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A quote

From R. Ernst, G. Bodenhausen and A. Wokaun “Principles of NMR in one and
two dimensions” Claredon Press 1987, p.3

“spectroscopy stands in close analogy to techniques which measure
the transfer function of an electronic device. (...) It is well known that
the transfer function completely characterizes a linear
time-independent system. Many of the concepts of spectroscopy
stems from the consideration of linearly or approximately linear
systems for which a simple and elegant mathematical treatement is
possible. (...) It has been known for many years that the free
induction decay is equivalent to the impulse response for linear
systems.”
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Overview of these lectures

1. today:
overview and (biased) motivations
formulation of the feedback problems for a single spin 1/2 ensemble

2. tomorrow:
system theory for bilinear control systems

structure
controllability
feedback stabilization

3. & 4. next week:
feedback stabilization for 2 or more spin 1/2
disturbance rejection: suppression of unwanted (weak) coupling
terms
state estimation and density matrix reconstruction
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Why feedback on NMR?

ideal candidate for quantum engineering

NMR captures most of the features of Quantum Information Processing
state space is composed of tensor products of “qubits”

exponential growth of the degrees of freedom available
correlations are induced by natural infinitesimal couplings

nonlocal operations: “more than just tensor products”
quantum nature of spin systems

sufficiently small interaction with environment and long relaxation times
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Why feedback may be successfully tried?

precise knowledge of the dynamics

extensive expertise on state manipulation

reliable control methods (RF pulses)

sufficiently slow evolution =⇒ possible to pair the system with a computer
in real time

natural “continuous time” evolution

bulk spin measurement are classical
=⇒ no discontinuity (“collapse”) in the state variables (major obstacle
to feedback in any other quantum mechanical setting)
=⇒ deterministic feedback is possible
=⇒ feedback is unitary
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Why one would like to have it?

feedback simplifies the state manipulation problem

many tasks, the same controller

feedback is intrinsically robust to model error, disturbances, noise,
experimental imperfections

allows to preserve the state from (unitary) perturbations (unwanted
couplings)

controlled system is still deterministic

in any domain of engineering, whenever you have the chance to apply
feedback methods (rather than just open-loop methods) you better take it!
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Why nobody has tried it yet (in NMR)?

lack of real-time equipment

pulse sequences based on frequency-domain techniques (both hard and
shaped pulses, piecewise linear systems −→ piecewise “transfer
function”, spectral analysis) are completely dominant over exclusively
time-domain techniques

need to resort to nonlinear system analysis and synthesis (actually
bilinear system theory is enough)

before QIP: lack of interest to state manipulation problems (focus on
molecular structure and identification of reaction dynamics)

after QIP: direct link between “piecewise linear methods” given by pulse
sequences and discrete gate formalism of QIP.
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Pros: potential results

same device to solve the state transfer problem for all superposition
states, not just for few well-studied states

possibility of suppressing unwanted couplings

for “open-loop” control: a tool to design amplitude-modulated controls for
1. complicated Hamiltonians
2. decoupling desired subspaces

reconstruct the density operator (state tomography) in a single shot?
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Cons: drawbacks/challenges

building real-time equipment

invent a completely time-domain formalism for NMR

forget about the “wires and gates” formalism of QIP

focus on nonlinear methods for continuous-time state transfer

cope with very low signal-to-noise ratio

find tasks not (simply) solvable by current state-of-art RF pulse
techniques

even if successfull, such a control system will never be a “quantum
computer”, rather it will be a computer controlled quantum system
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Feedback Control of Nonlinear Systems

Nonlinear system theory
deals with systems of ODEs that do not satisfy the superposition
principle
almost never uses frequency methods: lack of a superposition
principle implies that the energy that enters at a certain frequency
gets “scattered” at other frequencies at the output =⇒ spectral
analysis is not useful as in linear systems theory =⇒ time-domain
metods.

