of perturbations of B cell phenotypes:
 - normal cells: resting pre-germinal center naive B cells, proliferating germinal center B cells (centroblasts and centrocytes) and post-germinal center memory B cells
 - Transformed cells more than ten subtypes of B cell malignancies
 - Experimentally manipulated cells treated in vitro to induce specific signal transduction pathways or engineered for the expression of several transcription factors
- organism- and tissue-specific perturbations —>highly specific interactions

– p. 21/60

Results

Reverse enginnering

- Association networks

 Pearson Correlation
- Mutual information
- Partial Pearson correlation
 Conditional mutual information
- Higher order conditioning
- Algorithms evaluation
- ARACNe: the algorithmData available
- Results
- MYC subnetwork
- Discussion & Limitations

Linear ODEs networks

- network of ~120.000 interactions
- connectivity graph of the network has a power-law tail
- suggests a scale-free network
 - few hubs (highly connected)
 - many nodes with low connectivity
 - $\bullet\,$ 5% of nodes (major hubs) account for \sim 50.000 connections
 - hierarchical structure: hubs tend to communicate a lot among each other

1,000

seues

10

0 Number of intera

Aumbe

Claudio Altafini, February 14, 2007

– p. 23/60

1 000

Reverse enginnering

- Association networks
- Pearson Correlation
 Mutual information
- Partial Pearson correlation
- Conditional mutual information
- Higher order conditioningAlgorithms evaluation
- Algorithms evaluation
 Algorithms For Human B cells
- ARACNe: the algorithm
- Data available
- Results
- MYC subnetworkDiscussion & Limitations

Linear ODEs networks

a

Zooming in: MYC subnetwork

- the proto-oncogen MYC is knonw to be an "important node"
- the algorithm confirmed it as a major hub
 - 56 first neighbors,
 - 2007 second neighbors
- 30% of first neighbors are large hubs
- hierarchical structure
- redundacy
- robustness

Validation of the MYC subnetwork

Reverse enginnering

- Association networks

 Pearson Correlation
- Mutual information
- Partial Pearson correlation
- Conditional mutual information
- Higher order conditioningAlgorithms evaluation
- NETWORKS FOR HUMAN B CELLS
- ARACNe: the algorithm
- Data available
- Results
- MYC subnetworkDiscussion & Limitations
- Linear ODEs networks

- 29 out of 56 first neighbors were known MYC targets
- known targets are more significant classified as first neighbors (51.8%) than second neighbors (19.4%)
- 37.5% of first neighbors were validated in vivo by chromatin immunoprecipitation (ChIP)
 - \Longrightarrow binding of MYC to their promoter region was shown in new candidate MYC target
 - ⇒validation in vivo of the regulatory pathways

Claudio Altafini, February 14, 2007

- Reverse enginnering
- Association networks
- Pearson Correlation
 Mutual information
- Partial Pearson correlation
- Conditional mutual information
- Higher order conditioningAlgorithms evaluation
- Algorithms evaluation
 —Networks for Human B cells
- ARACNe: the algorithm
- Data available
- Results
- MYC subnetwork
 Discussion & Limitation
- Linear ODEs networks

Discussion & Limitations

- on the positive side:
 - resuts are validated experimentally (remarkable)
 - large part (40%) of the data collected on a decade on MYC was correctly represented
- Imitations (in the paper):
 - edges lack directionality (i.e., they do not indicate which gene is 'upstream' or 'downstream');
 - some direct connections may involve unknown intermediates, as not all biochemical species participating in cellular interactions are represented on the microarray
 - some direct interactions may have been incorrectly removed by the DPI
- futher limitations (in my biased opinion)
 - the # of gene expression profiles they start with is probably too limited
 - we do not find the DPI very effective

– p. 25/60

Reverse enginnering

Association networks Pearson Correlation

- Mutual information
- Partial Pearson correlation
- Conditional mutual information
- Higher order conditioning
- Algorithms evaluation
- NETWORKS FOR HUMAN B CELLS
- ARACNe: the algorithm
- Data available
- Results
- MYC subnetwork Discussion & Limitations

