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A quote

From R. Ernst, G. Bodenhausen and A. Wokaun “Principles of NMR in one and
two dimensions” Claredon Press 1987, p.3

“spectroscopy stands in close analogy to techniques which measure
the transfer function of an electronic device. (...) It is well known that
the transfer function completely characterizes a linear
time-independent system. Many of the concepts of spectroscopy
stems from the consideration of linearly or approximately linear
systems for which a simple and elegant mathematical treatement is
possible. (...) It has been known for many years that the free
iInduction decay is equivalent to the impulse response for linear
systems.”
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Overview of these lectures

1. today:
® overview and (biased) motivations
e formulation of the feedback problems for a single spin 1/2 ensemble

2. tomorrow:

® system theory for bilinear control systems
O structure
O controllability

o feedback stabilization
3. & 4. next week:
e feedback stabilization for 2 or more spin 1/2

@ disturbance rejection: suppression of unwanted (weak) coupling
terms

® state estimation and density matrix reconstruction
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Why feedback on NMR?

® ideal candidate for guantum engineering

® NMR captures most of the features of Quantum Information Processing

O state space is composed of tensor products of “qubits”
O exponential growth of the degrees of freedom available

O correlations are induced by natural infinitesimal couplings
O nonlocal operations: “more than just tensor products”
O quantum nature of spin systems

e sufficiently small interaction with environment and long relaxation times
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Why feedback may be successfully tried?

® precise knowledge of the dynamics
® extensive expertise on state manipulation
® reliable control methods (RF pulses)

e sufficiently slow evolution —- possible to pair the system with a computer
In real time

® natural “continuous time” evolution

® bulk spin measurement are classical

O — no discontinuity (“collapse”) in the state variables (major obstacle
to feedback in any other quantum mechanical setting)

O — deterministic feedback is possible
O — feedback is unitary
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Why onewould liketo have it?

e feedback simplifies the state manipulation problem
® many tasks, the same controller

e feedback is intrinsically robust to model error, disturbances, noise,
experimental imperfections

® allows to preserve the state from (unitary) perturbations (unwanted
couplings)

® controlled system is still deterministic

® in any domain of engineering, whenever you have the chance to apply
feedback methods (rather than just open-loop methods) you better take it!
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Why nobody hastried it yet (in NMR)?

® lack of real-time equipment

® pulse sequences based on frequency-domain techniques (both hard and
shaped pulses, piecewise linear systems — piecewise “transfer
function”, spectral analysis) are completely dominant over exclusively
time-domain techniques

® need to resort to nonlinear system analysis and synthesis (actually
bilinear system theory is enough)

® before QIP: lack of interest to state manipulation problems (focus on
molecular structure and identification of reaction dynamics)

e after QIP: direct link between “piecewise linear methods” given by pulse
sequences and discrete gate formalism of QIP.
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Pros. potential results

® same device to solve the state transfer problem for all superposition
states, not just for few well-studied states

® possibility of suppressing unwanted couplings

e for “open-loop” control: a tool to design amplitude-modulated controls for
1. complicated Hamiltonians
2. decoupling desired subspaces

® reconstruct the density operator (state tomography) in a single shot?
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Cons. drawbacks/challenges

® building real-time equipment

® invent a completely time-domain formalism for NMR

e forget about the “wires and gates” formalism of QIP

e focus on nonlinear methods for continuous-time state transfer
® cope with very low signal-to-noise ratio

e find tasks not (simply) solvable by current state-of-art RF pulse
techniques

® even if successfull, such a control system will never be a “quantum
computer”, rather it will be a computer controlled quantum system
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Feedback Control of Nonlinear Systems

® Nonlinear system theory

O deals with systems of ODEs that do not satisfy the superposition
principle

O almost never uses frequency methods: lack of a superposition
principle implies that the energy that enters at a certain frequency
gets “scattered” at other frequencies at the output —- spectral
analysis is not useful as in linear systems theory —- time-domain
metods.

® model of a system

<
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where
o f(-,-) = state equation (system of ODESs), f € C°°(R")
O g(-) = output equation, g € C°°(RP)
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Feedback Control of Nonlinear Systems

t = f(x, u)
y = g(z)

® = state vector = all “internal” variables of interest needed to describe
the dynamical evolution of the system

® u = control input

® y = output = measured guantities
It can be:
O y = x (entire state is measurable)

O y part of the state =
O memoryless function of z

y can be
O measured only at the end of an experiment

O available on line
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Control via pulse sequences

® when are pulse sequences used in modern control theory?