model of a system

ẋ = f(x, u)

y = g(x)

where
f( · , · ) = state equation (system of ODEs), f ∈ C∞(Rn)

g( · ) = output equation, g ∈ C∞(Rp)
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Feedback Control of Nonlinear Systems

ẋ = f(x, u)

y = g(x)

x = state vector = all “internal” variables of interest needed to describe
the dynamical evolution of the system

u = control input

y = output = measured quantities
It can be:

y = x (entire state is measurable)
y part of the state x

memoryless function of x

y can be
measured only at the end of an experiment
available on line
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Control via pulse sequences

when are pulse sequences used in modern control theory?
system identification (in NMR: process tomography i.e., finding the
Hamiltonian)
open-loop control methods

open-loop control

x=f(x,u).open−loop 
controller 

reference
trajectory

d(0,T)x u(0, T)
output

y(0, T)

y=g(x) 

real system

in my knowledge: NMR community has developed more sophisticated
and extensive set of tools to do open-loop control than any other
engineering community
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Open-Loop Control

use knowledge of the model of the process f( · , · ) , g( · ) and of the
initial condition of the state x(0) to design a control function
u : [0, T ] → U such that ẋ = f(x, u(0, T )) is steered from the initial
condition x(0) = xo to a desired terminal condition x(T ) = xf .

U = functional space of the controls. Examples
1. U = { finite amplitude impulses }
2. U = { piecewise constant functions }
3. U = { smooth functions }

example: optimal control methods

prerequisite
knowledge of the model
knowledge of the initial condition
controllability= possibility of arbitrarily manipulate the state by means
of u only
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Drawbacks of Open-Loop Control

Accuracy of the model must be very high

Trust in the model is absolute, there is no way to “correct” the state “on
the run”.

Makes no use of the output equation y = g(x) and of the measurements

It is intrinsecally nonrobust to
model error
noise and disturbances
imprecise initial condition

computation of open-loop trajectories: “NP hard” search problem in
U-space

need to recompute a control any time xo,, xf are changed

when y = g(x) is available on-line, there is the opportunity to do
feedback
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Feedback Control

general idea: use measurement information to correct the state in
real-time to

impose a desired behavior to the state
compensate for modeling errors, disturbancies and noise

.
x=f(x,u)

feedback 
controller 

reference
trajectory

d(t)x u(t)
output

y(t)real system

y=g(x)

how to build the block “feedback controller”?
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Feedback Control

aim is to have a closed-loop system which is
stable
converging asymptotically to the target xd

asymptotic stability can be
1. local: holds for all initial conditions

in a neighborhood of xd

2. global: holds for all initial conditions

in both cases: no need to know the initial conditions

x
d

x
d
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State Feedback

Case 1 Assume the entire state is measured y = x =⇒ state feedback

feedback synthesis consists in finding a law u = k(x, xd) such

that the closed-loop system

ẋ = f (x, k(x, xd))

is asymptotically converging to the desired reference trajectory

lim
t→∞

(x(t) − xd(t)) = 0

the reference state xd(t) can be
1. an equilibrium point xd(t) = xd(0) = const

2. a trajectory defined by e.g. ẋd = fd(x) =⇒ trajectory tracking
to find u = k(x, xd) there are several methods
here: Lyapunov functions
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State Feedback

Lyapunov sufficient condition for stabilization

Theorem If ∃ a real-valued function V = V (x, xd) which is positive definite,

V (x, xd) > 0 ∀x, xd, V (x, xd) = 0 ⇐⇒ x = xd

and such that its total derivative along the trajectories of the closed-loop
system is negative definite

V̇ (x, xd) =
∂V

∂x
f (x, k(x, xd)) +

∂V

∂xd
fd (xd) < 0,

then the closed-loop system is asymptotically tracking the desired
reference trajectory xd(t)

this is a sufficient condition only, but for the class of systems we are
interested in it will yield a constructive method to find k(x, xd).
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State Feedback

Often times one achieves only that V̇ (x, xd) 6 0 negative semidefinite.

this alone guarantees only stability (meaning x and xd “do not diverge”
asymptotically) but not convergence of x to xd . We need to use LaSalle
invariance principle