Linear ODEs networks

Linear ODEs networks

Claudio Altafini, February 14, 2007

Reverse enginnering

Association networks

- Linear ODEs networks
- Nonlinear Fitting
- Multiple linear regression
- Nonlinear Multiple regression Inferring a network of ODEs
- Linearization
- \bullet Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time Inferring a linear model via SVD
- steady state inference
- model-based drug design

Parameters fitting

- how do you fit the parameters in a model in order to match experimental data?
 - $\bullet \rightarrow$ linear regression analysis
 - simplest case: want to fit a straight line to a set of measured values $(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)$

Parameters fitting

Reverse enginnering

Association networks

Linear ODEs networks Nonlinear Fitting

- Multiple linear regression
- Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
 Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD
- steady state inference
- model-based drug design

model to fit

$$y = \alpha + \beta x + \epsilon$$

- α, β regression coefficients
- y = response, x = regressor
- $\epsilon \in N(0, \sigma^2)$ random error
- **•** task: estimate α and β from the measured data $\Longrightarrow \hat{\alpha}, \hat{\beta}$
- solution: least squares

observed y = fitted y + residuals

- fitted y: reflects the straight line $\hat{y} = \hat{\alpha} + \hat{\beta}x$
- residuals: random deviation from the straight line

$$\min_{\hat{\alpha}, \hat{\beta}} S = \sum_{i=1}^{m} (\text{observed } y - \text{ fitted } y)^2$$
$$= \sum_{i=1}^{m} (y_i - \hat{\alpha} - \hat{\beta} x_i)^2$$

Claudio Altafini, February 14, 2007

Parameters fitting

And the second a start of the second a start

Reverse enginnering

Association networks

Linear ODEs networks

- Nonlinear Fitting
 Multiple linear regression
- Nonlinear Multiple regression

 $\frac{\partial}{\partial t}$

ć

- Inferring a network of ODEs
- Linearization
- \bullet Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVDsteady state inference
- model-based drug design

• $\hat{\alpha}, \hat{\beta}$ can be computed explicitly from the partial derivatives

$$\frac{\partial S}{\partial \hat{\alpha}} = -2\sum_{i=1}^{m} (y_i - \hat{\alpha} - \hat{\beta}x_i) = 0$$

$$\frac{\partial S}{\partial \hat{\beta}} = -2\sum_{i=1}^{m} x_i (y_i - \hat{\alpha} - \hat{\beta}x_i) = 0$$
$$\implies \begin{cases} \hat{\beta} = \frac{\sum_{i=1}^{m} x_i (y_i - \bar{y})}{\sum_{i=1}^{m} x_i (x_i - \bar{x})} \\ \hat{\alpha} = \bar{y} - \hat{\beta}\bar{x} \end{cases}$$

where $\bar{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$ and $\bar{y} = \frac{1}{m} \sum_{i=1}^{m} y_i$ (averages) meaning of the fitted

model $\hat{y} = \hat{\alpha} + \hat{\beta}x$: line passing through the centroid (\bar{x}, \bar{y}) and rotated until the squared deviations is least.

- in Matlab:
 - Isqr function
 - regression function (Statistics toolbox)

– p. 29/60

Least squares fitting of nonlinear models

Reverse enginnering

Association networks

- Linear ODEs networks
- Nonlinear Fitting
- Multiple linear regression
 Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- \bullet Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVDsteady state inference
- steady state interence
 model-based drug design

- this to fit a straight line: How about fitting a more complicated curve?
- Inear regression: linear in the coefficients α , β , etc., not in the model structure
 - example: quadratic model

 $y = \alpha + \beta_1 x + \beta_2 x^2 + \epsilon$

is solvable directly by means of linear regression

how about nonlinear regression?

