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High level analysis of microarray data

■ Model-free methods
1. CLUSTERING ALGORITHMS

◆ put together genes with similar expression profiles
2. PRINCIPAL COMPONENT ANALYSIS

◆ reduce the dimension of a data set keeping the most
significant “directions”

3. ONTOLOGICAL ENRICHMENT

◆ add functional annotation (e.g. GO)
◆ perform statistical tests on the ontological information

http://people.sissa.it/~altafini
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High level analysis of microarray data

■ Gene network inference methods
1. “LESS” MODEL-DEPENDENT METHODS (e.g. probabilistic,

statistical, etc.)
◆ looking only for the core relationships of a network
◆ not quantitative
◆ can be used for large scale networks

2. MODEL-DEPENDENT METHODS (e.g. ODEs)
◆ provide both the network topology and the functional

relationships
◆ useful mostly for small/mid scale networks
◆ quantitative

■ warning: the classification is not sharp!!!!
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Clustering



High level analysis of microarrays

Clustering

● Clustering

●k means clustering

● Hierarchical clustering

● SOM clustering

● Quality indices

● More clustering

● Drawbacks

● Example: hippocampus

● hy. time series

● clustering

● clustering

Principal Component Analysis

Ontological enrichment

Inferring Regulatory Networks

Bayesian Networks

Claudio Altafini, February 9, 2007 – p. 5/60

Clustering

■ example: cluster these■■
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Clustering

■ Clustering = dividing a set of data into relatively
homogeneous groups according to a user-defined metric

d(x, y) > 0 such that







d(x, x) = 0

d(x, y) = d(y, x)

d(x, y) 6 d(x, z) + d(z, y)

■ typically: Lp norm

d(x, y) = ‖x − y‖p, p = 1, . . . ,∞
example: Euclidean norm p = 2

d(x, y) =
√

(x1 − y1)2 + . . . + (xn − yn)2

■ 3 main algorithms:
◆ k-means
◆ hierarchical clustering
◆ SOM: Self Organizing Maps
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Clustering algorithms: k-means

■ Inputs: data x1, . . . ,xn, # of clusters k

■ Output: k clusters
■ Algorithm:

1. select k centroids
2. assign each element xi to the cluster with nearest

centroid
3. recompute the centroid
4. repeat until it converges

■ Properties:
◆ need to choose k
◆ initialization step can change the result
◆ sensitive to perturbations
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Hierarchical Clustering

■ Inputs: data x1, . . . ,xn

■ Output: clustering tree
■ Algorithm:

◆ put each xi in a cluster Ci = {xi}
◆ compute the merging cost between each pair of clusters
◆ merge the two clusters with cheapest merging cost
◆ repeat until only 1 cluster is left

x x x x x x x21 3 4 5 6 7

cluster
merging

cost 

■ cost of merging
◆ single linkage minx∈Ci,y∈Cj

d(x, y) (→ loose clusters)
◆ average linkage 1

|Ci| |Cj |

∑

x∈Ci

∑

y∈Cj
d(x, y)

◆ complete linkage maxx∈Ci,y∈Cj
d(x, y) (→ tight

clusters)
■ properties:

◆ greedy algorithm
◆ tends to build big clusters
◆ need to choose a threshold on the # of clusters
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Clustering: Self Organizing Maps

■ Inputs: data x1, . . . ,xn;
SOM topology (k nodes)

■ Output k clusters
■ Algorithm:

1. start with a simple topology
2. select a random data p

3. move all nodes towards p according to the rule

fi+1(x) = fi(x) + τ(d(x, xp), i)(p − fi(x))

◆ fi(x) = position of node x at iteration i
◆ xp = node closest to p

◆ τ = τ(d, i) learning rate
4. go to 2. until convergence

■ properties
◆ even more computationally costy, but more robust
◆ neighboring clusters are similar: elements on the border

can belong to both clusters
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Clustering: quality indices

■ homogeneity
1

ngenes

∑

i

d(xi, C(xi))

◆ = average distance between each x and the centroid of
the cluster it belongs to

◆ reflects the compactness of the cluster
■ separation

1
∑

i6=j nCi
nCj

∑

i6=j

nCi
nCj

d(c̄i, c̄j))

◆ weighted average distances between cluster centroids
◆ reflects the distance between clusters