O system identification (in NMR: process tomography i.e., finding the
Hamiltonian)

O open-loop control methods
® open-loop control

_ real system 0.T
reference Xd(O’T)I open—loop u(0, T) , y(0, T)
trajector controller . x=f(x,u) —— output
R y=g(x)

® in my knowledge: NMR community has developed more sophisticated
and extensive set of tools to do open-loop control than any other
engineering community

MIT. Januarv 2005 — p. 12/F



Open-L oop Control

® use knowledge of the model of the process f(-, -), g(-) and of the
initial condition of the state x(0) to design a control function
u : [0, T] — U suchthat & = f(x,u(0, T)) is steered from the initial
condition z(0) = =, to a desired terminal condition z(7) = z¢.
® // = functional space of the controls. Examples
1. U = { finite amplitude impulses }
2. U ={ piecewise constant functions }
3. U = { smooth functions }
® example: optimal control methods
® prerequisite
O knowledge of the model

O knowledge of the initial condition

O controllability= possibility of arbitrarily manipulate the state by means
of u only
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Drawbacks of Open-L oop Control

® Accuracy of the model must be very high

® Trust in the model is absolute, there is no way to “correct” the state “on
the run”.

® Makes no use of the output equation y = g(x) and of the measurements

® |t is intrinsecally nonrobust to
O model error
O noise and disturbances
O Imprecise initial condition

® computation of open-loop trajectories: “NP hard” search problem in
U-space

® need to recompute a control any time xz,,, =y are changed

® when y = g(x) Is available on-line, there is the opportunity to do
feedback
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Feedback Control

® general idea: use measurement information to correct the state in

real-time to
O impose a desired behavior to the state
O compensate for modeling errors, disturbancies and noise

reference V)
trajectory

feedback
controller

A

u(t)
—

real system
x=f(x,u)
y=9(X)

y(t)

— OUtpUt

® how to build the block “feedback controller”?
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Feedback Control

® aim is to have a closed-loop system which is
O stable
O converging asymptotically to the target =,

® asymptotic stability can be

1. local: holds for all initial conditions ﬁ
In a neighborhood of x4

2. global: holds for all initial conditions

® in both cases: no need to know the initial conditions
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State Feedback

Case 1 Assume the entire state is measured y = x — state feedback

e feedback synthesis consists in findinga law  « = k(z, z,) such

that the closed-loop system
T =f (377 k(ajaxd))
IS asymptotically converging to the desired reference trajectory

lim (z(t) —x4(t)) =0

t— o0

® the reference state x,(t) can be

1. an equilibrium point x4(t) = x4(0) = const

2. atrajectory defined by e.g. &, = f4(z) = trajectory tracking
® to find v = k(z,z,) there are several methods

® here: Lyapunov functions
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State Feedback

Lyapunov sufficient condition for stabilization
Theorem If 3 areal-valued function V =V (z, z4) which is positive definite,

V(z,xzq) >0 Vaz,xg4, V(z, zq) =0<= x =24

and such that its total derivative along the trajectories of the closed-loop
system is negative definite

oV oV

V(z, z4) = 57 (z, k(z, z4)) + a—xdfd (zq) <O,

then the closed-loop system is asymptotically tracking the desired
reference trajectory z,(t)

@ this is a sufficient condition only, but for the class of systems we are
interested in it will yield a constructive method to find k(z, z,).
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State Feedback

e Often times one achieves only that V(z, z4) < 0 negative semidefinite.

@ this alone guarantees only stability (meaning «+ and z,; “do not diverge”
asymptotically) but not convergence of = to z,;. We need to use LaSalle
Invariance principle

Theorem Assume V(z,z4) > 0 and V(z, z4) < 0. Consider the set
N ={z s.t. V(z, z4) =0}. If the set of = obeyingto & = f (z, k(z, z4))
and confined to A/ contains only =z = z,4, then the closed-loop system is
asymptotically tracking the reference trajectory z,.

V(x , Xx4))= const

x= f(x,k(x,xg)
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Why no frequency methods in nonlinear feedback?

