Analysis of microarray data

Claudio Altafini

SISSA

http://people.sissa.it/~altafini

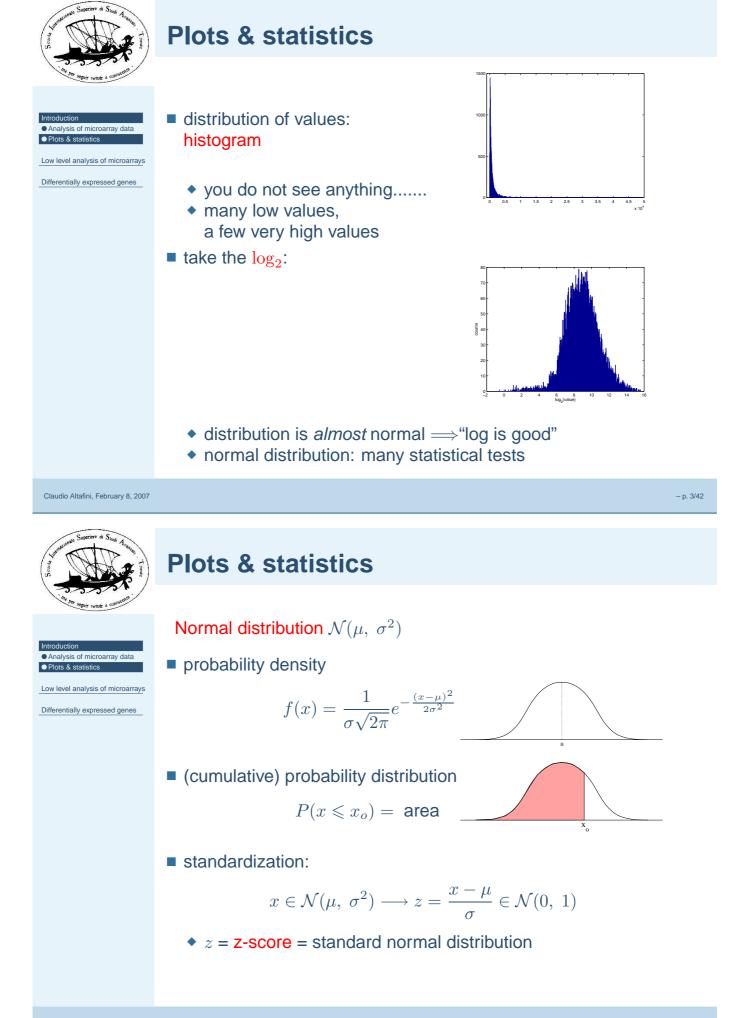
Claudio Altafini, February 8, 2007

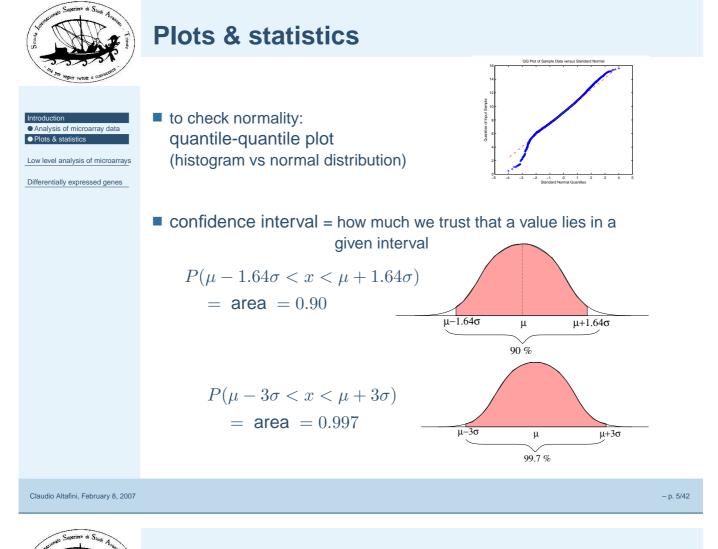
– p. 1/42

Analysis of microarray data

Analysis of microarray data
 Plots & statistics

Low level analysis of microarrays


Differentially expressed genes


what do you do with microarray experiments?

- 1. low level analysis
 - from scanned images to gene expression
- 2. high level analysis (model-free)
 - identify differentially expressed genes
 - clustering
 - principal component analysis
 - ontological enrichment

