High level analysis of microarray data Lecture 2

Claudio Altafini

SISSA

http://people.sissa.it/~altafini

Claudio Altafini, February 9, 2007

High level analysis of microarray data

High level analysis of microarr	ay
Clustering	

Principal Component Analysis

- Ontological enrichment
- Inferring Regulatory Networks

```
Bayesian Networks
```

Model-free methods

- **1.** CLUSTERING ALGORITHMS
 - put together genes with similar expression profiles
- 2. PRINCIPAL COMPONENT ANALYSIS
 - reduce the dimension of a data set keeping the most significant "directions"
- **3.** ONTOLOGICAL ENRICHMENT
 - add functional annotation (e.g. GO)
 - perform statistical tests on the ontological information

– p. 1/60

High level analysis of microarray data

High level analysis of microarray
Clustering
Principal Component Analysis
Ontological enrichment
Inferring Regulatory Networks

Bayesian Networks

Gene network inference methods

- 1. "LESS" MODEL-DEPENDENT METHODS (e.g. probabilistic, statistical, etc.)
 - looking only for the core relationships of a network
 - not quantitative
 - can be used for large scale networks
- 2. MODEL-DEPENDENT METHODS (e.g. ODES)
 - provide both the network topology and the functional relationships
 - useful mostly for small/mid scale networks
 - quantitative

warning: the classification is not sharp!!!!

Claudio Altafini, February 9, 2007

- High level analysis of microarray
- Clustering
- Principal Component Analysis
- Ontological enrichment
- Inferring Regulatory Networks
- Bayesian Networks

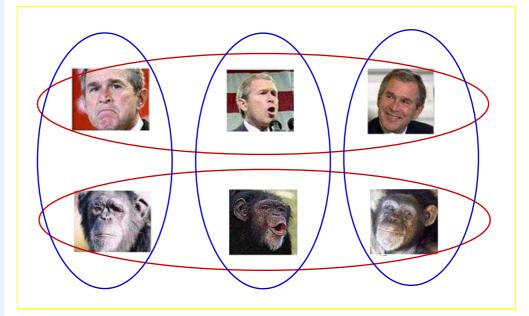
Clustering

– p. 3/60

Clustering

example: cluster these

High level analysis of microarrays


Clustering Clustering

- ullet k means clustering
- Hierarchical clustering
- SOM clusteringQuality indices
- More clustering
- Drawbacks
- Example: hippocampus
- hy. time series
- clustering
- clustering
- Principal Component Analysis

Ontological enrichment

Inferring Regulatory Networks

Bayesian Networks

Claudio Altafini, February 9, 2007

Clustering

High level analysis of microarrays

Clustering Clustering

- k means clustering
- Hierarchical clustering
- SOM clustering
- Quality indicesMore clustering
- Drawbacks
- Example: hippocampus
- hy. time series
- clustering
- clustering

Principal Component Analysis

```
Ontological enrichment
```

Inferring Regulatory Networks

Bayesian Networks

Clustering = dividing a set of data into relatively homogeneous groups according to a user-defined metric

$$d(\mathbf{x}, \mathbf{y}) > 0 \quad \text{such that} \begin{cases} d(\mathbf{x}, \mathbf{x}) &= 0\\ d(\mathbf{x}, \mathbf{y}) &= d(\mathbf{y}, \mathbf{x})\\ d(\mathbf{x}, \mathbf{y}) &\leqslant d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y}) \end{cases}$$

• typically: L_p norm

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_p, \qquad p = 1, \dots, \infty$$

example: Euclidean norm p = 2

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{(x_1 - y_1)^2 + \ldots + (x_n - y_n)^2}$$

- 3 main algorithms:
 - k-means
 - hierarchical clustering
 - SOM: Self Organizing Maps

– p. 5/60

Clustering algorithms: *k*-means

High level analysis of microarrays

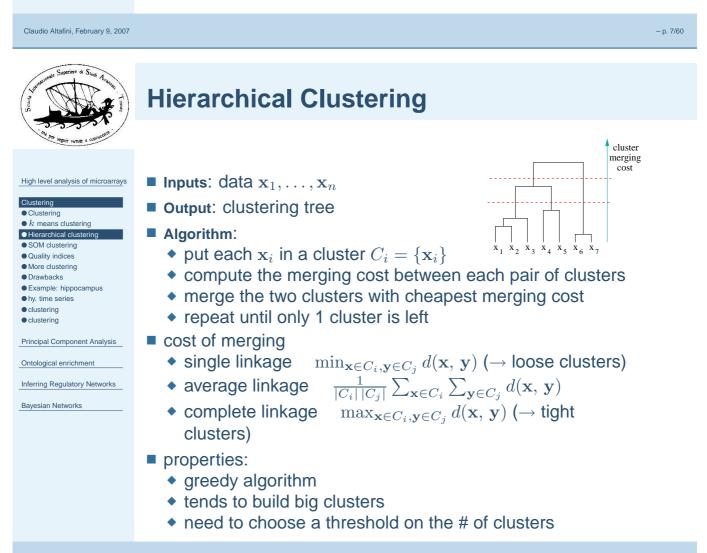
Clustering Clustering

k means clustering

- Hierarchical clustering
- SOM clusteringQuality indices
- More clustering
- Drawbacks
- Example: hippocampus
- hy. time seriesclustering
- clustering
- Principal Component Analysis
- Ontological enrichment
- Inferring Regulatory Networks

Bayesian Networks

Algorithm:
 1. select k centroids
 2. assign each element


Output: k clusters

Inputs: data $\mathbf{x}_1, \ldots, \mathbf{x}_n$,

2. assign each element \mathbf{x}_i to the cluster with nearest centroid

of clusters k

- 3. recompute the centroid
- 4. repeat until it converges
- Properties:
 - \bullet need to choose k
 - initialization step can change the result
 - sensitive to perturbations

Clustering: Self Organizing Maps

Inputs: data $\mathbf{x}_1, \ldots, \mathbf{x}_n$; SOM topology (k nodes) High level analysis of microarrays \odot Output k clusters Clustering Clustering • k means clustering Algorithm: Hierarchical clustering SOM clustering 1. start with a simple topology Quality indices More clustering 2. select a random data p Drawbacks • Example: hippocampus • hy. time series 3. move all nodes towards p according to the rule clustering clustering $f_{i+1}(\mathbf{x}) = f_i(\mathbf{x}) + \tau(d(\mathbf{x}, \mathbf{x}_p), i)(\mathbf{p} - f_i(\mathbf{x}))$ Principal Component Analysis Ontological enrichment • $f_i(\mathbf{x}) =$ position of node \mathbf{x} at iteration iInferring Regulatory Networks • $\mathbf{x}_p = \text{node closest to } \mathbf{p}$ Bayesian Networks • $\tau = \tau(d, i)$ learning rate 4. go to 2. until convergence properties even more computationally costy, but more robust neighboring clusters are similar: elements on the border can belong to both clusters Claudio Altafini, February 9, 2007

Clustering: quality indices

High level analysis of microarrays

Clustering

- k means clustering
- Hierarchical clustering
- SOM clustering Quality indices
- More clustering
- Drawbacks
- Example: hippocampus • hy. time series
- clustering
- clustering
- Principal Component Analysis

```
Ontological enrichment
```

```
Inferring Regulatory Networks
```

Bayesian Networks

homogeneity

$$\frac{1}{n_{\text{genes}}} \sum_{i} d(\mathbf{x}_i, C(\mathbf{x}_i))$$

- average distance between each x and the centroid of the cluster it belongs to
- reflects the compactness of the cluster
- separation

$$\frac{1}{\sum_{i\neq j} n_{C_i} n_{C_j}} \sum_{i\neq j} n_{C_i} n_{C_j} d(\bar{c}_i, \, \bar{c}_j))$$

- weighted average distances between cluster centroids
- reflects the distance between clusters
- siluette width: composition of the two indices