Claudio Altafini, February 14, 2007

Reverse enginnering

Association networks

Linear ODEs networks

- Nonlinear Fitting
- Multiple linear regression
- Nonlinear Multiple regressionInferring a network of ODEs
- Linearization
- \bullet Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVDsteady state inference
- model-based drug design

Least squares fitting of nonlinear models

- example: Maltus law $x(t) = x_o e^{-\gamma t}$
 - recall that this is the integral of the linear ODE $\frac{dx}{dt} = -\gamma x$ and describes for example the degradation of a substance
 - least square fitting: assume I measure a few time values $x(t_1) = x_1, \ldots, x(t_m) = x_m$
 - how do I find γ ?
 - take the logarithm on both sides of $x(t) = x_o e^{-\gamma t}$:

 $\underbrace{\ln x(t)}_{u(t)} = \underbrace{\ln x_o}_{\alpha} - \gamma t$

 \implies linear regression

alternatively: measure
 x(t) and dx/dt simultaneously
 and fit directly on the ODE

– p. 31/60

Least squares fitting of nonlinear models

Reverse enginnering

Association networks

- Linear ODEs networks
- Nonlinear Fitting
 Multiple linear regression
- Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
 Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD
- steady state inference
- model-based drug design

• consider $\frac{dx}{dt} = kh^+(x, \theta, n)$ • assume x and $\frac{dx}{dt}$ are measured • k = value at saturation \Longrightarrow known from $\frac{dx}{dt}$ as $t \to \infty$ • to find θ and n• manipulating: $\dot{x} = \frac{kx^n}{\theta^n + x^n} \Longrightarrow x^n = \frac{\dot{x}\theta^n}{k - \dot{x}}$ • take the logarithm $ln(x^n) = ln\left(\frac{\dot{x}}{k - \dot{x}}\theta^n\right) = ln\left(\frac{\dot{x}}{k - \dot{x}}\right) + ln(\theta^n)$ • i.e., $\underbrace{n}_{\beta}\underbrace{ln(x)}_{x} = \underbrace{nln\theta}_{\alpha} + \underbrace{ln\left(\frac{\dot{x}}{k - \dot{x}}\right)}_{\alpha}$

• how about a Hill function? $h^+(x, \theta, n) = \frac{x^n}{\theta^n + x^n}$

 \implies linear regression applies

Claudio Altafini, February 14, 2007

Multiple linear regression

Reverse enginnering

Association networks

Linear ODEs networks

Nonlinear Fitting

- Multiple linear regressionNonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- Information extrapolated from A
 Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD
- steady state inference
- model-based drug design

when observation depends on 2 or more independent variables

$$y = \beta_o + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n$$

- → multiple linear regression model
- procedure is the same: sample regression equations

$$y^i = \beta_o + \beta_1 x_1^i + \beta_2 x_2^i + \ldots + \beta_n x_n^i \quad i = 1, \ldots, m$$

rewritten in matrix form where

$$\mathbf{y} = \begin{bmatrix} y^1 \\ \vdots \\ y^m \end{bmatrix}, \quad \mathbf{X} = \begin{vmatrix} 1 & x_1^1 & \dots & x_n^1 \\ 1 & x_1^2 & \dots & x_n^2 \\ \vdots & \vdots & & \vdots \\ 1 & x_1^m & \dots & x_n^m \end{vmatrix}, \quad \beta = \begin{vmatrix} \beta_o \\ \beta_1 \\ \vdots \\ \beta_m \end{vmatrix}, \quad \epsilon = \begin{vmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_m \end{vmatrix}$$

 $\mathbf{y} = \mathbf{X}\beta + \epsilon$

– p. 33/60

Reverse enginnering
 Association networks
 Linear ODEs networks
 Nonlinear Fitting

Multiple linear regression
Nonlinear Multiple regression
Inferring a network of ODEs
Linearization

Information extrapolated from A
 Inferring linear ODEs
 Continuos vs Discrete time
 Inferring a linear model via SVD
 steady state inference
 model-based drug design

Multiple linear regression

functional to be minimized

$$S(\beta) = \sum_{i=1}^{\kappa} \epsilon^2 = \|\epsilon\|_2 = \|\mathbf{y} - \mathbf{X}\beta\|_2 \quad (\text{i.e., } = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta))$$