3. modeling

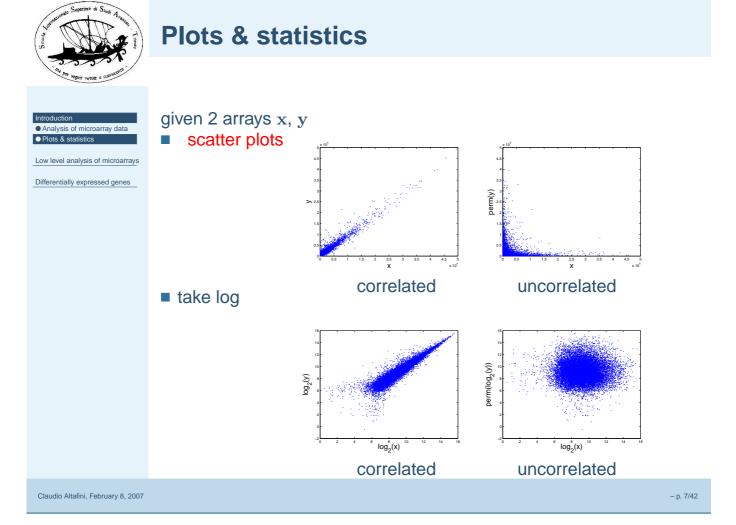
- reverse engineering
- merging with a-priori information

P-value

• given a sample distribution X_1, \ldots, X_n of mean μ

• given a value μ_0

Hypoteses: $\begin{cases} \text{null hypotesis} & H_0: \mu > \mu_0 \\ \text{alternative hypotesis} & H_1: \mu < \mu_0 \end{cases}$ P-value = significance value of the null hypotesis H_0 , according to a test statistics
P-value high $\Longrightarrow H_0$ cannot be rejected
P-value low $\Longrightarrow H_0$ must be rejected
typical choice of P-value: 0.05
for n > 30 can assume $x_1, \ldots, x_n \in \mathcal{N}(\mu, \sigma) \implies P$ -value = area $P(x > \mu_0)$ two-sided P-value $\begin{cases} H_0: |\mu| > |\mu_0| \\ H_1: |\mu| < |\mu_0| \end{cases}$


 $-\mu_0$

alvsis of microarrav dat

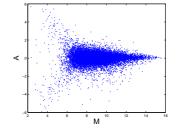
Low level analysis of microarrays Differentially expressed genes

ots & statistics

μ

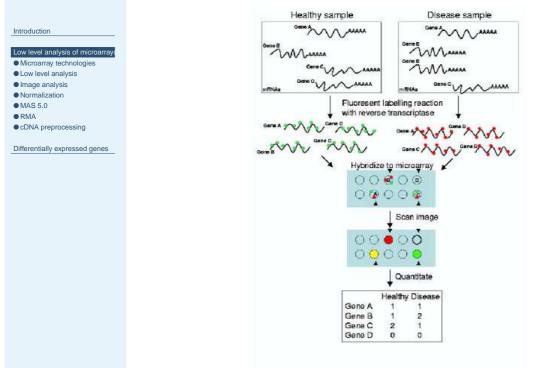
Plots & statistics

Introduction • Analysis of microarray data • Plots & statistics

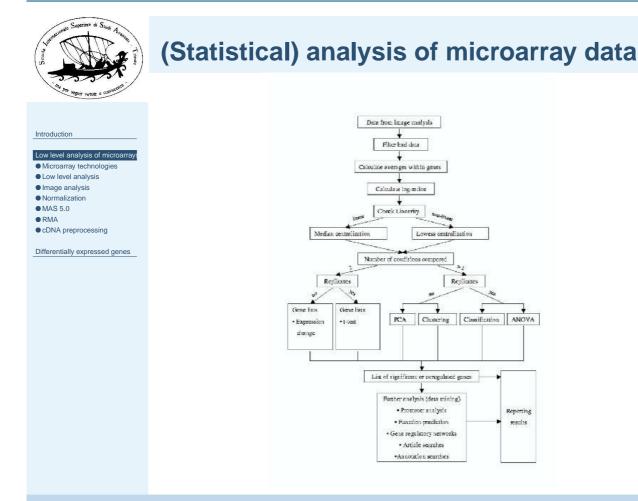

Low level analysis of microarrays

Differentially expressed genes

M-A plot: intensity vs ratio


$$A = \frac{\log_2(\mathbf{x} \cdot \mathbf{y})}{2}$$
$$= \frac{\log_2(\mathbf{x}) + \log_2(\mathbf{y})}{2}$$

$$M = \log_2\left(\frac{\mathbf{x}}{\mathbf{y}}\right)$$
$$= \log_2(\mathbf{x}) - \log_2(\mathbf{y})$$



(Statistical) analysis of microarray data

Claudio Altafini, February 8, 2007

– p. 9/42

Microarray technologies

Introduction

Low level analysis of microarra Microarray technologies

- Image analysis
- Normalization
 MAS 5.0
- MAS 5.0 ● RMA
- cDNA preprocessing

Differentially expressed genes

2 types of microarrays:

cDNA Affymetrix GeneChips

cDNA

- full length DNA clones
- dual channel: (competitively) hybridized and labeled with different fluoresent dyes
 - Cy5: red-fluorescent dye
 - Cy3: green-fluorescent dye
- measure only ratios of fluorescence intensities
- cheap, and often custom made
- low fidelity