– p. 9/60

More advanced clustering

High level analysis of microarrays

Clustering Clustering

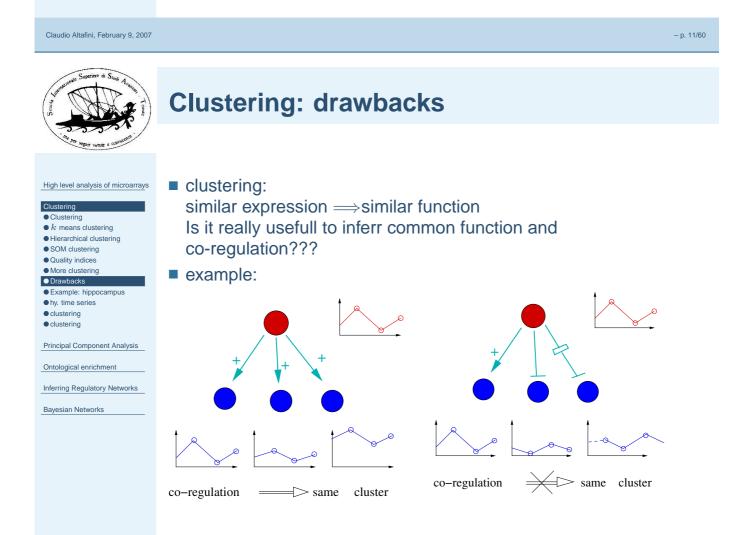
k means clustering

- Hierarchical clustering
- SOM clustering
- Quality indicesMore clustering
- Drawbacks
- Example: hippocampus
- hy. time seriesclustering
- clustering
 clustering
- Principal Component Analysis

Ontological enrichment

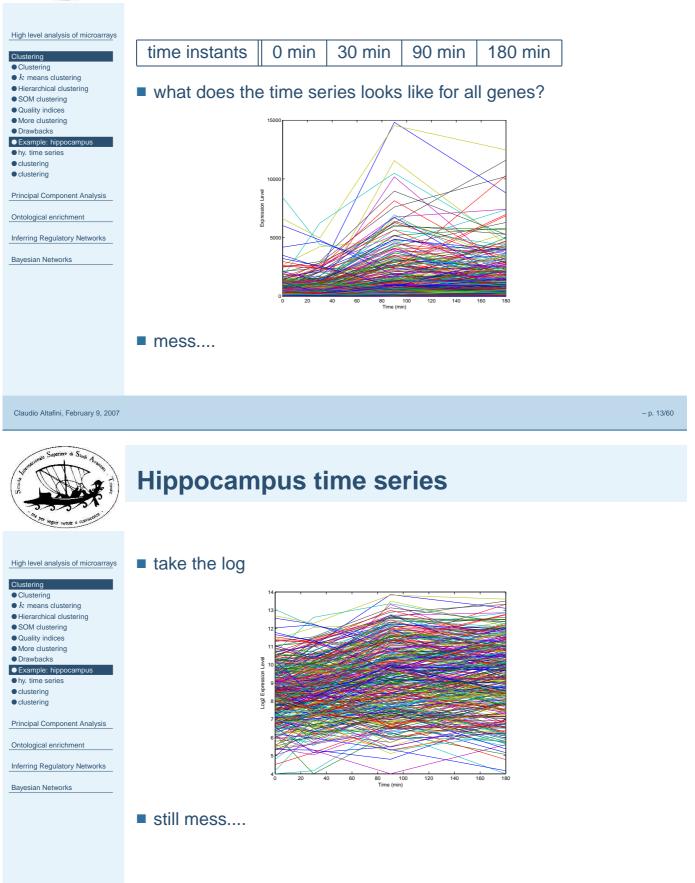
Inferring Regulatory Networks

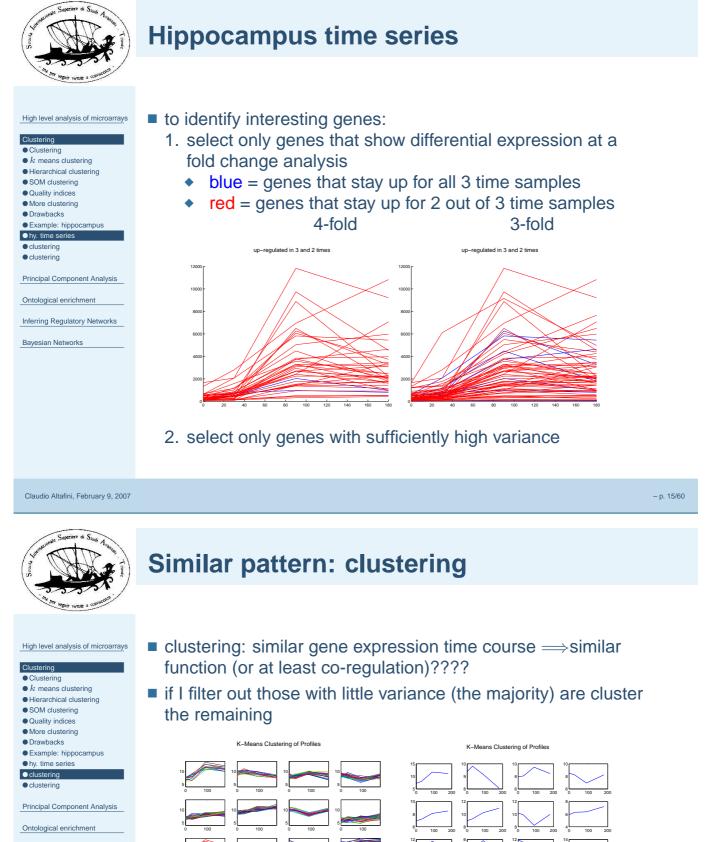
Bayesian Networks


example: rather than a distance one can use a Pearson correlation

$$\tilde{d}(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

where $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$


Pearson "metric":


- uses differences from the mean rather than the mean
- normalized by the standard deviation $\Longrightarrow \tilde{d}(\mathbf{x}, \mathbf{y}) \in [-1, 1]$
- invariant to scaling and shifting of x and y

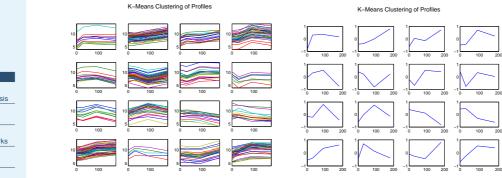
Clustering: hippocampus time-series

- Inferring Regulatory Networks
- Bayesian Networks

Similar pattern: clustering

High level analysis of microarrays

- Clustering Clustering
- ullet k means clustering
- Hierarchical clustering
- SOM clustering
- Quality indicesMore clustering
- Drawbacks
- Example: hippocampus
- hy. time series
- clusteringclustering
- Principal Component Analysis


Ontological enrichment

Inferring Regulatory Networks

Bayesian Networks

clustering depends a lot on the algorithm

- previous page: euclidean distance
- here: Pearson correlation as distance

Claudio Altafini, February 9, 2007

– p. 17/60

High level analysis of microarrays

- Clustering
- Clustering
 k means clustering
- Hierarchical clustering
- SOM clustering
- Quality indices
- More clustering
- Drawbacks
- Example: hippocampus
- hy. time series
- clustering
- clustering