■ siluette width: composition of the two indices
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More advanced clustering

■ example: rather than a distance one can use a Pearson
correlation

d̃(x, y) =

∑n

i=1(xi − x̄)(yi − ȳ)
√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

where x̄ = 1
n

∑n

i=1 xi, ȳ = 1
n

∑n

i=1 yi

■ Pearson “metric”:
◆ uses differences from the mean rather than the mean
◆ normalized by the standard deviation =⇒d̃(x, y) ∈ [−1, 1]
◆ invariant to scaling and shifting of x and y
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Clustering: drawbacks

■ clustering:
similar expression =⇒similar function
Is it really usefull to inferr common function and
co-regulation???

■ example:

+++

co−regulation same cluster

+

co−regulation same cluster
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Clustering: hippocampus time-series

time instants 0 min 30 min 90 min 180 min

■ what does the time series looks like for all genes?
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■ mess....
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Hippocampus time series

■ take the log
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■ still mess....
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Hippocampus time series

■ to identify interesting genes:
1. select only genes that show differential expression at a

fold change analysis
◆ blue = genes that stay up for all 3 time samples
◆ red = genes that stay up for 2 out of 3 time samples

4-fold 3-fold
up−regulated in 3 and 2 times
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2. select only genes with sufficiently high variance
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Similar pattern: clustering

■ clustering: similar gene expression time course =⇒similar
function (or at least co-regulation)????

■ if I filter out those with little variance (the majority) are cluster
the remaining
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Similar pattern: clustering

■ clustering depends a lot on the algorithm
◆ previous page: euclidean distance
◆ here: Pearson correlation as distance
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Principal Component Analysis
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PCA: Principal Component Analysis

■ PCA detects the directions that capture the most of the
information available from the data

■ PCA is performed by a linear transformation of the data set
based on the Singular Value Decomposition (SVD)
◆ idea of principal components analysis: take linear

combinations of the x as “basis” elements so that the new
basis elements are orthogonal =⇒they contain no
redundant information

◆ Successive principal components capture less and less
information about the data

◆ We can truncate the representation of the data to a limited
number of principle components =⇒dimensionality
reduction

■ use SVD to decompose X (n × m matrix):

X = UΛV T U n × m orthogonal UUT = In

V m × m orthogonal V V T = Im
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PCA: Principal Component Analysis

X =
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■ ` = rank(X)

■ λ1, . . . , λ` singular values: λj =
√

µj

■ µj = eig(Σ) = eigenvalues of the covariance matrix of X
■ Σ = covariance matrix of X after centering:

Σ = (X − [x̄1 . . . x̄m])T (X − [x̄1 . . . x̄m])

■ is PCA improving yor clustering algorithm? Not
necessarily.... see
K. Y. Yeung, W. L. Ruzzo Principal Component Analysis for clustering gene expression

data, Bioinformatics 17 pages 763-774, 2001
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Ontological enrichment
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Gene Ontology

■ GO = Gene Ontology project provides a controlled
vocabulary to describe gene and gene product attributes in
any organism

■ Genes are associated, with GO terms by trained curators
■ GO annotations give “functions” label to genes
■ cross-link to most common gene banks, pathways database,

etc.

■ http://www.geneontology.org
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Structure of GO

■ GO terms:
1. Biological Process
2. Molecular Function
3. Cellular Component
■ a gene may belong to many categories
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Structure of GO

■ Ontologies are structured
as a hierarchical directed
acyclic graph (DAG)

■ Terms can have more
than one parent,
and zero, one or
more children
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Ontological enrichment

■ Ontological enrichment: questions you would like to ask:
◆ what is the “main” functional annotation of interesting

genes (e.g. differentially expressed, or genes having a
similar expression profiles)?

◆ do genes involved in the same process/function have a
similar profile of expression?

■ Many tools exist that use GO to answer these questions:
http://www.geneontology.org/GO.tools.microarray.shtml

■ Most of these tools work in a similar way:
◆ input a gene list and a subset of “interesting” genes
◆ tool shows which GO categories have most interesting

genes associated with them i.e. which categories are
“enriched” for interesting genes

◆ tool provides a statistical measure to determine whether
enrichment is significant
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Ontological enrichment

1. select a set of significant genes (e.g. t-test)
2. attain all the GO categories corresponding to them
3. analyze GO terms for significance
■ example of statistical measure: Hypergeometric test

◆ N genes on the microarray

◆ Bio is a GO term

{

M genes ∈ Bio

N − M genes /∈ Bio

◆ K = n. of significant genes
◆ what is the probability of having exactly x genes from K,

of type Bio?