® in open-loop methods:
O u(t) is piecewise-constant (“hard pulses”)
O u(t) can be given a shaped time-varying amplitude (“soft pulses”)

® in both cases: frequency content of the pulse can be imposed to belong
to a certain window — minimal overlap with unwanted frequency regions

e in feedback: amplitude modulation is chosen by the algorithms and
changes widely

O with the initial condition
O during the evolution

® — periodicity changes during transient
® — analysis of resulting spectra during transient are often hopeless...
® steady state is reached only asymptotically...
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Output Feedback

Case 2 Assume measures of the entire state are not available y # x

® Sometimes it is still possible to “reconstruct” on-line the missing state
variables — state estimation problem

® in control-theoretic language this is the observability problem and is
“dual” to the controllability problem.

® To set up a state estimator: use a replica (model) of the system
® 7 (t) = estimated state at time ¢

reference Xd) | feedback
trajectory controller

A

y(t)

u(t) e ystem
x=f(x,u)
y=9(x)

y
state estimator

x=f(x,uy+ p(x,y,y) =
y=9(X)

= Output
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State Estimation

® Dynamics of the state estimator

g = g(@)
® need to find p = p (2, g, y) such that

lim (2(t) —2(t)) =0

l.e., estimated state converges to the true one

® The state estimator algorithm play also the role of filter with respect to
measurement noise

e for linear systems: Kalman filter
e for nonlinear systems: # a general constructive theory

® Prerequisites:
O knowledge of the model (“Hamiltonian™)
O state “observability”
O no need to known the initial condition
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Feedback in a quantum context

1. lterative algorithms (H. Rabitz)

design an open—loop field -

(via numerical optimization)

field correction
do an experiment algorithm

'

take a measure

(at the end of the experiment)

® this is not real-time — batch feedback
® variant: adaptive/genetic/learing algorithms

e useful in quantum chemistry (selective bond dissociation/creation,
parameter identification in the Hamiltonian)

e throughput rate of the experiments: thousands per second
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Feedback in a quantum context

Feedback control of the stochastic master equation (J. Milburn, H.

Wiseman, A, Doherty, H. Mabuchi)

® guantum system is weakly coupled with a monitored bath (e.g.
homodyne detection)

® weak measure is used to correct the stochastic evolution —
wavepacket reduction

® measurement process is nonunitary — stochastic master equation
® this is real-time

® less powerful (and more difficult) than what can be achieved by
completely noninvasive measurements
O possible equilibria are decided by the measurement process (by its
Lindbladian) and cannot be altered by feedback

® more theoretically challenging (quantum measurement)
® also more practically challenging??
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Feedback control of a single spin 1/2 ensemble

® model: controlled Bloch equation
® problem formulation

® two solutions:
1. orbital stabilization
2. orbit tracking

e feedback control of nutation
® application: spin squeezing (H. Mabuchi et al.)
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Modedl for asingle spin 1/2 ensemble

® State= density operator p:
O 2 x 2 complex matrix

O positive: p>0

o Hermitian: p=pl

O unit trace: tr(p) =1
O pure state: tr(p?) =1

o mixed state: tr(p?) < 1
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Modedl for asingle spin 1/2 ensemble

® parametrization of p:

O)\kZ%

O — angular momentum operators for a spin 1/2

p=20"20+ 0"\ + 0° A2 + 0% A3

o, = Pauli matrices

e o" = expectation values of p

® Bloch vector :

Q:
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Modedl for asingle spin 1/2 ensemble

® o < Bloch ball
O complete mixing  ||g|| =0 o

1 complete mixing 00l

O pure state ||p|| = 7

e in NMR: deviation density operator psadbolbre st

(1—e)/2+ep 4

pure state ‘1> <1‘

O — pseudopure states: only ¢ p matters for the evolution

0 ¢~ 10"° — very mixed states: ||o|| ~ 107°
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Liouville equation

e differential equation for p: Liouville-von Neumann equation
p = —i|H, p] el

e Hamiltonian H = h'\; + h%)s + h3)\3
® in the Bloch vector parametrization:

0= —iadyo —  Bloch equation

® Bloch equation = “adjoint representation”

0 0 0 ‘0 0 1] 0 —1 0
—dadgy =h'|l0 0 —1|+Ah*]l0 0 ol +R*|1 0 O
0 1 0 -1 0 0 0 0 O]

® time-varying evolution o (t) = exp (f(f —iadH(T)dT) o (0) is on the sphere
lo||* = const
® — isospectral evolution
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Controlled Bloch equation