Principal Component Analysis

Ontological enrichment

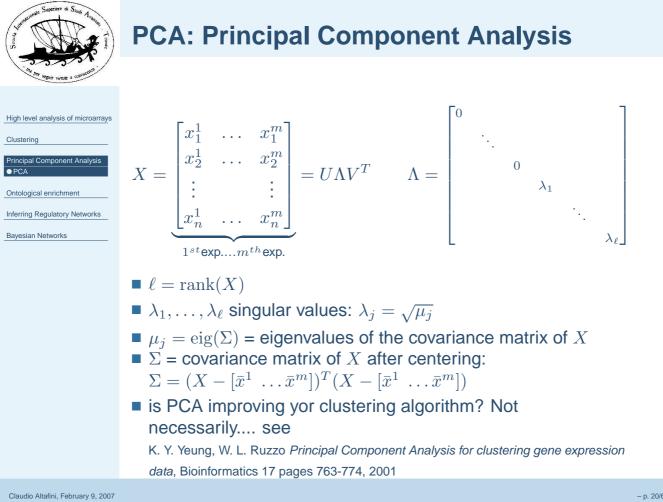
Inferring Regulatory Networks

Bayesian Networks

Principal Component Analysis

Claudio Altafini, February 9, 2007

PCA: Principal Component Analysis


High level analysis of microarrays
Clustering
Principal Component Analysis PCA
Ontological enrichment
Inferring Regulatory Networks
Bayesian Networks

- PCA detects the directions that capture the most of the information available from the data
- PCA is performed by a linear transformation of the data set based on the Singular Value Decomposition (SVD)
 - idea of principal components analysis: take linear combinations of the x as "basis" elements so that the new basis elements are orthogonal \implies they contain no redundant information
 - Successive principal components capture less and less information about the data
 - We can truncate the representation of the data to a limited number of principle components \implies dimensionality reduction
- use SVD to decompose X ($n \times m$ matrix):

$$X = U\Lambda V^T$$

 $U n \times m$ orthogonal $UU^T = I_n$ $V m \times m$ orthogonal $VV^T = I_m$

Claudio Altafini, February 9, 2007

– p. 19/60

High level analysis of microarrays

Clustering

Principal Component Analysis ● PCA

Ontological enrichment

Inferring Regulatory Networks

Bayesian Networks

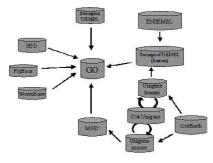
Ontological enrichment

Claudio Altafini, February 9, 2007

High level	analysis of	microarray

Clustering

Principal Component Analysis


Ontological enrichment Ontological enrichment

- Onto-Express
- KEGG
- biclustering
- Biclustering exampleCancer compendium
- Interpretation
- Inferring Regulatory Networks

Bayesian Networks

Gene Ontology

- GO = Gene Ontology project provides a controlled vocabulary to describe gene and gene product attributes in any organism
- Genes are associated, with GO terms by trained curators
- GO annotations give "functions" label to genes
- cross-link to most common gene banks, pathways database, etc.

http://www.geneontology.org

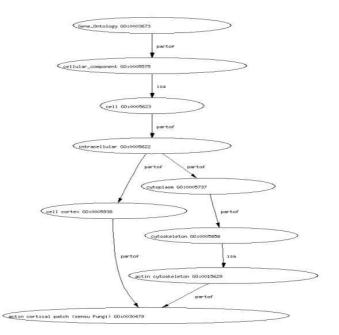
– p. 21/60

/	-Jonale Superio	ne di Studi Aranen
1 -	M	
Scuols		
	2.2	551
	ina per seguir v	unule e considente

Structure of GO

Practice - Partice	↓ · · · ◎ 1 ☆ 9 € 9 년· ● 5 · ● 1 ¥ 8	11 - C ×
	XX 2 - Cudomier 4 微索 Ш·春菇 ◎ 個人化 - XX - Yahool 奇葉 副股市 - □□電子郵件 -	(2)新
	□GO:0003673 : Gene_Ontology (33650)	
High level analysis of microarrays	© <u>GO:0008150</u> : biological_process (24768)	
	© 0:0007610 : behavior (228)	EAL
Chustering	 GC0000004 : biological_process unknown (3297) 	
Clustering	□ [©] GO:0007154 ; cell communication (4740) [©] GO:0008151 ; cell growth and/or maintenance (16459)	
	E © GO/OGESE : dent (373)	
Principal Component Analysis	G 0:0007275 : developmental processes (3500)	
	□ @ GC:0008371 ; obsolete (706)	
Ontological enrichment	G0:0007582 : physiological processes (732)	
 Ontological enrichment 	E @ G0:0016032 : viral life cycle (15)	
	□ @ G0:0005575 : cellular_component (17255)	
 Onto-Express 		
● KEGG	□ @ GO:0005622 : intracellular (12771) □ @ GO:0005737 : cytoplasm (6787)	8
 biclustering 	E © (20/00/12/12/10/1861 (20/0))	
 Biclustering example 	□	
Cancer compendium	@ @ GO:0030482 : actin cable (sensu Fungi) (5)	
	 O G0:0008372 ; cellular_component unknown (1882) 	
 Interpretation 	GO:0030312 : external protective structure (92)	
	🖾 😅 GO:0005576 ; extracellular (1129)	
Inferring Regulatory Networks	E 0 0:0008370 : obsolete (65)	
	□	
Bayesian Networks	$ = 0 - 0.0003674 \pm 0.0000000 (0) $	
Dayesian networks	GG:0008435 : anticoasulant (2)	
	GO:0016172 : antifreze (0)	
	GO:0016209 ; antioxidant (25)	
	C:0:0016329 : aboptosis regulator (69)	
	GO terms:	

- GO terms:
- 1. Biological Process
- 2. Molecular Function
- 3. Cellular Component
- a gene may belong to many categories


Claudio Altafini, February 9, 2007

High level analysis of microarrays Clustering Principal Component Analysis Ontological enrichment Ontological enrichment Onto-Express • KEGG biclustering Biclustering example Cancer compendium more children Interpretation Inferring Regulatory Networks

Bayesian Networks

Structure of GO

- Ontologies are structured as a hierarchical directed acyclic graph (DAG)
- Terms can have more than one parent, and zero, one or

– p. 23/60

Ontological enrichment

C	Clustering
P	Principal Component Analysis
_	Ontological enrichment
C	Ontological enrichment
	Onto-Express
	KEGG
	biclustering
	Biclustering example
	Cancer compendium
•	Interpretation
Ir	nferring Regulatory Networks
B	Bayesian Networks

- Ontological enrichment: questions you would like to ask:
 - what is the "main" functional annotation of interesting genes (e.g. differentially expressed, or genes having a similar expression profiles)?
 - do genes involved in the same process/function have a similar profile of expression?
- Many tools exist that use GO to answer these questions: http://www.geneontology.org/GO.tools.microarray.shtml
- Most of these tools work in a similar way:
 - input a gene list and a subset of "interesting" genes
 - tool shows which GO categories have most interesting genes associated with them i.e. which categories are "enriched" for interesting genes
 - tool provides a statistical measure to determine whether enrichment is significant

Claudio Altafini, February 9, 2007


```
High level analysis of microarrays
```

Clustering

Principal Component Analysis

Ontological enrichment Ontological enrichme

- Onto-Express
 KEGG
- biclustering
- Biclustering example
- Cancer compendium
- Interpretation

Inferring Regulatory Networks

Bayesian Networks

Ontological enrichment

- 1. select a set of significant genes (e.g. t-test)
- 2. attain all the GO categories corresponding to them
- 3. analyze GO terms for significance
- example of statistical measure: Hypergeometric test
 - *N* genes on the microarray

• Bio is a GO term
$$egin{cases} M ext{ genes } \in ext{Bio} \ N-M ext{ genes } \notin ext{Bio} \ \end{pmatrix}$$

- K = n. of significant genes
- what is the probability of having exactly x genes from K, of type Bio?

$$P(X = x | N, M, K) = \frac{\binom{M}{x}\binom{N-M}{K-x}}{\binom{N}{K}}$$

 P-value = probability of having at least x of K genes (cumulative proability distribution)

$$\mathbf{p} - \mathbf{val} = 1 - \sum_{i=0}^{x-1} \frac{\binom{M}{x}\binom{N-M}{K-x}}{\binom{N}{K}}$$