• the least squares problem is solved by $\hat{\beta}$ such that

$$\frac{\partial S(\beta)}{\partial \beta}\Big|_{\hat{\beta}} = -2\mathbf{X}^T \mathbf{y} + 2\mathbf{X}^T \mathbf{X} \hat{\beta} = 0$$

 $\hat{eta} = \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \mathbf{X}^T \mathbf{y}$

i.e.,
$$\mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} = \mathbf{X}^T \mathbf{y} \Longrightarrow$$

fitted model

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X} \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y} =: \mathbf{H}\mathbf{y}$$

residuals

 $\mathbf{r} = \mathbf{y} - \hat{\mathbf{y}} = (\mathbf{I} - \mathbf{H})\mathbf{y}$

Claudio Altafini, February 14, 2007

Multiple linear regression • when is $(\mathbf{X}^T \mathbf{X})^{-1}$ well-defined? Reverse enginnering Association networks $\mathbf{X} = \begin{bmatrix} 1 & x_1^1 & \dots & x_n^1 \\ 1 & x_1^2 & \dots & x_n^2 \\ \vdots & \vdots & & \vdots \\ 1 & m & & m \end{bmatrix}, \qquad \begin{array}{c} \mathbf{X} & m \times (n+1) \text{ matrix} \\ \mathbf{X}^T \mathbf{X} & (n+1) \times (n+1) \text{ matrix} \end{array}$ Linear ODEs networks Nonlinear Fitting Multiple linear regression Nonlinear Multiple regression Inferring a network of ODEs Linearization \bullet Information extrapolated from AInferring linear ODEs • Continuos vs Discrete time Inferring a linear model via SVD steady state inference model-based drug design • if $rank(\mathbf{X}^T\mathbf{X}) = n+1$ then $(\mathbf{X}^T\mathbf{X})^{-1}$ exists meaning: **1.** $m \ge n+1$ 2. the regressors of X (i.e., the columns of X) must be linearly independent practical meaning 1. # of experiments must be \ge # of variables 2. data must be collected in different experimental situations

– p. 35/60

Nonlinear Multiple regression

Reverse enginnering

Association networks

Linear ODEs networks

Nonlinear Fitting

- Multiple linear regression
- Nonlinear Multiple regressionInferring a network of ODEs
- Linearization
- Information extrapolated from A
 Inferring linear ODEs
- Interring linear ODEs
 Continuos vs Discrete time
- Inferring a linear model via SVD
- steady state inference
- model-based drug design

how about nonlinear models?

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}, \beta), \qquad \mathbf{f}(\mathbf{x}, \beta) = \begin{bmatrix} f_1(\mathbf{x}, \beta) \\ \vdots \\ f_n(\mathbf{x}, \beta) \end{bmatrix}$$

$$\mathbf{f}(\mathbf{x}, \beta) = \begin{bmatrix} f_1(\mathbf{x}, \beta) \\ \vdots \\ f_n(\mathbf{x}, \beta) \end{bmatrix}$$

$$\mathbf{f}(\mathbf{x},\,\beta) = \begin{bmatrix} f_1(x_1,\,\beta) \\ \vdots \\ f_n(x_n,\,\beta) \end{bmatrix}$$

then the ODEs are not coupled \implies each nonlinear problem can be treated separately if not, then there is no general rule to clear with it. A service

if not, then there is no general rule to deal with it. A common approach it to linearize around an equilibrium point.

Claudio Altafini, February 14, 2007

Inferring a network of ODEs

• network of n genes x_1, x_2, \ldots, x_n

vector ODEs in general form

Reverse enginnering

Association networks

Linear ODEs networks

- Nonlinear Fitting
 Multiple linear regression
- Multiple linear regression
 Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- Information extrapolated from A
- Inferring linear ODEsContinuos vs Discrete time
- Continuos vs Discrete time
 Inferring a linear model via SVD
- steady state inference
- model-based drug design

 $\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}), \qquad \mathbf{f}(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ \vdots \\ f_n(\mathbf{x}) \end{bmatrix}$