Claudio Altafini, February 8, 2007

– p. 11/42

Microarray technologies

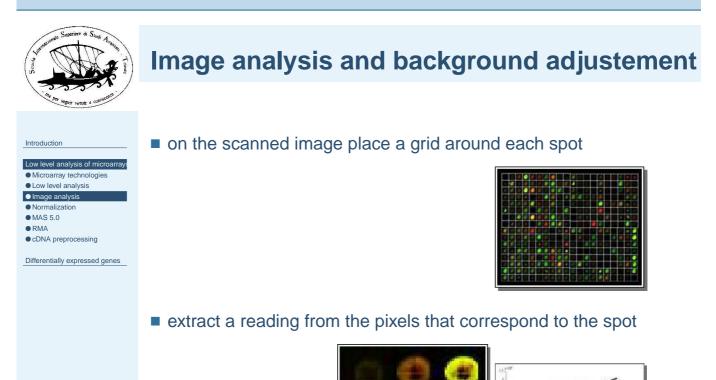
- Introduction
- Low level analysis of microarra
- Microarray technologies
 Low level analysis
- Image analysis
- Normalization
- MAS 5.0

RMA
 cDNA preprocessing

Differentially expressed genes

Affymetrix GeneChips

- single channel: a single RNA is hybridized on the array
- each gene is represented by a set of probes (11 20)
- probe = 10 25 oligonucleotide pairs
- probe pair
 - PM = Perfect Match of the desired sequence
 - MM = MisMatch, has a single nucleotide mismatch in the middle of the sequence
- expensive ($\simeq 1000 \in$ per slide)
- more reproducible


/	vonale Superior	e di Studi Avanen
1 .	M	
Scuola	LA	
	2.5	ssr /
1.	me per seguir vi	rtute e consistente

-

Low level analysis

 3 steps 1. image analysis and background adjustement read and interpret the image from the scanner correct the signals for the background intensity
 normalization manipulate the data to make measurement from different arrays compatible
 3. summarization combine together multiple probe intensity for the same probeset to produce an expression value (only Affymetrix)
 References: book on line "DNA Microarray Data Analysis" http://www.csc.fi/molbio/arraybook/ Affymetrix GeneChip Manual Bioconductor project: http://www.bioconductor.org

Claudio Altafini, February 8, 2007

Probe Intensity

Local Background – p. 13/42

Example: cDNA

Introduction

Low level analysis of microarray Microarray tec Low level ana

scanner reading details for a channel of a typical cDNA:

 Microarray technologies Low level analysis 	Column Title	Description
 Image analysis 	Block	the block number of the feature.
 Normalization MAS 5.0 	ID	the unique identifi er of the feature derived from the Array List
RMA	Х	the X-coordinate in μ m of the center of the feature-indicator associated with the feature
 cDNA preprocessing 	Υ	the Y-coordinate in μm of the center of the feature-indicator associated with the feature
Differentially expressed genes	Dia.	the diameter in tm of the feature-indicator.
	F635 Median	median feature pixel intensity at wavelength #1 (635 nm).
	F635 Mean	mean feature pixel intensity at wavelength #1 (635 nm).
	F635 SD	the standard deviation of the feature pixel intensity at wavelength #1 (635 nm).
	B635 Median	the median feature background intensity at wavelength #1 (635 nm).
	B635 Mean	the mean feature background intensity at wavelength #1 (635 nm).
	B635 SD	the standard deviation of the feature background intensity at wavelength #1 (635 nm).
	% > B635 + 1 SD	the percentage of feature pixels with intensities more than one standard deviation above the background pixel inter
	% > B635 + 2 SD	the percentage of feature pixels with intensities more than two standard deviations above the background pixel inte
	F635 % Sat.	the percentage of feature pixels at wavelength #1 that are saturated.
	F1 Median - B1	the median feature pixel intensity at wavelength #1 with the median background subtracted.
	F1 Mean - B1	the mean feature pixel intensity at wavelength #1 with the median background subtracted.
	SNR 1	the signal-to-noise ratio at wavelength #1, defined by (Mean Foregr. 1- Mean Backgr. 1) / (St. dev. of Backgr. 1)
	F1 Total Intensity	the sum of feature pixel intensities at wavelength #1

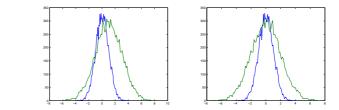
Claudio Altafini, February 8, 2007

Example: Affymetrix

Introduction
Low level analysis of microarray

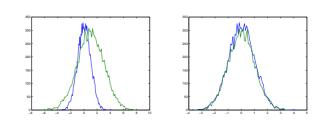
- Microarray technologies Low level analysis Image analysis Normalization • MAS 5.0
- RMA cDNA preprocessing