– p. 25/60

/	suonale Superiore di	Studi Are
	M	P.J.
Scuols	L. M.	
/:	na per seguir virtute	CORDISCIONTS .
	-gour virtule	

GO Tools

Tools:

_

High level analysis of microarrays

Clustering

Principal Component Analysis

Ontological enrichment Ontological enrichment

- Onto-Express KEGG
- biclustering
- Biclustering example
- Cancer compendium
- Interpretation
- Inferring Regulatory Networks
- Bayesian Networks

Tool	Statistical model	Correction for multiple experiments
Onto-Express	χ^2 , binomial, hypergeometric,	sidák, Holm, Bonferroni, FDR
	Fisher's exact test	
GoMiner	Fisher's exact test	Relative enrichment
EASEonline	Fisher's exact test	Bonferroni
GeneMerge	Hypergeometric	Bonferroni
FatiGO	Percentage	"Step-down minP, FDR
GOstat	chi^2 " Fisher's exact test"	FDR, Holm
GOToolBox	Hypergeometric, binomial,	Bonferroni, Holm, Hochberg, Hommel, FDR
	Fisher's exact test	
GoSurfer	χ^2	q-value ,DAG

Affymetrix also provide a Gene Ontology Mining Tool as part of their NetAffx Analysis Center which returns GO terms for probe sets

Claudio Altafini, February 9, 2007		– p. 27/60
Superiore di Suus Tang Tang Tang Tang Tang Tang Tang Tang	Example: Onto-Express	
High level analysis of microarrays Clustering Principal Component Analysis	Onto-Express is available at http://vortex.cs.wayne.edu/projects.htm	
Ontological enrichment Ontological enrichment Onto-Express KEGG	Onto-Express Input	
biclustering biclustering example Cancer compendium Interpretation Inferring Regulatory Networks	Neter ence rite Ny Own Chip Organism: select one Input Type: Accession Cluster Probe ID	
Bayesian Networks	Mpdc Type: Mccession Cidater Probe D WormBase Accession LocusLink Gene Symbol Search for: Diological Process Cellular Component Molecular Function Chromosome Information	
	Distribution: binomial distribution Correction: fdr	

Example: Onto-Express

	Display					
level analysis of microarrays	Dispidy		Jearch			Legend
	-		Function:	OR Total >= :	31	User Interactions:
ering	Display: Bio	logical Process 🛛 👻				 Unselected Function Synchronized Function
<u>-</u>			Select results	OR vp-value <= :	8	Selected Function
ipal Component Analysis	Sort by: Na	ne 🔻				Searched Function
par component Analysis			Search	Clear	Search Input	Functional Catagories Observed
		ee Boculte	Program			More Than Expected
logical enrichment	Save Onto-Expre	33 NESURS	Flogram			Less Than Expected Same As Expected
tological enrichment			No			Gene Regulation:
to-Express	Save	Save as GIF image	Draw Selected	Run Onto-Desian Rur	Onto-Compare	Positive
GG			I		<u>+ </u>	Negative
lustering						No Change
ncer compendium	fiew Synchronize	ed View Synchronized Pie	Chart Single Gene View	Flat View Flat Pie Chart		
P-Value	e Corrected To P-Value	ital				
erpretation			5 B			
0.0010		0.61% actin filament o 0.61% aspartvl-tRNA	organization aminoacylation			
ing Regulatory Networks 0.0229		0.61% behavior	ammoacylanon			
0.3188		0.61% 🔓 biological_prod	cess unknown			
sian Networks		0.61% 🖕 blood coagulat				
0.4580		0.61% 🖕 carbohydrate n				
0.2547		0.61% a cation transpor				
0.1536		0.61% cell proliferatio				
0.1787			s system development ium ion concentration elevation			
0.0598		0.61% development	full for concentration elevation			
0.1076		0.61% digestion				
0.2082		0.61% electron transp	oort			
0.2206	7 0.46091 1	0.61% 🔓 epidermis deve				
0.0189	0.14178 1	0.61 % 🖕 feeding behavi	ior			
0.3458			upled receptor protein signaling			
0.0061			aling, adenylate cyclase inhibitir			
0.0661			aling, coupled to cyclic nucleotic	de second messenger		
0.0931		0.61% glycolysis				
0.2122		0.61% a heterophilic ce				
0.5	0.59782 1	0.61% hydrogen pero:				
0,5 0.1521 0.2804	3 0.38034 2	0.61% hydrogen pero: 1.21% immune resp 0.61% induction of ap	ionse			

Claudio Altafini, February 9, 2007

– p. 29/60

Example: Onto-Express

High level analysis of microarrays Clustering Principal Component Analysis Ontological enrichment Ontological enrichment Ontological enrichment Ontological enrichment Octoorservices Bickustering Bickustering Regulatory Networks Bickustering Regulatory Networks Bayesian Networks Bispesition of the position Bispesition of the position is p=0.0 P Disclogical process is the p=0.0 P Disclogical process is the p=0.0 P Disclogical process is the p=0.0 P Disclogical process is p=0.02 <		🗟 Onto-Express Results		
Ontological enrichment Save Onto-Express Results Program ILess Than Expected Ontological enrichment Save Save as GiF image Drag Selected Run Onto-Compare ILess Than Expected Save Save Save as GiF image Drag Selected Run Onto-Compare ILess Than Expected Save Save Save as GiF image Drag Selected Run Onto-Compare ILess Than Expected Onto-Express Save Save Save as GiF image Drag Selected Run Onto-Compare ILess Than Expected Octoological enrichment Save Save as GiF image Drag Selected Run Onto-Compare ILess Than Expected Save Save Save as GiF image Drag Selected Run Onto-Compare ILess Than Expected Octoological process Save Save as GiF image Drag Selected Run Onto-Compare ILess Than Expected Octoological process 0 Cancer compendium ILess Than Expected ILess Than Expected Onto-Express Save Save as proto Save as proto ILess Than Expected ILess Than Expected Bayesian Networks Eaplesion transmit protological process of the phage.00 Ipr	Clustering	Display: Biological Process 💌	Function: OR ▼ Total >= : 31 ✓ select results OR ▼ p.value <= :	User Interactions: Unselected Function Synchronized Function Selected Function Functional Catagories Observed:
 Biclustering example Cancer compendium Interpretation Inferring Regulatory Networks Bayesian Networks Beayesian Networks Beayesian	 Ontological enrichment Onto-Express KEGG 			Less Than Expected Same As Expected Gene Regulation: Positive Negative
	Biclustering example Cancer compendium Interpretation Inferring Regulatory Networks	Tree View Synchronized View Synchronized Pie ♥ Gene_Ontology_0 0 ● molecular_function 35 ● biological_process 0 ● biological_process 0 ● biological_process 0 ● behavior 2 p=0.01072 ♥ biological_process 0 ● cellular process 1 p=0.31884 ● cellular process 1 p=0.0 ● organismal physiological process 9 p=2.4E ♥ regulation of physiological process 0 p=0.0E ● regulation of physiological process	Chart Single Gene View Flat View Flat Pie Chart 0	

Other Ontologies: KEGG pathways

2.7.1.41

3.1.3.9

5.3.1.9

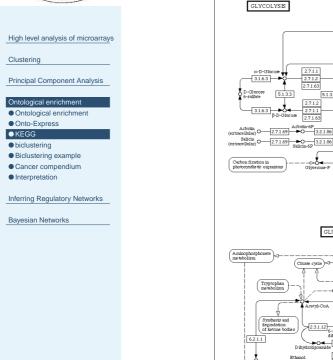
Fruct

Pyruv me tab

1.2.1.51

1.2.4.1

5.1.3.15 5.3.1.9


5.3.1.1

Glyce me tab

1.8.1.4

1.1.1.1

Galactose metabolism

Claudio Altafini, February 9, 2007

Hiah	level	analy	/sis	of	microarray	/S

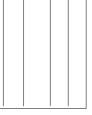
Clustering

Principal Component Analysis

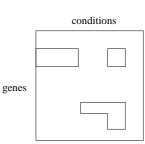
Ontological enrichment

 Ontological enrichment Onto-Express

● KEGG


- biclustering
- Biclustering example Cancer compendium
- Interpretation

```
Inferring Regulatory Networks
```