P (X = x |N, M, K) =

(
M
x

)(
N−M
K−x

)

(
N
K

)

◆ P-value = probability of having at least x of K genes
(cumulative proability distribution)

p − val = 1 −
x−1∑

i=0

(
M
x

)(
N−M
K−x

)

(
N
K

)
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GO Tools

■ Tools:

Tool Statistical model Correction for multiple experiments

Onto-Express χ2 , binomial, hypergeometric, sidák, Holm, Bonferroni, FDR

Fisher’s exact test

GoMiner Fisher’s exact test Relative enrichment

EASEonline Fisher’s exact test Bonferroni

GeneMerge Hypergeometric Bonferroni

FatiGO Percentage "Step-down minP, FDR

GOstat chi2 „ Fisher’s exact test" FDR, Holm

GOToolBox Hypergeometric, binomial, Bonferroni, Holm, Hochberg, Hommel, FDR

Fisher’s exact test

GoSurfer χ2 q-value ,DAG

■ Affymetrix also provide a Gene Ontology Mining Tool as part
of their NetAffx Analysis Center which returns GO terms for
probe sets
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Example: Onto-Express

■ Onto-Express is available at
http://vortex.cs.wayne.edu/projects.htm
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Example: Onto-Express
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Example: Onto-Express
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Other Ontologies: KEGG pathways
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Biclustering

■ clustering can be carried out:
◆ w.r.t gene expression
◆ with respect to some other condition

(e.g. clinical condition in which I take the sample,
ontological information)

■ two-axis clustering =⇒biclustering

genes

conditions conditions

genes
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Biclustering: expression + ontology

E. Segal, N. Friedman, D. Koller, A. Regev A module map showing conditional activity of

expression modules in cancer Nature Genetics 36, 1090-1098 (2004)

■ idea inidividual genes  biological process

regulatory modules

??

■ rather than working with single genes and their regulatory
mechanics is it possible to lump together genes into modules
= set of genes that act in concert to carry out a specific
function?

■ here: DNA microarray data in a comprehensive analysis
aimed at identifying the shared and unique molecular
’modules’ underlying human malignancies.

■ in the paper modules are extrated and used to characterize
gene-expression profiles in tumors as a combination of
activated and deactivated modules.
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A cancer compendium

■ 26 studies

■ expression of 14.145 genes
■ 1.975 arrays: Stanford Microarray Database

Whitehead Institute Database

■ 2849 gene sets: Gene Ontology (1281)
KEGG: Kyoto Encycl. of Genes and Genomes (114)
Gene MicroArray Pathway Profiler (53)
other: tissue-specific gene sets (101)
other: clustered sets of coexpressed genes (1300)

■ whole analysis: data mining tool called GeneXPress
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Method modules & clinical conditions

■ # of statistically significant modules = 456
(spanning various processes and functions, metabolism,
transcription, degradation, cellular and neuronal signalling,
growth, cell cycle, apoptosis, extracellular matrix and
cytoskeleton components)

■ next: identify clinical conditions according to the combination
of active/deactive modules → 263 biological and clinical
conditions (tissue type, tumor type, diagnosis and prognosis
info, molecular markers)
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Modules vs clinical conditions
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Interpretation of the network
■ interpretation

1. clinical conditions → modules
◆ some modules (e.g. cell cycle) are common to many tumor

types → tumorigenic processes?
◆ some other are specific (e.g. neural processes repressed in a

set of brain tumors)

2. modules → clinical conditions
◆ various tumors of hematologic nature involve similar immune,

inflammation, growth regulation and signalling modules

■ Conclusion:
◆ large scale analysis between different

tissues/conditions/experimental setting yelds results with
statistical significance > 0

■ in studying tumors:
◆ Activation of some modules is specific to particular types of

tumor
◆ Other modules are shared across a different clinical conditions,

suggestive of common tumor progression mechanisms.
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Inferring Regulatory Networks
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Limitations of clustering/PCA