® Hamiltonian is composed of
1. afree part (the drift)
2. aforcing part (the control term)

1. free part: due to a strong static magnetic field B, aligned with the A3 axis
® B, — Induces the deviation ¢p
® B, — spin ensemble precesses around A3

@ in the lab frame
Hf',e — —’yBoAg

® ~ = gyromagnetic ratio

2. control Hamiltonian: rotating r.f. field with frequency w,f ~ wo = vBo
e in the lab frame

Hrf,ﬁ = —B1 (Cos(wrft + gb))‘l + Sin(wrft + qb))‘Q)

® controllable parameters
1. amplitude B;
2. frequency w¢
3. phase ¢
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Bloch equation in therotating frame

® o (Larmor frequency) ~ tens to hundreds of MHz
® w; = vB; ~ tens to hundreds of kHz

® to get rid of the higher frequency in the Hamiltonian: rotating frame =
coordinate system rotating around A3 at the frequency w.s ~ wo

0= e—zwrftadk?) 0/

in the ODE: variation of constants formula

0y = —iwrrady, 0y, 00(0) = o(?)

Q. _ _ie—’itwrfad)\3 adHrf eitwrfadA3 Q) Q(O> — Qﬁ <O)

+ approximation (Bloch-Siegert shift)
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Bloch equation in therotating frame

e Hamiltonian in the rotating frame H = H; + H.

Hy = —(wo — wrf) A3
H: = —wi(cos@Ai + sinpa)

® fixing ¢ — axis at which the control acts is fixed

o call 1’ = —(wo — wye)
® assume ¢ =0

H=H;+ He=hX3+u )

where u = —w; = real valued control, u € C°°(R)

e precession h* of the order of the kHz = much slower than w,

® when w.s = w, = driftless Hamiltonian — nutation around the A\ axis
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Bloch equation in therotating frame

e for density matrix p
p=—i | WX +uA, o]

O matrix system, 2 x 2
O Hamiltonian: 2 x 2 matrices
O solution: conjugation action on a matrix

p(t) = exp( zfo ) exp( fo )

® in terms of the Bloch vector:
o= —i (ngzaud>\3 + u adAl) 0

o bilinear control system living on S ¢ R?
O Hamiltonian is 3 x 3

O solution: linear action on a vector o(t) = exp (—i fg adH(T)dT) 0(0)
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Formulation of the feedback problem: assumptions

® known Hamiltonian H

® measurement
O “classical” measurement (no wavefunction collapsing)

O “continuous” measurement
O full state is measured and available on-line

of = tr(ph)

e control
o fully deterministic control problem
O a single control input
O unitary
O real-time feedback
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Problem for mulation: scheme

reference trajectory feedback law real system
R ™ u=k(p. P P2 ) > dP=-lH-+uH, pl
! l
’state estimation’ measurements
- pl = tI(p)\l)

p3= :I:\/||g|2_ (p1)2 - (p2)2 pZ = tl(p}\z)
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Problem for mulation

® given ‘“reference density” p4(t)
O [leall = Ilell
® “reference evolution” given by Hy, = hf’l)\g

pa=—1i|Hy,, pdl — Q4 = —tadm, Q4

1. periodic orbit o3 (t) = 05(0) for o> # north/south poles
2. equilibrium point for o3 = north/south poles

=
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Problem for mulation

® Feedback problem 1: orbital stabilization

Q3 oo, ‘Qg — const
1 2
o, 0 any

O partial state stabilization

® Feedback problem 2: orbit tracking

t—0o0

o —— o4 Where p4= —z'adHfd 0d

O full state stabilization
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Bloch equation: orbital stabilization

® open-loop system

(.

1
o' =0

167 =o' —ug’
-3 2

60 =wup

e take candidate Lyapunov function — distance in R

1 2
V:§(g§—g3) )

e derive: V = — (gz — 93) 00 = — (93 — 93) 0% u

® choosing the state feedback law
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Bloch equation: orbital stabilization

® close-loop system

¢ .
o' =—0

0% =o' —0%0°(0) — 0°)
-3 2N\2/ 3 3

o7 = (07)"(og — )

® use LaSalle invariance principle

® convergence is asymptotic everywhere except at north/south poles of S?
® nonlinear system

e only o° is stabilized
® how to do this in practice? Amplitude B; is moduled in real time

u 0% (05 — 0°)
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Bloch equation: orbital stabilization

® on the Bloch sphere

® the 3 components of p
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Bloch equation: orbit tracking

e want o =% o, where g, = —1adp; Q4

@ again, control Lyapunov function based on distance in S?