Bayesian Networks


genes

conditions

Butancate metabolism ate and CoA biosy

Alanine and aspartate metabolism D-Alanine met

Q Slyc te-2.3P2

5.4.2.2

C β-D-F

β-D-Fruc

3.1.3.11 2.7.1.11

4.1.2.13

e-1,3P2

7 2.7.2.3

O D-Glucos

Pentose phosphate pathway

2.7.1.69

Biclustering

- clustering can be carried out:
 - w.r.t gene expression

00010 3/23/06

- with respect to some other condition
 - (e.g. clinical condition in which I take the sample, ontological information)

■ two-axis clustering ⇒ biclustering

– p. 31/60

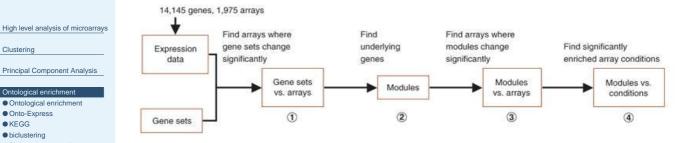
Biclustering: expression + ontology

High level analysis of microarrays	E. Segal, N. Friedman, D. Koller, A. Regev A module map showing conditional activity of
Clustering	expression modules in cancer Nature Genetics 36, 1090-1098 (2004)
Principal Component Analysis	■ idea inidividual genes — biological process
Ontological enrichment Ontological enrichment Onto-Express 	? ?
KEGG biclustering	regulatory modules
 Biclustering example Cancer compendium 	
Interpretation	rather than working with single genes and their regulatory
Inferring Regulatory Networks	mechanics is it possible to lump together genes into modules
Bayesian Networks	= set of genes that act in concert to carry out a specific
	function?
	here: DNA microarray data in a comprehensive analysis
	aimed at identifying the shared and unique molecular
	'modules' underlying human malignancies.
	in the paper modules are extrated and used to characterize
	gene-expression profiles in tumors as a combination of
	activated and deactivated modules.
Claudio Altafini, February 9, 2007	– p. 33/60
estationale Superiore di Studi Atana	
Time Market	A cancer compendium
Times	a viral infection b
The Provide a comment	a Various tumors Viral infection b Tissue-specific gene 155 (7%) 313 (15%) sets 101 (4%) Gene expression Stimulated PBMCs Breast cancer Gene ontology cluster \$1,300 (45%)
	a Various tumors Viral infection b Tissue-specific gene 155 (7%) 313 (15%) sets 101 (4%) Gene expression Stimulated PBMCs Breast cancer 195 (9%) 1.281 (45%)
High level analysis of microarrays	a Various turnors Viral infection b Tissue-specific gene 155 (7%) 313 (15%) sets 101 (4%) Gene expression Stimulated PBMCs Breast cancer 195 (9%) 1.281 (45%)
High level analysis of microarrays	 26 studies Viral infection 155 (7%) 155 (7%) 155 (7%) 155 (7%) 155 (7%) 155 (7%) 155 (7%) 155 (7%) 133 (15%) Biymphoma 313 (15%) Biymphoma 313 (15%) Biymphoma 313 (15%) Biymphoma 133 (15%) 133 (15%)
High level analysis of microarrays Clustering Principal Component Analysis	E 26 studies Viral infection 155 (7%) Viral infection 155 (7%) Stimulated PBMCs Stimulated PBMCs Stimulated PBMCs Stimulated PBMCs Stimulated PBMCs Stimulated remove 10 (1%) Fibroblast Infection 10 (1%) Fibroblast Infection 18 (1%) Storbust cancer 10 (1%) Fibroblast Infection 18 (1%) Storbust Cancer 10 (1%) Storbust Cancer 10 (1%) Storbust Cancer 10 (1%) Fibroblast Infection 18 (1%) Storbust Cancer 19 (1%)
High level analysis of microarrays Clustering Principal Component Analysis Ontological enrichment • Ontological enrichment	a Viral Infection 15 (7%) 15 (7%) 16 (7%) 16 (7%) 16 (7%) 16 (7%) 16 (7%) 18 (7%)
High level analysis of microarrays Clustering Principal Component Analysis Ontological enrichment • Ontological enrichment • Ontological enrichment • Onto-Express • KEGG	Constructions Constructions Viral infection 150 (7%) Simulated PBMCs Simulat
High level analysis of microarrays Clustering Principal Component Analysis Ontological enrichment • Ontological enrichment • Onto-Express • KEGG • biclustering • Biclustering example	 a 26 studies b were tumore of 12 (5%) being the form of 15% being the form of 12 (5%) being the
High level analysis of microarrays Clustering Principal Component Analysis Ontological enrichment Ontological enrichment Onto-Express HEGG biclustering	<image/> a constrained b constrained c constrained c constrained e constrained <lie constrained<="" li=""> e constr</lie>
High level analysis of microarrays Clustering Principal Component Analysis Ontological enrichment • Ontological enrichment • Onto-Express • KEGG • biclustering • Biclustering example • Cancer compendium	 a 26 studies b were tumore of 12 (5%) being the form of 15% being the form of 12 (5%) being the
High level analysis of microarrays Clustering Principal Component Analysis Ontological enrichment Ontological enrichment Onto-Express KEGG Diclustering Biclustering Biclustering example Cancer compendium Onterpretation	<figure><text><figure><figure><figure></figure></figure></figure></text></figure>
High level analysis of microarrays Clustering Principal Component Analysis Ontological enrichment • Ontological enrichment • Onto-Express • KEGG • biclustering • Biclustering • Biclustering example • Crancer compendium • Interpretation	<text><figure><list-item><list-item><figure></figure></list-item></list-item></figure></text>
High level analysis of microarrays Clustering Principal Component Analysis Ontological enrichment • Ontological enrichment • Onto-Express • KEGG • biclustering • Biclustering • Biclustering example • Crancer compendium • Interpretation	 a constrained in the second of the second of
High level analysis of microarrays Clustering Principal Component Analysis Ontological enrichment • Ontological enrichment • Onto-Express • KEGG • biclustering • Biclustering • Biclustering example • Crancer compendium • Interpretation	 a 26 studies b 4 studies a 26 studies b 4 studies <l< th=""></l<>
High level analysis of microarrays Clustering Principal Component Analysis Ontological enrichment • Ontological enrichment • Onto-Express • KEGG • biclustering • Biclustering • Biclustering example • Crancer compendium • Interpretation	 a constrained in the second of the second of
High level analysis of microarrays Clustering Principal Component Analysis Ontological enrichment • Ontological enrichment • Onto-Express • KEGG • biclustering • Biclustering • Biclustering example • Crancer compendium • Interpretation	 a cost studies b cost studies a cost studies b cost studies c cost studies <li cto="" li="" studies<=""> c cost studies <li c="" cost="" li="" studies<=""> <li< th=""></li<>
High level analysis of microarrays Clustering Principal Component Analysis Ontological enrichment • Ontological enrichment • Onto-Express • KEGG • biclustering • Biclustering • Biclustering example • Crancer compendium • Interpretation	 a 26 studies b 10 studies c c studies c c studies c c studies b 10 studies c c studies c c studies c c studies b 10 studies c c c studies
High level analysis of microarrays Clustering Principal Component Analysis Ontological enrichment • Ontological enrichment • Onto-Express • KEGG • biclustering • Biclustering • Biclustering example • Crancer compendium • Interpretation	 a 26 studies b 26 studies a expression of 14.145 genes 1.975 arrays: Stanford Microarray Database Whitehead Institute Database 2849 gene sets: Gene Ontology (1281) KEGG: Kyoto Encycl. of Genes and Genomes (114 Gene MicroArray Pathway Profiler (53) other: tissue-specific gene sets (101)