 $f_i(\mathbf{x}) =$ description of how the expression levels of genes x_1, \ldots, x_n are affecting the transcription rate of x_i

- typically
 - $f_i(\mathbf{x}) > 0$ (activation) for some combination of x_1, \ldots, x_n
 - $f_i(\mathbf{x}) < 0$ (*repression*) for some other combination
 - for (x_1, \ldots, x_n) such that $f_i(\mathbf{x}) = 0$ for all $i = 1, \ldots, n$ then we have a steady state (rate of all x_i stays constant)
- Inferring the network means finding the functions f_i

– p. 37/60

Inferring a network of ODEs

Reverse enginnering

Association networks

Linear ODEs networks

Nonlinear Fitting

- Multiple linear regression
- Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- Information extrapolated from A
- Inferring linear ODEsContinuos vs Discrete time
- Continuos vs Discrete time
 Inferring a linear model via SVD
- steady state inference
- model-based drug design

• simplest form: linear model $\frac{dx_i}{dt} = f_i(\mathbf{x}) = a_{i1}x_1 + \ldots + a_{in}x_n$

$$\frac{d\mathbf{x}}{dt} = A\mathbf{x}, \qquad A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{n1} & \dots & & a_{nn} \end{bmatrix}$$

- *a_{ij}* measure of the interaction strength of gene *j* over gene *i*
- *a_{ij}* = 0 ⇒gene *j* is not affecting the transcription rate of gene *i*
- finding A means finding the connectivity matrix of the network (i.e., its topology)
- in addition, the a_{ij} also quantify the network of connections
- typically only a few a_{ij} are $\neq 0$ on each row \implies low connectivity (the matrix A is sparse)

Claudio Altafini, February 14, 2007

Inferring a network of ODEs

- Association networks
- Linear ODEs networks
- Nonlinear Fitting
- Multiple linear regression
 Nonlinear Multiple regression
- Nonlinear Multiple regressionInferring a network of ODEs
- Linearization
- \bullet Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD
 steady state inference
- model-based drug design

■ directed graph ⇒ this is *causal information*

– p. 39/60

Inferring a network of ODEs

Reverse enginnering

Association networks

Linear ODEs networks
Nonlinear Fitting
Multiple linear regression

- Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- \bullet Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD
- steady state inference
- model-based drug design

• the structure of A also allows do identify independent blocks

Linearization

Claudio Altafini, February 14, 2007

Reverse enginnering

Association networks

Linear ODEs networks

- Nonlinear FittingMultiple linear regression
- Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- Information extrapolated from A
- Inferring linear ODEsContinuos vs Discrete time
- Continuos vs Discrete time
 Inferring a linear model via SVD
- steady state inference
- model-based drug design

- in reality the function *f* will typically be nonlinear
- reconstructing f nonlinear: the # of parameters may be high (ex: each Hill function has 3 parameters) typically then one considers the linear model obtained by means of linearization in a neighbohood of a stable steady state x* (i.e. such that f(x*) = 0)

i.e.,
$$a_{ij} = \frac{\partial f_i(x)}{\partial x_j}\Big|_{x=x^*}$$

– p. 41/60

Association networks

Linear ODEs networks

Nonlinear Fitting

- Multiple linear regression
- Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
 Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD
- steady state inference
- model-based drug design

■ calling $\mathbf{x} = \mathbf{x}^* + \delta \mathbf{x}$ ($\delta \mathbf{x}$ small) ⇒ Taylor expansion around \mathbf{x}^*

$$\frac{d\mathbf{x}}{dt} = \underbrace{f(\mathbf{x}^*)}_{=0} + \underbrace{\frac{\partial f}{\partial x}}_{A\mathbf{x}} \mathbf{x}^* + \underbrace{o(\delta\mathbf{x})}_{\approx 0} = A\mathbf{x}$$

linearized system = plane tangent to the full nonlinear model computed at x*

Claudio Altafini, February 14, 2007

Reverse enginnering Association networks Interring a network of ODEs Linearization Inferring a network of ODEs Linearization Inferring linear ODEs Continuous vs Discrete time Inferring linear model via SVD steady state inference

model-based drug design

Information extrapolated from A

• compute the eigenvalues of A

eigenvalues of A = real or complex numbers λ such that $A\mathbf{v} = \lambda \mathbf{v}$ for some vector \mathbf{v} (called *eigenvector*): they give the *characteristic modes* of the ODE $\frac{d\mathbf{x}}{dt} = A\mathbf{x}$