V=llell* - (e @) >0  (orV=]eos—ol)

® derive

Vo= —{éa ) — (e &)
= —(~iadu,, 04 @) — (04, —iadp, 0)) — (0a, —iady, o) u

o if Hy = H; = desired precession is the true one

V. = (o4, —iadg,0) — (04, —iadg, 0) — (04, —iad g, @) u
= —(0o4, —tadg, o)) u

e V homogeneous in u
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Bloch equation: orbit tracking

® state feedback law

u = ({04, —iad g, 0))

— V =—(04, —iady_e)” <0
e LaSalle invariance principle
@ convergence isin S* — {£04(0)} — {0(0), 04(0) s.t. 0°(0) = 05(0) = 0}
®ie., S? — { antipodal point} - { great horizontal circle }
® — stabilization is “almost global”
o if Hr +# Hy,the system is not asymptotically stable: V<0

® — around the \3 axis the closed-loop system can catch up a phase
difference but not a precession frequency different from its own (at least
with this controller)
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Bloch equation: orbit tracking

® on the Bloch sphere

® the 3 components of p
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Bloch equation: orbit tracking

® antipodal point is unstable: a small perturbation makes g converge

0 5 10 1% 20 25
1 T
os5F -~~~ -~ -~"~"=—">"7=""">">"">">""\~">"”"“""“"">"=""7"™4
a oF
S0 S NG
-1 L L L L
0 5 10 ) 15 20 25

® — almost global asymptotic stability

MIT. Januarv 2005 — p. 44/F



Bloch equation: difference between the two schemes

orbital stability orbit tracking

N )
2 R
NN —
for north and south poles: same effect
/ 0,

//

MIT. Januarv 2005 — p. 45/F



Bloch equation: inital condition

® convergence holds for (almost) all initial conditions:

Experiment apply a random pulse sequence then activate feedback:
closed-loop system should converge to the desired oy

® — protection against unknown (unitary) disturbances
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Why cannot have global convergence?

There is a topological obstruction: a compact manifold (like a sphere) cannot
have

® a ('°° always nonvanishing vector field (“hairy ball” theorem)

® a C°° function must vanish in at least as many points as the Euler
characteristic of the manifold

e for a sphere S? : Euler characteristic is 2 = antipodal point
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Feedback control of nutation

® when w, = w,¢ system in the rotating frame is driftless — nutation motion

0= —iuady,0

e stabilization on the (y, z)-plane = S'-circle
® assume p isinthe (y, z)-plane

® measure o’
® assume target is north pole

e feedback law u = o?

l.e.

an
o
-2
Y
3

\Q

=0
:—ug3
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Feedback control of nutation

® closed-loop system

r@.l _0
0° =—0"¢°
00 =(0%)°

0Q3>O:>

0 ¢° <0 = converges to ¢* — 0

0¢°>0 = o’ grows

= AN

0 o' =0 = no motion along o*
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Feedback control of nutation: spin sgueezing

special case
e start with initial condition on the north pole
® — system is at steady state

o — o ~0

e feedback u = p? ~ 0

® — no “appreciable” unitary evolution

® however something happens to
the second order moments...
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REPORTS

Real-Time Quantum Feedback
Control of Atomic
Spin-Squeezing

JM Geremia,* John K. Stodcton, Hideo Mabuchi

Real- timie feresd back perfa rmed during a quantum nandemalitian me s uneme ot
af atamic spin-angular mamentum allkawesd w ta influsnce the quantum sta-
tistics af the mes urement autcome. Weshowed that it s possible ta harness
measuresment kackactian 2 a fanm of actuation in quantumcantral and thus
we describe 8 valvable toal far quantum infarmatian science Qur feedback-
mediated procedure generates spinsqueezing, farwhich the reductian in quan-
tum unoe rsinty and res ulting atamic entanglement ans nat canditioned anthe

medsymEment outoame.