Differentially expressed genes


- for the image reading part: you normally "trust" the standard image reading algorithms of Affymetrix GeneChip software
- files
 - * .dat: data file, scanned image of the probe array
 - *.cel: cell intensity file, contains a single intensity values for each probe
- each probe: 64 pixels
- disregard border pixels
- take 75% as cell's value

Introduction
Low level analysis of microarray
Microarray technologies
Low level analysis
Image analysis
Normalization
MAS 5.0
RMA
cDNA preprocessing

Differentially expressed genes

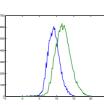

global scaling (i.e. shift of the mean)

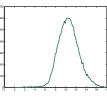
 $\mathbf{y} = \mathbf{y} - \bar{\mathbf{y}} + \bar{\mathbf{x}}$

standardization (i.e. shift the mean + same standard dev.)

$$\mathbf{y} = (\mathbf{y} - \bar{\mathbf{y}} + \bar{\mathbf{x}}) \frac{s_{\mathbf{x}}}{s_{\mathbf{y}}}$$

Claudio Altafini, February 8, 2007




Normalization

- Introduction
 Low level analysis of microarray:
 Microarray technologies
 Low level analysis
- Low level analysis
 Image analysis
- Image analysis
 Normalization
- MAS 5.0
- RMA
- cDNA preprocessing

Differentially expressed genes

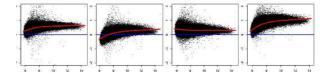
- quantile normalization
- 1. sort each array
- 2. take average on the ranking
- 3. reassign the averages to the corresponding ranks

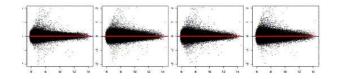
 \Longrightarrow probability distributions are exactly the same

exp 1	exp 2	2	exp 1	exp 2		average	
50	1000)	50	100		75	
400	600	\Rightarrow	200	600	\implies	400	
200	100		400	1000		700	
	ovp 1				,		
	exp 1	exp 2					
	75	700					
\implies	700	400					
	400	75					

– p. 17/42

/	puonale Superio	ne di Studi	4
1	N	TTP	Man
Scuola	18	ADA.	\$ 1)
1			R /
1.	ma per seguir v		ente
	-Ron /	artule e com	


Introduction Low level analysis of microarray Microarray technologies Low level analysis Mormalization MAS 5 0


- RMA
- cDNA preprocessing

Differentially expressed genes

lowess normalization

- 1. fit a smooth curve to the MA plot
- 2. "straigten up" the curve
- 3. retrasnform the M, A, data into \mathbf{x} , \mathbf{y}
- \implies correct only when there is an intensity dependent bias
- ⇒nonlinear normalization

Claudio Altafini, February 8, 2007

– p. 19/42

asionale Superiore di Stadi Atan

Affymetrix preprocessing: MAS 5.0

Introduction	

- Low level analysis of microarray Microarray technologies
- Low level analysis
- Image analysis
 Normalization
- MAS 5.0
- RMA
- cDNA preprocessing
 Differentially expressed genes
- MAS = MicroArray Suite is the "official" Affymetrix processing software
- BACKGROUND ADJUSTEMENT
 - chip is divided into a grid of rectangular regions (default: 16)
 - on each region: background is computed using the lowest 2 % of probe intensities
 - each probe intensity (both PM and MM) is adjusted based on a weighted average of these background values
- NORMALIZATION:
 - scaling
 - 1. global scaling (when there are few changes in gene expression among the arrays)
 - 2. scaling according to "housekeeping genes" (when there are many changes among the arrays)
 - robust normalization: further compensation

Affymetrix preprocessing: MAS 5.0

Introduction

Low level analysis of microarray

- Microarray technologies
 Low level analysis
- Low level analysis
 Image analysis
- Normalization
- MAS 5.0
 RMA
- cDNA preprocessing
- Differentially expressed genes

SUMMARIZATION:

for each PM/MM probe pair compute the discrimination score:

$$R = \frac{PM - MM}{PM + MM}$$

- ◆ if R > 0.015 ⇒ probe pair is voting for the *presence* of the transcript
- if $R < 0.015 \implies$ probe pair is voting for the *absence* of the transcript
- detection p-value: perform a One-sided Wilcoxon's signed rank test on all probe pairs
- p-value is used to assign a detection flag to a transcript:

p-value	flag	detection
p-value < 0.04	Р	transcript is PRESENT
0.04 < p-value < 0.06	М	trascpript is MARGINAL
p-value > 0.06	Α	trascpript is ABSENT

Claudio Altafini, February 8, 2007

– p. 21/42

Affymetrix preprocessing: MAS 5.0

- Introduction Low level analysis of microarray
- Microarray technologies
 Low level analysis
- Low level analysis
 Image analysis
- Normalization
- MAS 5.0
- RMA
 cDNA preprocessing

Differentially expressed genes

- SIGNAL QUANTIFICATION
 - assigns the relative level of expression to the transcript
- computed as a weighted mean using the One-Step Tukey's Biweight Estimate
- all pairs contribute to the estimate, with various corrections (e.g. MM>PM is physiological nonsense; probe pairs closer to median have heavier weight; etc.)
- scaling can precede or follow summarization