Clustering

KEGG biclustering Biclustering example Cancer compendiun

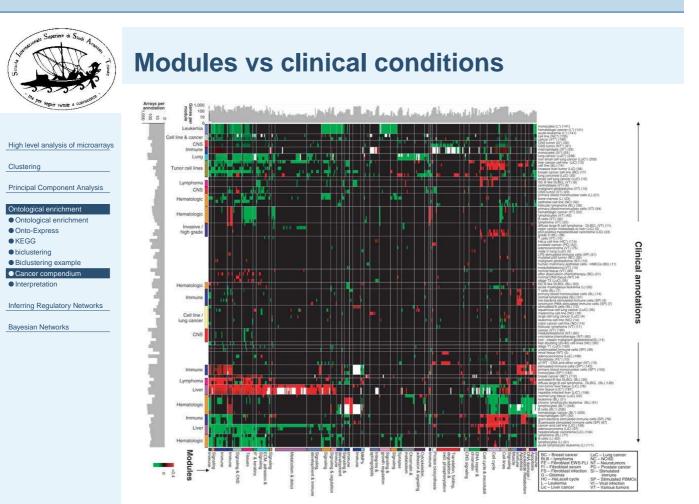
Interpretation

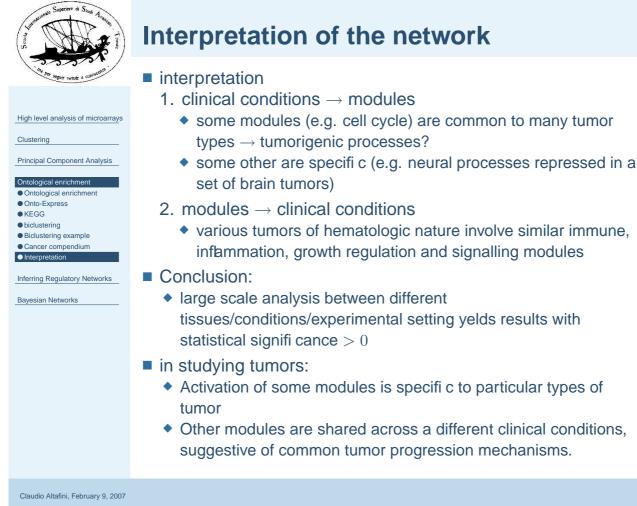

Bayesian Networks

Inferring Regulatory Networks

Ontological enrichment

 Ontological enrichment Onto-Express


Method modules & clinical conditions


of statistically significant modules = 456 (spanning various processes and functions, metabolism, transcription, degradation, cellular and neuronal signalling, growth, cell cycle, apoptosis, extracellular matrix and cytoskeleton components)

next: identify clinical conditions according to the combination of active/deactive modules \rightarrow 263 biological and clinical conditions (tissue type, tumor type, diagnosis and prognosis info, molecular markers)

Claudio Altafini, February 9, 2007

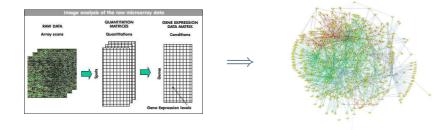
– p. 35/60

<section-header>

 With the second sec

– p. 37/60

Limitations of clustering/PCA


High level analysis of microarrays	
Clustering	
Principal Component Analysis	
Ontological enrichment	
Inferring Regulatory Networks	
 Limitations of clustering 	
System Identification	

Bayesian Networks

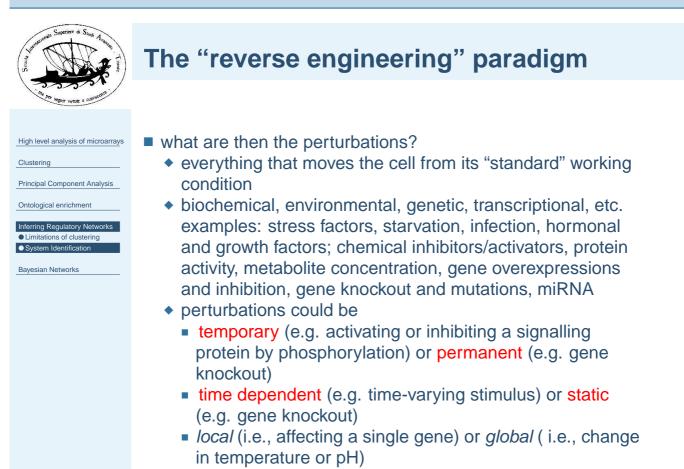
- clustering: methods of information extraction from data based on co-regulation:
 - similar expression pattern over a set of experiments
 similar function
 - all the clustering algorithms give the same results if the time points are randomly permuted
 - cannot reveal causal/dynamical connections
 - ⇒does not reveal what is behind the co-regulation

more ambitious goal:

find the transcriptional regulatory network

Claudio Altafini, February 9, 2007

The "reverse engineering" paradigm basic idea: the architecture of the network is inferred (or High level analysis of microarrays reverse engineered) based on the observed response of the Clustering system to a series of experimental perturbations Principal Component Analysis Ontological enrichment ring Regulatory Net ions of cluster OUTPUTS m Identific **INPUTS** 9 Bayesian Networks perturbations measured external signals stimuli measured signals: [mRNA], [proteins] [metabolites] global response: measure the entire "state" vector time series (e.g. cell cycle) single time point (e.g. steady state) perturbations: experimental interventions that alter the state of interest


– p. 39/60

The "reverse engineering" paradigm

High level analysis of microarrays Clustering Principal Component Analysis	 TASK: from gene expression profiles to a gene-gene graph extract the network structure quantify the interactions
Ontological enrichment	computationally the task is hard: a very large amount of data
Inferring Regulatory Networks Limitations of clustering 	is required
 System Identification 	\rightarrow data rich/data poor paradox
Bayesian Networks	many data \Rightarrow significant data for network inference
	what are the significant data?
	Those obtained perturbing sistematically the variables of
	interest
	\rightarrow regulation is dynamical
	we see it "static" because most time we cannot observe the transient period (in which the system reacts to the change), but just measure the new "steady state" in which the system resettles following a perturbation

Claudio Altafini, February 9, 2007

• of small amplitude or large amplitude

– p. 41/60

Network inference algorithms

Link local analysis of adapted and	
High level analysis of microarrays	
Clustering	
Principal Component Analysis	
Ontological enrichment	
Inferring Regulatory Networks	
 Limitations of clustering 	
Oversteine Interstitiensteine	

Bayesian Networks

a few methods

- 1. BAYESIAN NETWORK
 - attains a probabilistic graph through a bayesian learning
 - (exact) complexity: superexponential
- 2. Association NETWORKS
 - learns a graph through a "similarity measure"
 - polynomial complexity