■ clustering: methods of information extraction from data
based on co-regulation:
◆ similar expression pattern over a set of experiments

=⇒similar function
◆ all the clustering algorithms give the same results if the

time points are randomly permuted
◆ cannot reveal causal/dynamical connections
◆ =⇒does not reveal what is behind the co-regulation

■ more ambitious goal:
find the transcriptional regulatory network

=⇒
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The “reverse engineering” paradigm

■ basic idea: the architecture of the network is inferred (or
reverse engineered) based on the observed response of the
system to a series of experimental perturbations

� � � � � � � � � � � � �
� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �?

measured
signals

INPUTS

perturbations
external
stimuli

OUTPUTS

■ measured signals: [mRNA], [proteins] [metabolites]
◆ global response: measure the entire “state” vector

■ time series (e.g. cell cycle)
■ single time point (e.g. steady state)

■ perturbations: experimental interventions that alter the state
of interest
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The “reverse engineering” paradigm

■ TASK: from gene expression profiles to a gene-gene graph
◆ extract the network structure
◆ quantify the interactions

■ computationally the task is hard: a very large amount of data
is required
→ data rich/data poor paradox
many data 6=⇒ significant data for network inference

■ what are the significant data?
Those obtained perturbing sistematically the variables of
interest
→ regulation is dynamical
we see it “static” because most time we cannot observe the
transient period (in which the system reacts to the change),
but just measure the new “steady state” in which the system
resettles following a perturbation
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The “reverse engineering” paradigm

■ what are then the perturbations?
◆ everything that moves the cell from its “standard” working

condition
◆ biochemical, environmental, genetic, transcriptional, etc.

examples: stress factors, starvation, infection, hormonal
and growth factors; chemical inhibitors/activators, protein
activity, metabolite concentration, gene overexpressions
and inhibition, gene knockout and mutations, miRNA

◆ perturbations could be
■ temporary (e.g. activating or inhibiting a signalling

protein by phosphorylation) or permanent (e.g. gene
knockout)

■ time dependent (e.g. time-varying stimulus) or static
(e.g. gene knockout)

■ local (i.e., affecting a single gene) or global ( i.e., change
in temperature or pH)

■ of small amplitude or large amplitude
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Network inference algorithms

■ a few methods
1. BAYESIAN NETWORK

◆ attains a probabilistic graph through a bayesian learning
◆ (exact) complexity: superexponential

2. ASSOCIATION NETWORKS

◆ learns a graph through a “similarity measure”
◆ polynomial complexity

3. LINEAR ODES MODELS

◆ linear complexity
◆ suffers from underdetermination
◆ model-dependent
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Bayesian networks

Bayesian networks
■ are a probabilistic framework aiming at capturing the

conditional dependence or conditional independence
between “states” in a set of data.

■ approach is statistic in nature =⇒able to cope with noisy
data & not sufficiently many experimental data

■ useful when each state depends only on a relatively small #
of other components → networks with low connectivity

■ Bayesian network can
◆ learn the regulatory network
◆ find the best set of parameters for the conditional

distribution of that network
◆ “best” is to be taken in a Bayesian sense as the most

probable given the data
N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian Network to Analyze

Expression Data J. Computational Biology 7:601-620, 2000
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Bayesian networks

■ example

■ “A causes B” is the rule to construct the graph
■ tables = conditional probability distribution
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Bayes rule

posterior probability =
marginal likelihood · prior probability

coefficient

■ if A and B are independent events

p(A B) = p(A) p(B)

■ if A and B are not independent

p(A B) = p(A|B)p(B)

= p(B|A)p(A)

=⇒conditional probability

p(A|B) =
p(B|A)p(A)

p(B)



High level analysis of microarrays

Clustering

Principal Component Analysis

Ontological enrichment

Inferring Regulatory Networks

Bayesian Networks

● Bayesian networks

● Bayes rule

● Bayesian networks

● Equivalence classes

● Variable representation

● Learning the network

● Discovering features

● Drawbacks

● Improvements

● Dynamic Bayesian Netw

Claudio Altafini, February 9, 2007 – p. 47/60

Bayes rule: example

{

p(C = 1) = 0.5

p(C = 0) = 0.5

{

p(R = 1|C = 1) = 0.8

p(R = 1|C = 0) = 0.2

■ from the likelihood

P (R = 1) = p(C = 0, R = 1) + p(C = 1, R = 1)