RMA preprocessing

Introduction
Low level analysis of microarrays
 Microarray technologies
Low level analysis
Image analysis
 Normalization
• MAS 5.0

● RMA

cDNA preprocessing

Differentially expressed genes

- RMA = Robust Multichip Average
- more recent preprocessing method for Affymetrix Chips
- BACKGROUND ADJUSTEMENT
 - uses only PM (reason: MM values are strongly dependent on PM)
 - PM probes are modeled as sums of Gaussian noise
 N(μ, σ²) + exponential signal component Exp(α)
- NORMALIZATION: quantile
- summarization: median polish
 - aims at centralizing both columns (chips) and rows (genes) medians to 1
 - 1. compute row median and subtract it, yielding row median =1
 - 2. do the same with columns
 - 3. repeat until it converge

Claudio Altafini, February 8, 2007

cDNA preprocessing

- Introduction
- Low level analysis of microarray Microarray technologies
- Low level analysisImage analysis
- Normalization
- MAS 5.0
- RMA
 CDNA preprocessir

Differentially expressed genes

- similar algorithms
- dual channel: only comptetitive hybridization —>ratios
- single spot per gene: less accurate measure

Ratio of Medians	the ratio of the median intensities of each feature for each wavelength, with the median background subtracted.
Ratio of Means	the ratio of the arithmetic mean intensities of each feature for each wavelength, with the median background subtra
Median of Ratios	the median of pixel-by-pixel ratios of pixel intensities, with the median background subtracted.
Mean of Ratios	the geometric mean of the pixel-by-pixel ratios of pixel intensities, with the median background subtracted.
Ratios SD	the geometric standard deviation of the pixel intensity ratios.
Rgn Ratio	the regression ratio of every pixel in a 2-feature-diameter circle around the center of the feature.
Rgn R^2	the coeffi cient of determination for the current regression value.
F Pixels	the total number of feature pixels.
B Pixels	the total number of background pixels.
Sum of Medians	the sum of the median intensities for each wavelength, with the median background subtracted.
Sum of Means	the sum of the arithmetic mean intensities for each wavelength, with the median background subtracted.
Log Ratio	log (base 2) transform of the ratio of the medians.
Flags	the type of flag associated with a feature.
Normalize	the normalization status of the feature (included/not included).

– p. 23/42

Example: Affymetrix Rat230_2 platform

ntroduction	■ 3 ⁻
ow level analysis of microarrays	■ 5 ⁴
Differentially expressed genes	•
Example: Hippocampus	
experiments 100 normalizing genes	
scatter plotFold change analysis	•
t-test	

- other statistical tests
- multiple testing

1099 probe sets

4 control genes

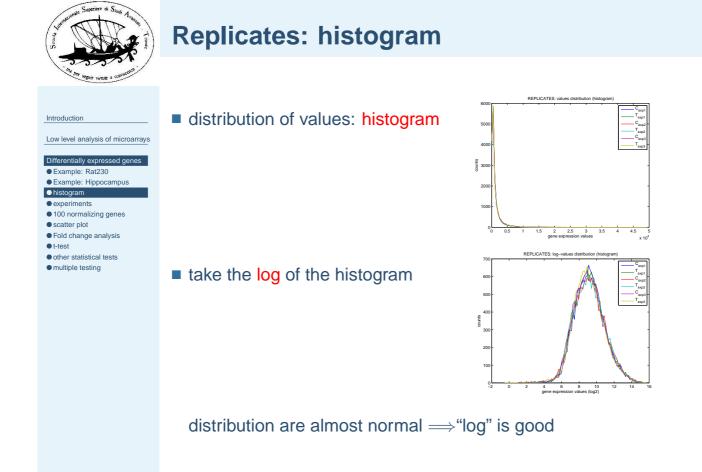
- Poly-A controls
 - thr, trp, B.suptilis, lys, phe, thr, dap
 - to control target labeling
- Hybridization control
 - bioP, bioC, bioD, cre
 - to evaluate sample hybridization
- internal controls
 - β -actin, GADPH, HExokinase
 - to asses the RNA sample and assay quality
- 100 Normalization controls
 - genes that should not vary \implies can be used to normalize the measurement
- more details (one the web): **GeneChip Expression Analysis: Data Analysis Fundamentals**

Claudio Altafini, February 8, 2007

Hippocampus response to bicuculline

Introduction

Low level analysis of microarrays


- Differentially expressed genes • Example: Rat230
- Example: Hippocar histogram
- experiments
- 100 normalizing genes
- scatter plot
- Fold change analysis • t-test
- other statistical tests
- multiple testing

experiments carried out in Vincent Torre's Lab

Exp. v.s. time	0 min	180 min
exp1	$C_{\exp 1}$	$T_{\rm exp1}$
exp2	$C_{\exp 2}$	$T_{\rm exp2}$
exp3	C_{exp3}	$T_{\rm exp3}$