Theorem Assume V (x, xd) > 0 and V̇ (x, xd) 6 0. Consider the set
N = {x s. t. V̇ (x, xd) = 0}. If the set of x obeying to ẋ = f (x, k(x, xd))

and confined to N contains only x = xd , then the closed-loop system is
asymptotically tracking the reference trajectory xd.

x =
.

f ( x , k ( ,x x d )) 

V( ,x x d )) const=

x
d
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Why no frequency methods in nonlinear feedback?

in open-loop methods:
u(t) is piecewise-constant (“hard pulses”)
u(t) can be given a shaped time-varying amplitude (“soft pulses”)

in both cases: frequency content of the pulse can be imposed to belong
to a certain window −→ minimal overlap with unwanted frequency regions

in feedback: amplitude modulation is chosen by the algorithms and
changes widely

with the initial condition
during the evolution

=⇒ periodicity changes during transient

=⇒ analysis of resulting spectra during transient are often hopeless...

steady state is reached only asymptotically...
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Output Feedback

Case 2 Assume measures of the entire state are not available y 6= x

Sometimes it is still possible to “reconstruct” on-line the missing state
variables −→ state estimation problem
in control-theoretic language this is the observability problem and is
“dual” to the controllability problem.
To set up a state estimator: use a replica (model) of the system
x̂(t) = estimated state at time t

.
x=f(x,u)

feedback 
controller 

reference
trajectory

d(t)x u(t)
output

y(t)real system

y=g(x)

state estimator

x=f(x,u)
.

+ p(x, y, y)
y=g(x)
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State Estimation

Dynamics of the state estimator

˙̂x = f (x̂, u) + p (x̂, ŷ, y)

ŷ = g (x̂)

need to find p = p (x̂, ŷ, y) such that

lim
t→∞

(x̂(t) − x(t)) = 0

i.e., estimated state converges to the true one

The state estimator algorithm play also the role of filter with respect to
measurement noise

for linear systems: Kalman filter

for nonlinear systems: @ a general constructive theory

Prerequisites:
knowledge of the model (“Hamiltonian”)
state “observability”
no need to known the initial condition
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Feedback in a quantum context

1. Iterative algorithms (H. Rabitz)

field correction
algorithm

design an open−loop field

do an experiment

take a measure
(at the end of the experiment)

(via numerical optimization)

this is not real-time −→ batch feedback
variant: adaptive/genetic/learing algorithms
useful in quantum chemistry (selective bond dissociation/creation,
parameter identification in the Hamiltonian)
throughput rate of the experiments: thousands per second
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Feedback in a quantum context

2. Feedback control of the stochastic master equation (J. Milburn, H.
Wiseman, A, Doherty, H. Mabuchi)

quantum system is weakly coupled with a monitored bath (e.g.
homodyne detection)
weak measure is used to correct the stochastic evolution −→
wavepacket reduction
measurement process is nonunitary =⇒ stochastic master equation
this is real-time
less powerful (and more difficult) than what can be achieved by
completely noninvasive measurements

possible equilibria are decided by the measurement process (by its
Lindbladian) and cannot be altered by feedback

more theoretically challenging (quantum measurement)
also more practically challenging??
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Feedback control of a single spin 1/2 ensemble

model: controlled Bloch equation

problem formulation

two solutions:
1. orbital stabilization
2. orbit tracking

feedback control of nutation

application: spin squeezing (H. Mabuchi et al.)
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Model for a single spin 1/2 ensemble

State= density operator ρ:
2 × 2 complex matrix
positive: ρ ≥ 0

Hermitian: ρ = ρ†

unit trace: tr(ρ) = 1

pure state: tr(ρ2) = 1

mixed state: tr(ρ2) < 1
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Model for a single spin 1/2 ensemble

parametrization of ρ:

ρ = %0λ0 + %1λ1 + %2λ2 + %3λ3

λk = 1√
2

σk = Pauli matrices

λ1 =
1√
2

"