- A is stable ⇔ Re[λ] < 0 (Re[λ] ≤ 0 and multiplicity(λ)≤ 1)
 ⇒all modes are decaying

 - \implies $\mathbf{x}(t) \xrightarrow{t \to \infty} \mathbf{x}^*$ stable stationary steady state
 - \Longrightarrow if I disturb the initial condition: $\mathbf{x}(t) + \delta \mathbf{x}(t) \xrightarrow{t \to \infty} \mathbf{x}^*$
- if $\operatorname{Re}[\lambda] > 0$ for some eigenvalue $\lambda \Longrightarrow A$ is unstable and $\mathbf{x}(t)$ may grow unbounded
- λ complex number $\Longrightarrow \mathbf{x}(t)$ has oscillations
- a_{ii} = self-regulating coefficient: includes degradation rate

$$A = \tilde{A} - \begin{bmatrix} \gamma_1 & & \\ & \ddots & \\ & & \gamma_n \end{bmatrix}$$

– p. 43/60

/	ionale Superior	e di Studi An	
Losen	ATT	TTP WEAT	\backslash
Sion	11 De	the a	7
\s	Kel	1.5	5
	2-2-	551	/
1	ma per seguir vi	tute e consistente	

Inferring linear ODEs

Reverse enginnering

Association networks

Linear ODEs networks Nonlinear Fitting

- Multiple linear regression
- Nonlinear Multiple regression
- Inferring a network of ODEsLinearization
- Linearization
 Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD
- steady state inference
 model-based drug design

how to compute A?

If we

- 1. can perturb each gene individually
- 2. measure simultaneously
 - gene expression level x

Inferring linear ODEs

- amount of the perturbation bⁱ
- rate $\frac{d\mathbf{x}}{dt}$
- $\blacksquare \Longrightarrow$ finding A becomes a multilinear regression problem
- example: choosing a linear additive model for the perturbation

Claudio Altafini, February 14, 2007

Reverse enginnering

Association networks

Linear ODEs networks Nonlinear Fitting

- Multiple linear regression
- Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- Information extrapolated from A
 Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD
- steady state inferencemodel-based drug design

- $\dot{X} = AX + B$
- $\blacksquare \Longrightarrow finding A becomes a multilinear regression problem$

$$\mathbf{A} = \operatorname{argmin} \|AX + B - \dot{X}\|_2$$

(i.e., for each row a of A: $\hat{\mathbf{a}}^T = (XX^T)^{-1} X(\dot{\mathbf{x}}_{row}^T - \mathbf{b}_{row}^T)$)

properties

- perturbations need not form a diagonal matrix *B*: all is needed is a matrix *X* such that rank(*X*) ≥ *n* i.e., at least *n* arrays of "independent" measurements
- drawback: A is very sensitive to noise in X and B
- drawback: need to measure the rates dx/dt → this is normally done by finite difference schemes + interpolation/smoothing provided you have a time series of data

– p. 45/60

Continuos vs Discrete time

model to fit Reverse enginnering $\dot{x} = Ax$ Association networks Linear ODEs networks measures (constant sampling time T) Nonlinear Fitting Multiple linear regression Nonlinear Multiple regression $x(T), x(2T), x(3T), \dots, x(mT)$ Inferring a network of ODEs Linearization Information extrapolated from A fitting a discrete dynamical model: Inferring linear ODEs Continuos vs Discrete time since measurements are in discrete time, one can choose Inferring a linear model via SVD steady state inference to infer a discrete-time state update matrix F: model-based drug design x((k+1)T) = Fx(kT), k = 1, 2, ...