- TASK: look for differentially expressed genes
- Iook at the data preprocessed with MAS 5.0
- genes with "good" P-value in *all* experiments are $\simeq 34\%$ $\Longrightarrow \simeq 10000$ genes
- genes with "good" P-value in at least 3 out of 6 experiments are $\simeq 51\% \Longrightarrow \simeq 16000$ genes

– p. 25/42

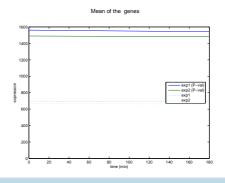
Claudio Altafini, February 8, 2007

Replicates: experiments

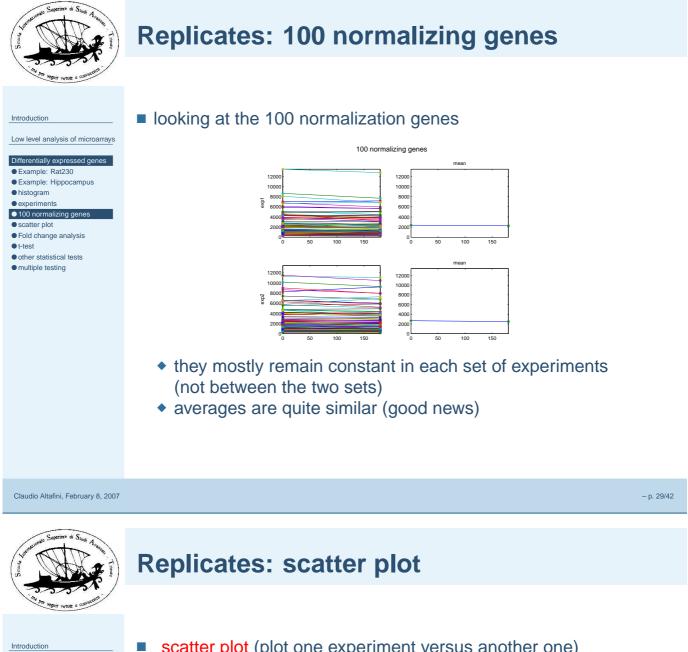
Introduction

Low level analysis of microarrays

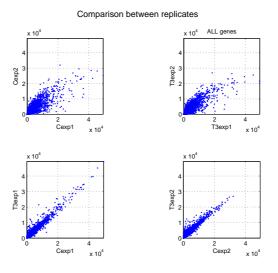
Differentially expressed genes • Example: Rat230


• Example: Hippocampus

- histogram
- experiments
- 100 normalizing genesscatter plot
- Fold change analysis
- t-test
- other statistical tests
- multiple testing


some statistics:

	$C_{\exp 1}$	$T_{\rm exp1}$	C_{exp2}	$T_{\rm exp2}$	C_{exp3}	$T_{\rm exp3}$
mean (all):	696.6	691.8	666.4	662.0	675.8	700.7
mean (P-val):	1561.2	1541.1	1489.8	1480.9	1197.3	1235.7
st. dev.(all):	1884	1838	1603	1555	1649	1902
st. dev.(P-val):	2748	2676	2287	2206	2157	2521


- genes with bad P-value have mostly low expression level
- (global) normalization is done over the mean of all data (at least for exp1 and exp2)

– p. 27/42

scatter plot (plot one experiment versus another one)

- no good news!!!!
- variance $\{C_{exp1} C_{exp2}\} >>$ variance $\{C_{exp1} T_{exp1}\}$ and likewise for the others

Low level analysis of microarrays

Differentially expressed genes

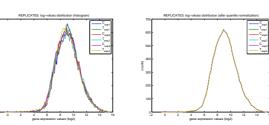
• Example: Rat230

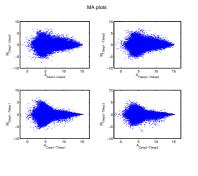
• Example: Hippocampus histogram • experiments

• 100 normalizing genes scatter plot Fold change analysis

• t-test other statistical tests

multiple testing




Replicates: systematic error compensation

Introduction Low level analysis of microarrays Differentially expressed genes Example: Rat230 Example: Hippocampus histogram experiments 100 normalizing genes

- scatter plotFold change analysis
- t-test
- other statistical tests
- multiple testing

- systematic error:
 - biological diversity between sets of experiments
 - also different processing algorithms?
- How to compensate for this systematic error?
- INTERSAMPLE NORMALIZATION
 - check if there is an intensity-dependent bias (MA plot)
 - apply a quantile normalization

Claudio Altafini, February 8, 2007

Fold change analysis

Introduction

Low level analysis of microarrays

Differentially expressed genes • Example: Rat230

- Example: Hippocampus
- histogramexperiments
- 100 normalizing genes
- scatter plot
 Fold change a
- Fold c
 t-test