3. LINEAR ODES MODELS

- linear complexity
- suffers from underdetermination
- model-dependent

Claudio Altafini, February 9, 2007

par villa

High	level	analysis	of	microarra

Clustering

Principal Component Analysis

Ontological enrichment

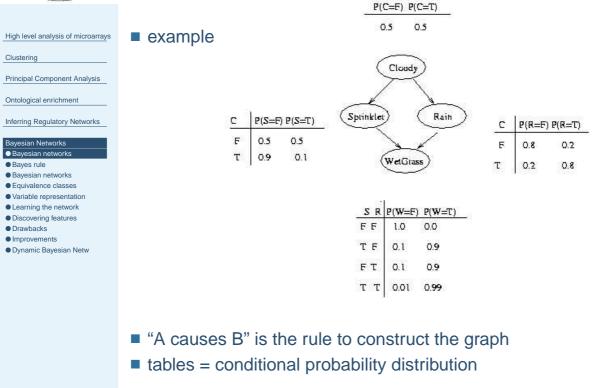
Inferring Regulatory Networks

Bayesian Networks ● Bayesian networks

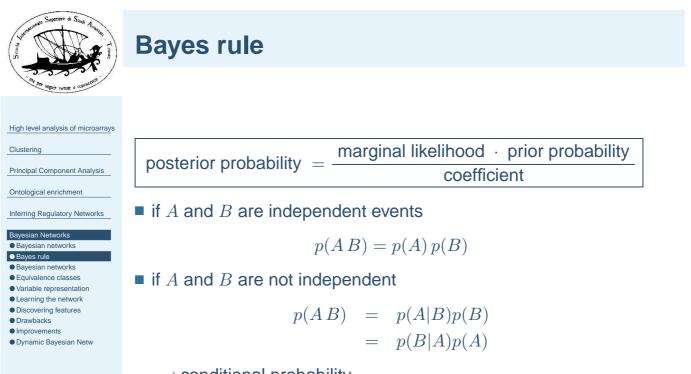
- Bayes rule
 Bayesian networks
- Equivalence classes
- Variable representation
- Learning the networkDiscovering features
- Discovering leatures
 Drawbacks
- Improvements
- Dynamic Bayesian Netw

Bayesian networks

Bayesian networks


- are a probabilistic framework aiming at capturing the conditional dependence or conditional independence between "states" in a set of data.
- approach is statistic in nature =>able to cope with noisy data & not sufficiently many experimental data
- useful when each state depends only on a relatively small # of other components → networks with low connectivity
- Bayesian network can
 - learn the regulatory network
 - find the best set of parameters for the conditional distribution of that network
 - "best" is to be taken in a Bayesian sense as the most probable given the data

N. Friedman, M. Linial, I. Nachman, and D. Pe'er. *Using Bayesian Network to Analyze Expression Data* J. Computational Biology 7:601-620, 2000


– p. 43/60

Bayesian networks

Claudio Altafini, February 9, 2007

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

– p. 45/60

Bayes rule: example

Per seguir virtute e concectant	
High level analysis of microarrays	$\begin{cases} p(C=1) &= 0.5\\ p(C=0) &= 0.5 \end{cases} \qquad \begin{cases} p(R=1 C=1) &= 0.8\\ p(R=1 C=0) &= 0.2 \end{cases}$
Clustering Principal Component Analysis	from the likelihood
Ontological enrichment Inferring Regulatory Networks Bayesian Networks Bayesian networks Bayesian networks Bayesian networks Gayesian networks Gayesian networks Gayesiable representation Learning the network Discovering features Drawbacks Improvements Dynamic Bayesian Netw	$\begin{array}{lll} P(R=1) &=& p(C=0,R=1) + p(C=1,R=1) \\ &=& p(R=1 C=0)p(C=0) + p(R=1 C=1)p(C=1) \\ &=& 0.2\cdot 0.5 + 0.8\cdot 0.5 = 0.5 \end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllllll$
	$p(C = 0 R = 1) = \frac{p(R = 1 C = 0)p(C = 0)}{p(R = 1)} = \frac{0.2 \cdot 0.5}{0.5} = 0.2$
	$\left(\begin{array}{ll} \text{if instead } p(C=0)=0.9 & \Longrightarrow \begin{cases} P(R=1) & = 0.26 \\ p(C=0 R=1) & = 0.69!! \end{cases}\right)$
Claudio Altafini, February 9, 2007	– p. 47/60

Bayes rule: example

- High level analysis of microarrays
 - Clustering

- Principal Component Analysis
- Ontological enrichment
- Inferring Regulatory Networks
- Bayesian Networks Bayesian networks
- Bayes rule
- Bayesian networks Equivalence classes
- Variable representation
- Learning the network
- Discovering features Drawbacks
- Improvements
- Dynamic Bayesian Netw

- how about if you observe the grass is wet?
 - is it because of
 - sprinkler

$$p(S = 1|W = 1) = \frac{p(S = 1, W = 1)}{p(W = 1)} = 0.43$$

rain

$$p(R = 1|W = 1) = \frac{p(R = 1, W = 1)}{p(W = 1)} = 0.7$$

- from the joint probability, we deduce the different conditional probabilities
- Bayesian inference: find the probability of conditional events, given the Bayesian network, or find the conditional events and the network structure

60

Bayesian networks

High level analysis of microarrays	probability distributions and consist of 2 components:
Clustering	1. an annotated <i>direct acyclic graph (DAG)</i> G with
Principal Component Analysis	• nodes = random variables X_1, \ldots, X_n
Ontological enrichment	(e.g. X_i = gene expression)
Inferring Regulatory Networks	• arcs = causal relationships between nodes $X_i \rightarrow X_j$
Bayesian Networks Bayesian networks Bayes rule Bayesian networks	2. conditional probability distributions $p(X_i \text{ parents } (X_i))$ for each X_i
Equivalence classes Variable representation Learning the network Discovering features Drawbacks Improvements Dynamic Bayesian Netw	 the graph encodes the <i>Markov assumption</i>: each X_i is independent of its non-descendants, given its parents joint distribution
	$p(X_1,\ldots,X_n) = \prod_{i=1}^n p(X_i \text{ parents } (X_i))$

on the joint distribution one can do inference and choose likely causalities (conditional distribution)

i=1

Bayesian networks are graphical representations of joint

E

В

С

Α

D

Claudio Altafini, February 9, 2007

- to reduce the number of conditionals to compute in the joint distribution: conditional independence
 - from the Markov assumption, for all the non-descendent nodes there is conditional independence:

i(X; Y|Z) means X is independent of Y given Z

- example
 - conditional independeces

i(A; E), i(B; D|A, E),i(C; A, D, E|B) i(D; B, C, E|A)

joint distribution

p(A, B, C, D, E) = p(A)p(B|A, E)p(C|B)p(D|A)p(E)

High level	analysis of	f microarrays

Clustering

Principal Component Analysis

Ontological enrichment

Inferring Regulatory Networks

Bayesian Networks Bayesian networks

- Baves rule Bayesian networks
- Equivalence classes
- Variable representation
- Learning the network Discovering features
- Drawbacks
- Improvements
- Dynamic Bayesian Netw

– p. 49/60

Equivalence classes of Bayesian Networks

High level analysis of microarra
Clustering
Principal Component Analysis
Ontological enrichment
Inferring Regulatory Networks
Bayesian Networks
 Bayesian networks
Rovee rule

- Bayes rule
 Bayesian networks
- Equivalence classes
- Variable representation
- Learning the network
 Discovering features
- Drawbacks
- Improvements
- Dynamic Bayesian Netw

- a Bayesian network implies a set of independencies I(G) (more than just the ones following the Markov assumption)
- Bayesian networks that have the same independencies belong to the same equivalence class
- example: $G: X \to Y$ and $G: Y \to X$ are equivalent
- rather than a DAG (Direct Acyclic Graph) a class is represented by a PDAG: Partially Direct Acyclic Graph: a graph such that
 - if there is a direct edge X → Y then all members of the equivalence class must contain the edge with the same direction
 - some edges may be nondirect X Y (meaning in the equivalence class both $X \to Y$ and $Y \to X$ are present)

Claudio Altafini, February 9, 2007

High	level	analysis	of	microarrays

- Clustering
- Principal Component Analysis
- Ontological enrichment Inferring Regulatory Networks
- ______
- Bayesian Networks

 Bayesian networks
- Bayes rule
- Bayesian networks
 Equivalence classes
- Variable representation
- Learning the networkDiscovering features
- Drawbacks
- Improvements
- Dynamic Bayesian Netw