= p(R = 1|C = 0)p(C = 0) + p(R = 1|C = 1)p(C = 1)

= 0.2 · 0.5 + 0.8 · 0.5 = 0.5

■ Bayes rule
p(C|R) =

p(R|C)p(C)

p(R)

■ e.g. if we see it is raining R = 1 =⇒

p(C = 0|R = 1) =
p(R = 1|C = 0)p(C = 0)

p(R = 1)
=

0.2 · 0.5

0.5
= 0.2

(

if instead p(C = 0) = 0.9 =⇒
{

P (R = 1) = 0.26

p(C = 0|R = 1) = 0.69!!

)
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Bayes rule: example

■ how about if you observe the grass is wet?
◆ is it because of

■ sprinkler

p(S = 1|W = 1) =
p(S = 1, W = 1)

p(W = 1)
= 0.43

■ rain

p(R = 1|W = 1) =
p(R = 1, W = 1)

p(W = 1)
= 0.7

◆ from the joint probability, we deduce the different
conditional probabilities

■ Bayesian inference: find the probability of conditional
events, given the Bayesian network, or find the conditional
events and the network structure
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Bayesian networks

■ Bayesian networks are graphical representations of joint
probability distributions and consist of 2 components:
1. an annotated direct acyclic graph (DAG) G with

◆ nodes = random variables X1, . . . , Xn

(e.g. Xi = gene expression)
◆ arcs = causal relationships between nodes Xi → Xj

2. conditional probability distributions p(Xi| parents (Xi))
for each Xi

■ the graph encodes the Markov assumption: each Xi is
independent of its non-descendants, given its parents

■ joint distribution

p(X1, . . . , Xn) =

n∏

i=1

p(Xi| parents (Xi))

■ on the joint distribution one can do inference and choose
likely causalities (conditional distribution)

High level analysis of microarrays

Clustering

Principal Component Analysis

Ontological enrichment

Inferring Regulatory Networks

Bayesian Networks

● Bayesian networks

● Bayes rule

● Bayesian networks

● Equivalence classes

● Variable representation

● Learning the network

● Discovering features

● Drawbacks

● Improvements

● Dynamic Bayesian Netw

Claudio Altafini, February 9, 2007 – p. 50/60

Bayesian networks

■ to reduce the number of conditionals to compute in the joint
distribution: conditional independence

■ from the Markov assumption, for all the non-descendent
nodes there is conditional independence:
i(X; Y |Z) means X is independent of Y given Z

■ example
AE

B D

C

◆ conditional independeces

i(A; E), i(B; D|A, E),

i(C; A, D, E|B) i(D; B, C, E|A)

◆ joint distribution

p(A, B, C, D, E) = p(A)p(B|A, E)p(C|B)p(D|A)p(E)
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Equivalence classes of Bayesian Networks

■ a Bayesian network implies a set of independencies I(G)
(more than just the ones following the Markov assumption)

■ Bayesian networks that have the same independencies
belong to the same equivalence class

■ example: G : X → Y and G : Y → X are equivalent
■ rather than a DAG (Direct Acyclic Graph) a class is

represented by a PDAG: Partially Direct Acyclic Graph: a
graph such that
◆ if there is a direct edge X → Y then all members of the

equivalence class must contain the edge with the same
direction

◆ some edges may be nondirect X Y (meaning in the
equivalence class both X → Y and Y → X are present)
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Variable representation

■ Different types of representations for X1, . . . , Xn

1. discrete variables: Xi take values in a finite set
◆ binary = {0, 1}
◆ { low expression; normal; over-expressed }

=⇒multinomial distribution
◆ can capture combinatorial effects
◆ discretization =⇒loss of information

2. continuous variables: in order to compute posteriors in
closed form one must use linear Gaussian distributions

p(X|u1, . . . , uk) ∼ N(a0 +
∑

i

ai · ui, σ2)

◆ can capture only linear effects
3. hybrid models: mix of the two cases
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Learning the network

■ PROBLEM FORMULATION:

given a training set D = (x1, . . . , xn) of independent
instances of the random variables X1, . . . , Xn, find the
network G (or equivalence class of networks) that best
matches D

■ complete data: the entire “state vector” is measured
=⇒“full observation, unknown structure” case.