• other statistical tests

multiple testing

which genes are differentially expressed between C and T?

$$\frac{x_T}{x_C} > k$$
 k-fold up-regulation

 $\frac{x_T}{x_C} < \frac{1}{k}$ k-fold down-regulation

• taking $\log \implies$ fold change becomes an additive operation

$$\log\left(\frac{x_T}{x_C}\right) > \log(k) \qquad \Longleftrightarrow \qquad \log(k)$$

$$\log(x_T) - \log(x_C) > \log(k)$$

 \implies useful for replicates

– p. 31/42

Fold change analysis

Introduction

Low level analysis of microarrays

Differentially expressed genes Example: Rat230

Example: Hippocampushistogram

- experiments
- 100 normalizing genes
- scatter plotFold change analysis
- t-test
- other statistical tests
- multiple testing

Example: what is the mean fold change in a replicated experiments?

	exp1	exp2		е	xp1	exp2
geneA	120	30	geneA geneB	$\frac{120}{60}$	$\frac{0}{1} = 2$	$\frac{30}{60} = 0.5$
geneB	60	60				
 ▶ mean (geneA/geneB) = 2+0.5/2 = 1.25 ????? ▶ if we take logs: 						
			exp1			exp2
$\log_2\left(\frac{\text{geneA}}{\text{geneB}}\right)$ $\log_2\left(\frac{120}{60}\right) = 1$ $\log_2\left(\frac{30}{60}\right) = -1$						
• mean $\left(\log_2\left(\frac{\text{geneA}}{\text{geneB}}\right)\right) = \frac{1-1}{2} = 0$, • hence $2^0 = 1$						

Claudio Altafini, February 8, 2007

Introduction

histogramexperiments

t-test
other statistical tests
multiple testing

Low level analysis of microarrays

Differentially expressed genes • Example: Rat230 • Example: Hippocampus

100 normalizing genes
scatter plot
Fold change analysis

– p. 33/42

Fold change analysis

Fold change methods:

- check differentially expressed genes on each experiment pair and take intersection
- previous method: $2^{\text{mean}(\log(T/C))}$
- average over all C and T and then take ratio mean(T)/mean(C)
- example: rat hippocampus

	exp1	exp2	ехр3	intersect(1,2,3)	intersect(1,2)
$x_T/x_C > 4$	145	125	62	0	41
$x_T/x_C < 1/4$	72	26	69	0	1

	$2^{\text{mean(log(T/C))}}$	mean(T)/mean(C)	common
$x_T/x_C > 4$	27	26	19
$x_T/x_C < 1/4$	3	0	0

Statistical tests for differential expression

Introduction

Low level analysis of microarrays Differentially expressed genes

- Example: Rat230
- Example: Hippocampushistogram
- experiments
- 100 normalizing genes
- scatter plot
 Fold change analysis
- t-test
- other statistical tests
- multiple testing

- But what is a significant change???
- Depends on the variability within groups which may be different from gene to gene
- to assess statistical significance of differences: statistical tests for each gene
- two-sample t-statistics

Claudio Altafini, February 8, 2007

Introduction

Low level analysis of microarrays

- Differentially expressed genes • Example: Rat230
- Example: Hippocampus
- histogram
 experiments
- experiments
 100 normalizing genes
- scatter plot
- Fold change analysis
- t-test
- other statistical tests
 multiple testing

- t-test
 - want to compare two groups (here C and T)
 - normally distributed, but few samples
 - ⇒statistically significant test is t-test

hypoteses:
$$\begin{cases} H_0: & \bar{x}_T - \bar{x}_C < \Delta \\ H_1: & \bar{x}_T - \bar{x}_C > \Delta \end{cases}$$

- test statistics
- if variances are equal: student t-test

 $\tau = \frac{(\bar{x}_T - \bar{x}_C) - \Delta}{s\sqrt{\frac{1}{n_C} + \frac{1}{n_T}}}$

• $s = \sqrt{\frac{(n_C - 1)s_C^2 + (n_T - 1)s_T^2}{n_C + n_T - 2}}$

- n_C , n_T = number of repeats for C and T;
- s_C , s_T = standard deviations
- P-value: area $P(t > \tau)$ for the t-student curve (with $n_c + n_T - 2$ degrees of freedom) = probability that the test statistics is at least as extreme as the observed value τ

– p. 35/42

t-test

Introduction

Low level analysis of microarrays

Differentially expressed genes Example: Rat230

- Example: Hippocampushistogram
- experiments
- 100 normalizing genes
- scatter plot
- Fold change analysis
 t-test
- other statistical tests
- multiple testing