multilinear regression procedure

• inferring F needs no observation of the $\frac{dx}{dt}$

Claudio Altafini, February 14, 2007

Continuos vs Discrete time

Reverse enginnering

Association networks

Linear ODEs networks

- Nonlinear Fitting Multiple linear regression
- Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- \bullet Information extrapolated from A
- Inferring linear ODEs Continuos vs Discrete time
- Inferring a linear model via SVD
- steady state inference
- model-based drug design

- \blacksquare what is the relation between A and F??
 - $F = e^{AT}$
 - if A sparse \Rightarrow F is sparse
 - \implies if A = connectivity matrix, $F = e^{AT}$ is not a connectivity matrix!
 - \bullet not obvious (neither easy) to reconstruct A given F (i.e., to find the network from F)

example

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & -1 & -2 \\ 1 & -2 & -3 \end{bmatrix}$$

$$F = e^{AT} = \begin{bmatrix} 2.7 & 1 & 20.1 \\ 1 & 0.4 & 0.1 \\ 2.7 & 0.1 & 0.1 \end{bmatrix}^{1}$$

time

– p. 47/60

Reverse enginnering

Association networks

Linear ODEs networks

Nonlinear Fitting

Linearization

Multiple linear regression
Nonlinear Multiple regression
Inferring a network of ODEs

Information extrapolated from A
 Inferring linear ODEs
 Continuos vs Discrete time
 Inferring a linear model via SVD
 steady state inference
 model-based drug design

Continuos vs Discrete time

• how to get A out of F?

1. exact caculation: matrix logarithm

$$A = \frac{\ln(F)}{T}$$

- complication: m < n $\implies F$ is not full-rank \implies cannot take log
- 2. approximation 1.: Euler discretization

$$\frac{dx}{dt} \simeq \frac{x((k+1)T) - x(kT)}{T} \implies x((k+1)T) = (I + TA)x(kT)$$
$$= Fx(kT)$$
$$A = \frac{F - I}{T}$$

3. approximation 2.: bilinear approximation

$$A = \frac{2F - I}{TF + I}$$

both approximations are inadequate when T is not very small

Claudio Altafini, February 14, 2007

– p. 49/60

Inferring a linear model via SVD

Claudio Altafini, February 14, 2007

Inferring a linear model via SVD

Association networks

Linear ODEs networks

- Nonlinear Fitting
- Multiple linear regression Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- \bullet Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SV steady state inference
- model-based drug design

SVD solution is *still* the least squares solution:

$$A_o = \operatorname{argmin} \|AX + B - \dot{X}\|_2$$

general solution: affine space

$$A = A_o + CV^T \qquad C = \begin{bmatrix} c_{11} & \dots & c_{1\ell} & 0 & \dots & 0 \\ \vdots & & & & \vdots \\ c_{n1} & \dots & c_{n\ell} & 0 & \dots & 0 \end{bmatrix}$$

- c_{ij} = all degrees of freedom that can be used to optimize some extra criterion: e.g. the sparsity of A
- $\bullet \Longrightarrow$ maximize # of zeros in A
- impose A = 0 i.e., $A_o = -CV^T$

Inferring a linear model via SVD

Reverse enginnering

Association networks

Linear ODEs networks

Nonlinear Fitting

- Multiple linear regression
- Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- \bullet Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete tim
- Inferring a linear model via SV
- steady state inference
 model-based drug design

want to satisfy as many constraints as possible: solution is different from least squares solution

robust regression problem: L₁ problem exact fit leaving as few outlier as possible

 $\hat{A} = \operatorname{argmin} \|AX + B - \dot{X}\|_1$

Yeung MKS, Tegner J and Collins JJ. . PNAS 99: 6163 (2002)

Claudio Altafini, February 14, 2007

Linear model via steady state measurements

Reverse enginnering

Association networks

Linear ODEs networks

- Nonlinear Fitting
 Multiple linear regression
- Nonlinear Multiple regression
- Inferring a network of ODEs
- Linearization
- \bullet Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD
 steady state inference
- model-based drug design

Gardner TS, di Bernardo D, Lorenz D and Collins JJ. Inferring genetic networks and identifying compound mode of action via expression profi ling. Science 301: 102-105 (2003)