0 1

1 0

#

, λ2 =
1√
2

"

0 i

−i 0

#

, λ3 =
1√
2

"

1 0

0 −1

#

=⇒ angular momentum operators for a spin 1/2

%k = expectation values of ρ

%k = tr(ρλk), k = 1, 2, 3

Bloch vector : % =

2

6

4

%1

%2

%3

3

7

5
∈ R3
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Model for a single spin 1/2 ensemble

% ∈ Bloch ball
complete mixing ‖%‖ = 0

pure state ‖%‖ = 1√
2

in NMR: deviation density operator

(1 − ε)I/2 + ερ

−→ pseudopure states: only ε ρ matters for the evolution

ε ' 10−5 −→ very mixed states: ‖%‖ ' 10−5

0 0

1 1

|| ||ρ

ρ

pure state

complete mixing

|

pseudopure state

ρ1

ρ2

3
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Liouville equation

differential equation for ρ: Liouville-von Neumann equation

ρ̇ = −i[H, ρ]

Hamiltonian H = h1λ1 + h2λ2 + h3λ3

in the Bloch vector parametrization:

%̇ = −iadH% =⇒ Bloch equation

Bloch equation = “adjoint representation”

−iadH = h1

2

6

4

0 0 0

0 0 −1

0 1 0

3

7

5
+ h2

2

6

4

0 0 1

0 0 0

−1 0 0

3

7

5
+ h3

2

6

4

0 −1 0

1 0 0

0 0 0

3

7

5

time-varying evolution % (t) = exp
“

R t

0 −iadH(τ)dτ
”

% (0) is on the sphere

‖% ‖2 = const

=⇒ isospectral evolution

|| ρ ||

ρ

ρ

1

ρ

2

3
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Controlled Bloch equation

Hamiltonian is composed of
1. a free part (the drift)
2. a forcing part (the control term)

1. free part: due to a strong static magnetic field Bo aligned with the λ3 axis
Bo −→ induces the deviation ε ρ

Bo −→ spin ensemble precesses around λ3

in the lab frame
Hf,` = −γBoλ3

γ = gyromagnetic ratio

2. control Hamiltonian: rotating r.f. field with frequency ωrf ' ωo = γBo

in the lab frame

Hrf,` = −γB1 (cos(ωrf t + φ)λ1 + sin(ωrf t + φ)λ2)

controllable parameters
1. amplitude B1

2. frequency ωrf

3. phase φ
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Bloch equation in the rotating frame

ω0 (Larmor frequency) ' tens to hundreds of MHz

ω1 = γB1 ' tens to hundreds of kHz

to get rid of the higher frequency in the Hamiltonian: rotating frame =
coordinate system rotating around λ3 at the frequency ωrf ' ωo

% = e−iωrf tadλ3 %`

in the ODE: variation of constants formula

%̇` = −iωrfadλ3
%`, %`(0) = %(t)

%̇ = −ie−itωrfadλ3 adHrf
eitωrfadλ3 %, %(0) = %`(0)

+ approximation (Bloch-Siegert shift)
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Bloch equation in the rotating frame

Hamiltonian in the rotating frame H = Hf + Hc

Hf = −(ωo − ωrf)λ3

Hc = −ω1 (cos φλ1 + sin φλ2)

fixing φ =⇒ axis at which the control acts is fixed

call h3 = −(ωo − ωrf)

assume φ = 0

H = Hf + Hc = h3λ3 + u λ1

where u = −ω1 = real valued control, u ∈ C∞(R)

precession h3 of the order of the kHz =⇒ much slower than ωo

when ωrf = ωo =⇒ driftless Hamiltonian −→ nutation around the λ1 axis
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Bloch equation in the rotating frame

for density matrix ρ

ρ̇ = −i
h

h3λ3 + u λ1 , ρ
i

matrix system, 2 × 2

Hamiltonian: 2 × 2 matrices
solution: conjugation action on a matrix

ρ(t) = exp
“

−i
R t

0 H(τ)dτ
”

ρ(0) exp
“

i
R t

0 H(τ)dτ
”

in terms of the Bloch vector:

%̇ = −i
“

h3adλ3
+ u adλ1

”

%

bilinear control system living on S2 ⊂ R3

Hamiltonian is 3 × 3

solution: linear action on a vector %(t) = exp
“

−i
R t

0 adH(τ)dτ
”

%(0)
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Formulation of the feedback problem: assumptions

known Hamiltonian H

measurement
“classical” measurement (no wavefunction collapsing)
“continuous” measurement
full state is measured and available on-line

%1 = tr (ρλ1)

%2 = tr (ρλ2)

%3 = ±
q

‖%‖ − (%1)2 − (%2)2

control
fully deterministic control problem
a single control input
unitary
real-time feedback
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Problem formulation: scheme

ρd(t)

) tr (ρλ1

measurements
=ρ1

(ρλ2) tr ρ2 =||+_ ρ1( )2||

ρd
dt

= [ H− f +i uHc , ρ]
reference trajectory

’state estimation’

feedback law
k=u ( d , ρ )ρ 3ρ1, ρ,2

_ _ (ρ2)2ρ3= ρ 2

real system
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Problem formulation

given “reference density” ρd(t)

‖%d‖ = ‖%‖
“reference evolution” given by Hfd

= h3
dλ3

ρ̇d = −i
ˆ

Hfd
, ρd

˜

=⇒ %̇d = −iadHfd
%d

1. periodic orbit %3
d(t) = %3

d(0) for %3
d 6= north/south poles

2. equilibrium point for %3
d = north/south poles

ρ
3d
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Problem formulation

Feedback problem 1: orbital stabilization

(

%3 t→∞−−−−→ %3
d = const

%1, %2 any

partial state stabilization

Feedback problem 2: orbit tracking

%
t→∞−−−−→ %d where %̇d = −iadHfd

%d

full state stabilization
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Bloch equation: orbital stabilization

open-loop system
8

>

<

>

:

%̇1 = −%2

%̇2 = %1 − u%3

%̇3 = u%2

take candidate Lyapunov function −→ distance in R

V =
1

2

“

%3
d − %3

”2
> 0

derive: V̇ = −
“

%3
d − %3

”

%̇3 = −
“

%3
d − %3

”

%2 u

choosing the state feedback law

u =
“

%3
d − %3

”

%2

=⇒ V̇ = −(%2)2
“

%3
d − %3

”2
6 0
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Bloch equation: orbital stabilization

close-loop system
8

>

<

>

:

%̇1 = −%2

%̇2 = %1 − %2%3(%3
d − %3)

%̇3 = (%2)2(%3
d − %3)

use LaSalle invariance principle

convergence is asymptotic everywhere except at north/south poles of S2

nonlinear system

only %3 is stabilized

how to do this in practice? Amplitude B1 is moduled in real time

B1 = −u

γ
= −%2(%3

d − %3)

γ
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Bloch equation: orbital stabilization

on the Bloch sphere
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Bloch equation: orbit tracking

want %
t→∞−−−−→ %d where %̇d = −iadHfd

%d

again, control Lyapunov function based on distance in S2

V = ‖%‖2 − 〈〈%d, %〉〉 > 0 (or V = ‖%d − %‖2 )

derive

V̇ = −〈〈%̇d, %〉〉 − 〈〈%d, %̇〉〉
= −〈〈−iadHfd

%d, %〉〉 − 〈〈%d, −iadHf
%〉〉 − 〈〈%d, −iadHc

%〉〉u

if Hfd
= Hf =⇒ desired precession is the true one

V̇ = 〈〈%d, −iadHf
%〉〉 − 〈〈%d, −iadHf

%〉〉 − 〈〈%d, −iadHc
%〉〉u

= −〈〈%d, −iadHc
%〉〉u

V̇ homogeneous in u
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Bloch equation: orbit tracking