Variable representation

- **Different types of representations for** X_1, \ldots, X_n
 - 1. discrete variables: X_i take values in a finite set
 - binary = $\{0, 1\}$
 - { low expression; normal; over-expressed }
 multinomial distribution
 - can capture combinatorial effects
 - ◆ discretization ⇒loss of information
 - 2. continuous variables: in order to compute posteriors in closed form one must use *linear Gaussian distributions*

$$p(X|u_1,\ldots,u_k) \sim N(a_0 + \sum_i a_i \cdot u_i, \ \sigma^2)$$

- can capture only linear effects
- 3. hybrid models: mix of the two cases

– p. 51/60

Learning the network

High level analysis of microarrays
Clustering
Principal Component Analysis
Ontological enrichment

Inferring Regulatory Networks

- Bayesian Networks

 Bayesian networks
- Bayes rule
- Bayesian networksEquivalence classes
- Variable representation
- Learning the network
- Discovering featuresDrawbacks
- Drawbacks
 Improvements
- Dynamic Bayesian Netw

PROBLEM FORMULATION:

given a training set $D = (x_1, \ldots, x_n)$ of independent instances of the random variables X_1, \ldots, X_n , find the network *G* (or equivalence class of networks) that best matches *D*

- complete data: the entire "state vector" is measured —>"full observation, unknown structure" case.
- Learning the structure (e.g. via Bayesian score algorithms) is known to be a NP-hard problem (superexponential growth)
- from the Bayes rule

$$p(G|D) = \frac{p(D|G)p(G)}{p(D)}$$

where

- p(G|D) = posterior probability on the network structure
- p(G) = prior probability on the network structure

Claudio Altafini, February 9, 2007

High level analysis of microarrays

Principal Component Analysis

Inferring Regulatory Networks

Ontological enrichment

Bayesian Networks

Bayesian networks
 Bayes rule

Bayesian networks
Equivalence classes
Variable representation
Learning the network
Discovering features

Drawbacks
Improvements
Dynamic Bayesian Netw

Clustering

take the log: Scoring function

$$S(G: D) = \log p(G|D)$$

= $\log p(D|G) + \log p(G) + C$

where

- $C = -\log p(D) = \text{const.}$
- *p*(*D*|*G*) = marginal likelihood = averages the probability of the data over all possible structures assignable to *G*

$$p(D|G) = \int p(D|G,\theta)p(\theta|G)d\theta$$

- ◆ complete data ⇒integral is treatable
- solution:
 - model:

$$\max_{G} S(G:D)$$

parameters

 $\max_{\theta} S(\theta | G^*, D)$

– p. 53/60

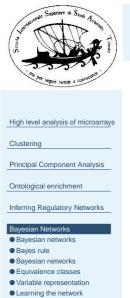
Learning the network

High level analysis of microarrays Clustering Principal Component Analysis Ontological enrichment Inferring Regulatory Networks Bayesian Networks

 Bayesian networks Baves rule

- Bayesian networks
- Equivalence classes
- Variable representation Learning the network
- Discovering features
- Drawbacks
- Improvements Dynamic Bayesian Netw

- this is still NP-hard
- simplifications
 - complete data \Longrightarrow G and G' with equivalent graphs give the same posterior score
 - score is decomposable


Discovering features

$$S(G: D) = \sum_{i}$$
 ScoreContribution $(X_i, \text{ parents}(X_i): D)$

contribution of each X_i to the total score depends only on its own value and on the value of its parents in G

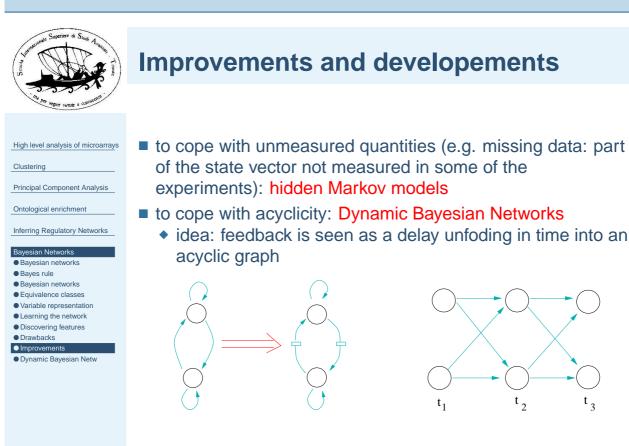
- heuristcs:
 - to cope with complexity: local search procedure that changes one arc at each move: evaluation of the gain made by adding/removing/reversing a single arc
 - further complexity reduction: # of parents is bounded ("fan-in") \implies sparsness
 - greedy algorithm, but performing well in practice

Claudio Altafini, February 9, 2007

- Discovering features
- Drawbacks
- Improvements
- Dynamic Bayesian Netw

- result is a joint distribution over all random variables
- \blacksquare rather than obtaining a single "optimal" model G^* , one gets a set of models with different high scores
- idea: compare highly scoring models for common features
- simplest features: pairwise relations → Markov Relations
 - Markov blanket = minimal set of variables that shield X from the rest of the variables in the model $\Longrightarrow X$ is independent from the rest given the blanket
 - 2 nodes X and Y in the blanket either are directly linked or share parenthood of a node
 - biologically it means that X and Y are related in a joint process
- assessing the confidence of a model: bootstrap = slightly perturb your data, re-apply the learning procedure and verify the overlap

– p. 55/60

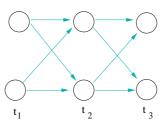

Drawbacks

High level analysis of microarrays
Clustering
Principal Component Analysis
Ontological enrichment
Inferring Regulatory Networks
Bayesian Networks
Bayesian Networks Bayesian networks
,
Bayesian networks
Bayesian networksBayes rule
 Bayesian networks Bayes rule Bayesian networks
 Bayesian networks Bayes rule Bayesian networks Equivalence classes
 Bayesian networks Bayes rule Bayesian networks Equivalence classes Variable representation
Bayesian networks Bayes rule Bayesian networks Equivalence classes Variable representation Learning the network

Dynamic Bayesian Netw

- finding the "best" structure is a NP-hard problem
- PDAG rather than DAG: not all cause-effect relations can be resolved: Bayesian network is a model of *dependencies* between variables rather than causality
- sparseness assumption is "initialized" by genes that are co-expressed in a clustering: this is reasonable but may arbitrarily and erroneously restrict the search space
- Graph must be Acyclic: the network found has no regulatory "loops"

Claudio Altafini, February 9, 2007


– p. 57/60

Dynamic Bayesian Networks

High level analysis of microarrays	D. Hu
Clustering	micro
Principal Component Analysis	2003
Ontological enrichment	
Inferring Regulatory Networks	
Bayesian Networks	
 Bayesian networks Bayes rule 	
Bayesian networks	
Equivalence classes	
Variable representation	
Learning the network	
Discovering features	
Discovering leatures Drawbacks	
Improvements	to
 Dynamic Bayesian Netw 	- 10
	th

D. Husmeier Sensitivity and specificity of inferring genetic regulatory interactions from nicroarray experiments with dynamic Bayesian networks Bionformatics 19 p.2271-82,

- each time slice is a Bayesian network
- to tame complexity: transition probabilities between slices is the same ∀ t
 - \rightarrow homogeneous Markov model
- intraslice connections (i.e., instantaneous interactions) are not allowed
- directional ambiguity is avoided: temporal causality

Claudio Altafini, February 9, 2007

High level analysis of microarrays

Principal Component Analysis

Ontological enrichment Inferring Regulatory Networks

Bayesian Networks

Bayesian networks
Bayes rule

Bayesian networks
Equivalence classes

Variable representation
Learning the network

Discovering featuresDrawbacks

Improvements
 Dynamic Bayesian N

Clustering

Dynamic Bayesian Networks: drawbacks

- the bottleneck is that the time series of data are short => the posterior distribution over network structure is vague...
- other problems:

$$p(G|D) = \frac{p(D|G)p(G)}{p(D)}$$

- prior on network structure p(G) has a non-neglegible influence on posterior p(G|D)
- $\bullet \implies p(G)$ should capture known features of biological networks
- $\bullet \Longrightarrow$ need to know a lot to initialize G
- needless to say: computational complexity

– p. 59/60