- if variances can be different: Welsh t-test
- n. of degrees of freedom $\nu =$
- P-value: area P(t > τ) for the t-student curve (with ν degrees of freedom)
- meaning: for each gene weight the differences between C and T by the sample variance of the measures of C and T
- Example: rat hippocampus, overlap with fold change analysis

	t-test (P-val=0.1)	$2^{\text{mean(log(T/C))}}$	mean(T) mean(C)	common
$x_T/x_C > 4$	0 (0)	27	26	0
$x_T/x_C > 2$	3 (13)	218	254	3 (13)

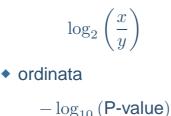
Claudio Altafini, February 8, 2007

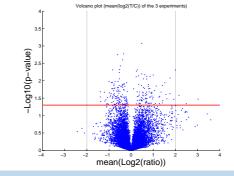
Low level analysis of microarrays Differentially expressed genes • Example: Rat230 • Example: Hippocampus • histogram • experiments • 100 normalizing genes

Introduction

scatter plotFold change analysis

multiple testing


t-test
 other statistical test


Alternative statistical tests

• two-sided tests, $\Delta = 0$,

$$\tau = \frac{\bar{x}_T - \bar{x}_C}{s\sqrt{\frac{1}{n_C} + \frac{1}{n_T}}}$$

- Wilcoxon tests: rank-based (non-parametric)
- permutation based tests: in the test statistics choose the null distribution by repeated permutations on the values
- Volcano plots: Log(p-val) vs Log(ratio)
 - abscissa:

– p. 37/42

 $\tau = \frac{(\bar{x}_T - \bar{x}_C) - \Delta}{\sqrt{\frac{s_C^2}{n_C} + \frac{s_T^2}{n_T}}}$

 $\frac{\left(\frac{s_C^2}{n_C} + \frac{s_T^2}{n_T}\right)}{\frac{1}{n_C - 1} \left(\frac{s_C^2}{n_C}\right)^2 + \frac{1}{n_T - 1} \left(\frac{s_T^2}{n_T}\right)^2}$

Moderate t-statistics

Low level analysis of microarrays

- Example: Rat230
- Example: Hippocampus
- histogramexperiments
- 100 normalizing genes
- scatter plot
- Fold change analysis
- t-test
 other statistical tests
- multiple testing

- with few replicates (2-5 per group) variance estamates are unstable
- in a moderated t-statistics the estimated gene specific variance s is augmented with s_o, a global variance estimator from all genes

$$\tau = \frac{\bar{x}_T - \bar{x}_C}{\sqrt{\nu s + \lambda s_o} \sqrt{\frac{1}{n_C} + \frac{1}{n_T}}}$$

meaning: "interpolation" between t-statistics and fold-change analysis

Claudio Altafini, February 8, 2007

Multiple hypotesis testing

Introduction

Low level analysis of microarrays

- Differentially expressed genes • Example: Rat230
- Example: Hippocampus
- histogramexperiments
- experiments100 normalizing genes
- scatter plot
- Fold change analysis
- t-test
- other statistical tests
 multiple testing

- Problem: testing thousands of hypothesis (one for each gene) simultaneously the chances of false positives increase
- Example: if 3% of 10000 null hypoteses are rejected with a significance value of 0.05 (i.e. 300 genes are differentially expressed)
 - \implies P(single correct rejection) = 1-0.05 = 0.95
 - \implies P(correct rejection on 300 genes) =
 - $0.95^{300} = 2.07 \ 10^{-7} \simeq 0$
 - \implies P(at least a false rejection) = $1 2.07 \, 10^{-7} \simeq 1$
- Example: if 0% of 10000 genes are differentially expressed at a significance value of 0.01
 - \Longrightarrow you expect $10000 \cdot 0.01 = 100$ genes to be differentially expressed

– p. 39/42

The state of the s	Multiple hypotesis testing	
Introduction Low level analysis of microarrays Example: Rat230 Example: Rat230 Example: Hippocampus initogram experiments 100 normalizing genes acatter plot of dic change analysis i-test ormultiple testing	$u = \frac{1}{1} \int_{r} \frac{1}{1} \int_$	
Claudio Altafini, February 8, 2007		– p. 41/42

And the second state of th

Multiple hypotesis testing

Introduction

Low level analysis of microarrays

- Differentially expressed genes • Example: Rat230
- Example: Hippocampus
- histogram
- experiments100 normalizing genes
- scatter plot
- Fold change analysis
- t-test
- other statistical tests
 multiple testing

- to control FWER: Bonferroni correction
 - given n genes
 - a test statistics τ
 - an unadjusted P-value p
 - \Rightarrow adjusted P-value = $\min(1, n \cdot p)$
 - very conservative
- to control FDR:
 - order unadjusted P-values $p_{g_1}, p_{g_2}, \ldots, p_{g_n}$
 - \bullet to control FDR at a level α

$$j^* = max\{j : p_{g_j} \leqslant \frac{j}{n}\alpha\}$$

- reject H_0 for $j = 1, \ldots, j^*$
- conservative if many genes are differentially expressed