- problem with previous method: still requires to measure the rates $\frac{dx}{dt}$
- often times there is no time series available: only apply perturbations and wait for the system to resettle at a new steady state $\Longrightarrow \frac{d\mathbf{x}}{dt} = 0$
- if x* is stable, the new steady state is nearby ⇒linear methods still make sense
- after a perturbation:

 $AX + B = 0 \implies AX = -B$

 \Longrightarrow still the same multilinear regression problem

– p. 53/60

Claudio Altafini, February 14, 2007

– p. 55/60

Linear model via steady state measurements

Reverse enginnering

Association networks

Linear ODEs networks

 Nonlinear Fitting
 Multiple linear regression
 Nonlinear Multiple regression
 Inferring a network of ODEs

- Linearization
- \bullet Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD steady state inference

model-based drug desigr

previously mapped regulatory structure

	recA	lexA	ssb	rec F	din1	umuDC	rpoD	rpoH	rpas
recA	+	772	77	+	+	5 77 8	+	0	0
lexA	+	12	12	+	+	_	+	0	0
ssb	+		22	+	+		+	0	0
recF	0	0	0	0	0	0	+	0	+
dinI	+	75	170	+	+		+	0	0
umuDC	+		-	+	+	5775	+	0	0
rpoD	+	-		+	+	-	+	+	0
rpoH	0	0	0	0	0	0	+	+	0
npoS	0	0	0	0	0	0	+	0	+

identified network

	recA	lexA	ssb	recF	din1	umuDC	гроД	rpoH	rpoS
recA	-0.597	-0.179	-0.010	0	0.096	0	-0.011	0	0
lexA	0.387	-1.670	-0.014	0	0.087	-0.068	0	0	0
ssb	0.044	-0.189	-1.275	0	0.053	0	0.027	0	0
$recF^{\dagger}$	-0.1808	0.2377	-0.0251	-1	-0.0554	0	0	0	0.39
dinI	0.281	0	0	0	-2.094	0.156	-0.037	0.012	0
umuDC	0.112	-0.403	-0.016	0	0.205	-1.147	0	0	0
rpoD	-0.171	0	-0.017	0	0.025	0	-1.513	0.021	0
троН	0.096	0	0.001	0	-0.009	-0.031	0	-0.483	0
rpoS	0.217	0	0	-1.678	0.672	0	0.077	0	-3.921

Claudio Altafini, February 14, 2007

What lies ahead? Model-based drug design

Reverse enginnering

Association networks

Linear ODEs networks

- Nonlinear Fitting
- Multiple linear regression
- Nonlinear Multiple regression Inferring a network of ODEs
- Linearization
- \bullet Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD steady state inference
- model-based drug design

di Bernardo D, Thompson MJ, Gardner TS, Chobot SE, Eastwood EL, Wojtovich AP, Elliott SJ, Schaus SE, Collins JJ. Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks Nat Biotechnol. 2005,23(3):377-83

– p. 57/60

What lies ahead? Model-based drug design

Reverse enginnering

Association networks

Linear ODEs networks Nonlinear Fitting

- Multiple linear regression
- Nonlinear Multiple regression
- Inferring a network of ODEsLinearization
- Information extrapolated from A
- Inferring linear ODEs
- Continuos vs Discrete time
- Inferring a linear model via SVD
- steady state inferencemodel-based drug design

\blacksquare assume to have identified the matrix A in

 $\dot{x} = Ax$

- assume you want to test the effect of an external stimulus u (e.g. drug) on the system
- **task**: compute the mode of action of *u*:
 - applying u to the linear system

 $\dot{x} = Ax + bu$

- b = n × 1 vector of coefficients = pathways through which the drug is acting → directly regulated genes
- all indirect regulations must be obtained from A =fundamental prerequisite: have a sound knowledge of A
- finding b is easier than finding A (similar procedure)

Claudio Altafini, February 14, 2007

 \rightarrow linear (or nonlinear) control theory?

– p. 59/60