Camum  systems  evalve  deterministically
when no one & looking, [ree from o beervation,
kmowledie of o quamum shite of one poimt m
time & in principle sufficent o pedict it entire
evambon Hewever, when 2 meememernd =
perfomed, quanhm mechanics poules that
the observer willobfyin o rendom poshmens Tme-
ment onicome. Comy e ey, mesnremeant can
produce shies thot ae difficnlt © obtam by
other means, such 254 Homilonian evalution,
mnd thms pronides a powerfal toal for quamnm
shite prepamtion. It shndwerd quormm me-
chonics does not predict the ontcome:s of 1ndi-
vidnalex periments, only their likelithood , hea-
surement boed <tiie prepamtion i hindeed by
nondederminsm, ond desmable (Br example,

Avsics and Cormrd. and Dyramical Syskems, Califarria
retute ol Tedwolegy, Pasida, C4 51135 LEA,

To whom oo should be addressed E-

vl [ r el e duedy

entinzled) quimtom sties oflen comrespond o
highly nnlijely mermement omcomes . Here
we demonstmte that quamum mdstemminsm
cin be rednead by swhble mmmesmrement
#Eedbiock, ens neewd 10 sieer the ouitcome of an
athervise random quamnm proces: fviard a
dedermine te onicome.

The quamum system in ons experinuemnt
was provided by o clond of V atoms each
with intrinsic angmir momentum, fif, becanse
of a combmation of mclear spin, valence
dectron <pin, and orhitil angmlsr momentom.
The atoms were mmtially polbnized such that
their ind rvidnal moments were oriemed along
a comman longitndin diection, which we
chose to be the x axs. The resulting stomic
stote displhyed o net magnetization, F, akng

x with mazmtude |F| =& WALF 1Y, whene

7= NF. The careson components of F e
mrocited with noncommuting quamnm op-

eratars, ‘L...- .|‘.'.. nd .|‘.'., that obey the Heixen-
berg nncertanty relition

AR AF '--__l||i':":-| i
Thi mequality las the meerpretition thet an
ensemble of messwrements (for similarky pre-
pared atomic sump ke ) performed anevther &
ar .|‘-" will yield o distribution of random
shot-to-shot orcomes . For o brge magneh-
=tion, the F (for eample) messnrement
distribution 1s essenhally Giamisan withmean
I rand varanes AF T = {F % — (F ¥, The
fully polarized stomic stk has F = Fond
AF, = A4F = VD, and is referred t0 a5 a
mherent spin atte (Fig. LA)

B &5 possible to rednce the meamremert
varance inone of the transverss components
below the coherent stite vame of 72 at the
epense of incredsed nncertainty m the or-
thagonal component, provided that g, 1 =
main: satisfied (Fiz. 1A). Palarmed states
with this property are referred 1o as spm-
squeemed states (1) and have recerved much
atention for their potemtiol %o 1mprove the
sensitivity of spn-resonince messmnements,
mchiding magnetoreetry (2, 33 ond atomic
chodo (4, ). Spm-squeezing below the co-
hevent state level & alw of fondamental m-
eret in quamum irformation scence for
achevmg many-particle entinglement (81,

Althomgh several different mechanisms
have been expiored for the preparation of
squeezed atomic stades (7, A1, imberest o
focwied on weine quamum nondsmolition
(QND) meoswements (#-i0), in which the
somic syilem mieracts coherently with an
off-resomunt optical probe. Asa result, the =
companent of the atomic magnetzation, [,
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Feedback control of nutation: spin sgueezing

e fully polarized atomic cloud
® ensemble feedback is used to squeeze the state

® o’ =tr(pA3z) = (A3)
® variance (AX;)* = (A3) — (\;)°

® Heisenberg uncertainty relation:

AN AN = = [(A3)]

DO | —

e in a fully polarized ensemble:
(As) =F=Nf

O N =n. of atoms
O f = angular momentum of the single atom
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Feedback control of nutation: spin sgueezing

® starting from a coherent state

(A3) = F

ANl = Ady = g

® and using the real-time feedback

® one gets to the sgeezed state
O uncertainty decreased along \-

O uncertainty increased along \;
A1 > Ao

feedback law
u=<A,>

|

/

d7p =—iad)\1p

]

measurements

<A, >

/

MIT. Januarv 2005 — p. 53/¢




Feedback control of nutation: spin sgueezing

® in NMR systems: only a fraction od the spins is polarized: the bound
given by the Heisenberg relation is very far away
® what is the same scheme doing?
O nothing?
O reducing dephasing??
O increasing polarization??
® dephasing:
O relaxation mechanism that “shrinks” the Bloch ball
O nonunitary operator (points to the random state)
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