■ Learning the structure (e.g. via Bayesian score algorithms) is
known to be a NP-hard problem (superexponential growth)

■ from the Bayes rule

p(G|D) =
p(D|G)p(G)

p(D)
where
◆ p(G|D) = posterior probability on the network structure
◆ p(G) = prior probability on the network structure
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Learning the network

■ take the log: Scoring function

S(G : D) = log p(G|D)

= log p(D|G) + log p(G) + C

where
◆ C = − log p(D) = const.
◆ p(D|G) = marginal likelihood = averages the probability of

the data over all possible structures assignable to G

p(D|G) =

∫

p(D|G, θ)p(θ|G)dθ

◆ complete data =⇒integral is treatable
■ solution:

◆ model:
max

G
S(G : D)

◆ parameters
max

θ
S(θ|G∗, D)



High level analysis of microarrays

Clustering

Principal Component Analysis

Ontological enrichment

Inferring Regulatory Networks

Bayesian Networks

● Bayesian networks

● Bayes rule

● Bayesian networks

● Equivalence classes

● Variable representation

● Learning the network

● Discovering features

● Drawbacks

● Improvements

● Dynamic Bayesian Netw

Claudio Altafini, February 9, 2007 – p. 55/60

Learning the network

■ this is still NP-hard
■ simplifications

◆ complete data =⇒G and G′ with equivalent graphs give
the same posterior score

◆ score is decomposable

S(G : D) =
∑

i

ScoreContribution (Xi, parents(Xi) : D)

contribution of each Xi to the total score depends only on
its own value and on the value of its parents in G

■ heuristcs:
◆ to cope with complexity: local search procedure that

changes one arc at each move: evaluation of the gain
made by adding/removing/reversing a single arc

◆ further complexity reduction: # of parents is bounded
(“fan-in”) =⇒sparsness

◆ greedy algorithm, but performing well in practice
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Discovering features

■ result is a joint distribution over all random variables
■ rather than obtaining a single “optimal” model G∗, one gets a

set of models with different high scores
■ idea: compare highly scoring models for common features
■ simplest features: pairwise relations → Markov Relations

◆ Markov blanket = minimal set of variables that shield X
from the rest of the variables in the model =⇒X is
independent from the rest given the blanket

◆ 2 nodes X and Y in the blanket either are directly linked
or share parenthood of a node

◆ biologically it means that X and Y are related in a joint
process

■ assessing the confidence of a model: bootstrap = slightly
perturb your data, re-apply the learning procedure and verify
the overlap
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Drawbacks

■ finding the “best” structure is a NP-hard problem
■ PDAG rather than DAG: not all cause-effect relations can be

resolved: Bayesian network is a model of dependencies
between variables rather than causality

■ sparseness assumption is “initialized” by genes that are
co-expressed in a clustering: this is reasonable but may
arbitrarily and erroneously restrict the search space

■ Graph must be Acyclic: the network found has no regulatory
“loops”
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Improvements and developements

■ to cope with unmeasured quantities (e.g. missing data: part
of the state vector not measured in some of the
experiments): hidden Markov models

■ to cope with acyclicity: Dynamic Bayesian Networks
◆ idea: feedback is seen as a delay unfoding in time into an

acyclic graph

t t t
1 2 3
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Dynamic Bayesian Networks

D. Husmeier Sensitivity and specificity of inferring genetic regulatory interactions from

microarray experiments with dynamic Bayesian networks Bionformatics 19 p.2271-82,

2003

t t t
1 2 3

■ each time slice is a Bayesian network
■ to tame complexity: transition probabilities between slices is

the same ∀ t
→ homogeneous Markov model

■ intraslice connections (i.e., instantaneous interactions) are
not allowed

■ directional ambiguity is avoided: temporal causality
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Dynamic Bayesian Networks: drawbacks

■ the bottleneck is that the time series of data are short =⇒the
posterior distribution over network structure is vague...

■ other problems:

p(G|D) =
p(D|G)p(G)

p(D)

◆ prior on network structure p(G) has a non-neglegible
influence on posterior p(G|D)

◆ =⇒p(G) should capture known features of biological
networks

◆ =⇒need to know a lot to initialize G
◆ needless to say: computational complexity
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