state feedback law

u = 〈〈%d, −iadHc
%〉〉

=⇒ V̇ = −〈〈%d, −iadHc
%〉〉2 6 0

LaSalle invariance principle

convergence is in S2 − {±%d(0)} − {%(0), %d(0) s.t. %3(0) = %3
d(0) = 0}

i.e., S2 − { antipodal point} - { great horizontal circle }
=⇒ stabilization is “almost global”

if Hfd
6= Hf , the system is not asymptotically stable: V̇ 6 0

=⇒ around the λ3 axis the closed-loop system can catch up a phase
difference but not a precession frequency different from its own (at least
with this controller)
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Bloch equation: orbit tracking

on the Bloch sphere
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Bloch equation: orbit tracking

antipodal point is unstable: a small perturbation makes % converge
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=⇒ almost global asymptotic stability
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Bloch equation: difference between the two schemes

orbital stability

ρ ρ
d

orbit tracking

ρ
dρ

for north and south poles: same effect

ρ ρ
d
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Bloch equation: inital condition

convergence holds for (almost) all initial conditions:
Experiment apply a random pulse sequence then activate feedback:

closed-loop system should converge to the desired %d

−→ protection against unknown (unitary) disturbances
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Why cannot have global convergence?

There is a topological obstruction: a compact manifold (like a sphere) cannot
have

a C∞ always nonvanishing vector field (“hairy ball” theorem)

a C∞ function must vanish in at least as many points as the Euler
characteristic of the manifold

for a sphere S2 : Euler characteristic is 2 =⇒ antipodal point
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Feedback control of nutation

when ωo = ωrf system in the rotating frame is driftless −→ nutation motion

%̇ = −i u adλ1
% i.e.

8

>

<

>

:

%̇1 = 0

%̇2 = −u %3

%̇3 = u %2

stabilization on the (y, z)-plane =⇒ S1-circle

assume % is in the (y, z)-plane

measure %2

assume target is north pole

feedback law u = %2

ρ
d

ρ
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Feedback control of nutation

closed-loop system

8

>

<

>

:

%̇1 = 0

%̇2 = −%2 %3

%̇3 = (%2)2

%3 > 0 =⇒
%̇2

6 0 =⇒ converges to %2 → 0

ρ
2

ρ
3

%̇3
> 0 =⇒ %3 grows

ρ
3

ρ
2

%̇1 = 0 =⇒ no motion along %1

MIT, January 2005 – p. 49/54



Feedback control of nutation: spin squeezing

special case

start with initial condition on the north pole

=⇒ system is at steady state

=⇒ %2 ' 0

feedback u = %2 ' 0

=⇒ no “appreciable” unitary evolution

however something happens to
the second order moments...

ρ ρ
d
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Feedback control of nutation: spin squeezing
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Feedback control of nutation: spin squeezing

fully polarized atomic cloud

ensemble feedback is used to squeeze the state

%3 = tr (ρλ3) = 〈λ3〉
variance (∆λj)

2 = 〈λ2
j 〉 − 〈λj〉2

Heisenberg uncertainty relation:

∆λ1∆λ2 >
1

2
|〈λ3〉|

in a fully polarized ensemble:

〈λ3〉 = F = Nf

N = n. of atoms
f = angular momentum of the single atom
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Feedback control of nutation: spin squeezing

starting from a coherent state

〈λ3〉 = F

∆λ1 = ∆λ2 =

r

F

2

and using the real-time feedback ρd
dt

=− iadλ1
ρ

< λ >2=u

< λ >2

feedback law

measurements

one gets to the sqeezed state
uncertainty decreased along λ2

uncertainty increased along λ1

∆λ1 > ∆λ2
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Feedback control of nutation: spin squeezing

in NMR systems: only a fraction od the spins is polarized: the bound
given by the Heisenberg relation is very far away

what is the same scheme doing?
nothing?
reducing dephasing??
increasing polarization??

dephasing:
relaxation mechanism that “shrinks” the Bloch ball
nonunitary operator (points to the random state)
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