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This lecture

Model for a 2 spin 1/2 system

State feedback control for a weakly coupled system

Tracking an Hamiltonian different from the real one: suppression of
unwanted weak couplings

design open-loop controls based on “feedback on the simulator”

examples on 3 and 4 spins
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Product operators basis

(rescaled) identity + Pauli matrices

λ0 =
1√
2

"

1 0

0 1

#

, λj =
1√
2
σj , j = 1, 2, 3

product operators Λjk = λj ⊗ λk, j, k = 0, . . . , 3:

0 spin operators Λ00

1 spin operators Λ01, Λ02, Λ03, Λ10, Λ20, Λ30

2 spin operators Λ11, Λ12, Λ13, Λ21, Λ22, Λ23, Λ31, Λ32, Λ33

basis for
density ρ =

P3
j, k=0 %jkΛjk where %jk = tr

`
ρΛjk

´

Hamiltonian H = hjlΛjk
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Two spin 1

2
: density operator as a tensor

state tensor %: 16 components

%00 = tr (ρ Λ00) = const =⇒ trace component of ρ

{%10, %20, %30} reduced density %A

{%01, %02, %03} reduced density %B

{%11, %12, . . . , %33} 2-body correlations
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Two spin 1

2
: density operator as a tensor

structure of the space of tensors %jk

%jk = elements of a “Liouville space”

% = { %jk } = Stokes tensor

%jk ∈ R =⇒ % ∈ S ⊂ S
14

15 components
6 independent degrees of freedom for pseudopure states
=⇒ structure of S includes several constraints (independent from the
degree of purity)
=⇒ structure of S is complicated to “visualize”
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Two spin 1

2
: density operator as a tensor

trΛjkΛlm = δjkδlm =⇒ Λjk form a complete orthonormal set

trace norm =⇒ Euclidean norm in %jk-space

tr
“

ρ2
”

= tr
“

(%jkΛjk)2
”

=

3X

j,k=0

(%jk)2 = ‖%‖2 6 1

inner product

tr (ρ1ρ2) = 〈〈%1, %2〉〉 = %
T
1 %2

distance function: assume ‖%1‖ = ‖%2‖

d(%1, %2) = ‖%1‖2 − 〈〈%1, %2〉〉 = ‖%1‖2 − %
T
1 %2.
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Two spin 1

2
: Ising model

free Hamiltonian
in the lab frame

Hf = ωo,αΛ03 + ωo,βΛ30 + h33Λ33

ωo,α, ωo,β = Larmor frequencies of the single spins (' MHz)

h33 = scalar coupling (' hundreds of Hz)
if spins are homonuclear (gyromagnetic ratios γα = γβ) =⇒ ωo,α and
ωo,β differ only because of the chemical shift

if spins are heteronuclear: difference between ωo,α and ωo,β can be
of many MHz
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Two spin 1

2
: Ising model

control Hamiltonian
1. when ωo,α ' ωo,β =⇒ spins are not selectively excitable: r.f. field

resonating with ωo,α will cross-talk with the other spin =⇒ one single
control field

2. when difference between ωo,α and ωo,β is high =⇒ spins are
selectively excitable =⇒ 2 distinct control fields tuned at ωo,α and
ωo,β

in the lab frame

Hrf = −B1
`
cos(ωrf t + φ)

`
γαΛ10 + γβΛ01

´
+ sin(ωrf t + φ)

`
γαΛ20 + γβΛ02

´´

in the rotating frame, with φ = 0

Hc = −B1
`
γαΛ10 + γβΛ01

´
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Two spin 1

2
: Ising model

Case 1: nonselective control
in a “single” rotating frame

Hf = h03Λ03 + h30Λ30 + h33Λ33

Hc = u (Λ01 + Λ10)

h30 = −(ωo,α − ωrf), h03 = −(ωo,β − ωrf)

u = −γαB1 = −γβB1

Case 2: selective control
in a “doubly rotating” frame

Hf = h03Λ03 + h30Λ30 + h33Λ33

Hc = u01Λ01 + u10Λ10

h30 = −(ωo,α − ωrf,α), h03 = −(ωo,β − ωrf,β)

u10 = −γαB1,α, u01 = −γβB1,β
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Two spin 1

2
: Lie algebra structure

“local” Lie algebra:

su(2)⊕ su(2) = span{−iΛj0, −iΛ0k}

“nonlocal” Lie algebra:

su(2)⊗ su(2) = span{−iΛjk, j, k 6= 0}

“total” Lie algebra:

g2s = Lie{−iΛjk, j, k = 0, . . . , 3} = su(2)⊕ su(2) ∪ su(2)⊗ su(2)

dim(g2s) = 3 + 3 + 9 = 15
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Two spin 1

2
: controllability

case 1: nonselective control
intuitively:

nonselective case: control field is the same for both spins
coupling is only of the “z-z” type =⇒ symmetric
in order to have controllability I need to “break the symmetry” by
means of the local Larmor precessions
=⇒ there must be some chemical shift h03 6= h30

Lie algebraic rank condition (LARC):
if Lie{−iHf , −iHc} = su(2)⊕ su(2) ∪ su(2)⊗ su(2) =⇒ the system
ρ̇ = −i[Hf + uHc, ρ] is controllable
controllability depends on the rotating frame chosen: consequence of
the lack of small-time controllability
check the LARC means compute exhaustively all the commutators
[−iHf , −iHc], [−iHf , [−iHf , −iHc] ], [−iHc, [−iHf , −iHc] ]

.... long procedure also for 2 spin systems
last time: sufficient condition for controllability in terms of energy
levels
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Two spin 1

2
: controllability

free Hamiltonian

Hf =

2

6
6
6
4

h03 + h30 + h33

−h03 + h30 − h33

h03 − h30 − h33

−h03 − h30 + h33

3

7
7
7
5

control Hamiltonian

Hc =

2

6
6
6
4

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

3

7
7
7
5

Hc is enabling the following transitions

1←→ 2, 1←→ 3, 2←→ 4, 3←→ 4

=⇒ Graph(Hc) is connected
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Two spin 1

2
: controllability

sufficient condition for controllability: Hf is Hc strongly regular, meaning

energy levels of Hf are nondegenerate

energy levels of Hf are not equispaced along the transitions enabled
by Hc

i.e.,

(

h03 6= h30

h33 6= ±(h03 − h30)/2

when h03 = h30, Hf has a degenerate energy level (of multiplicity 2)

=⇒ sufficient conditions for controllability do not apply

=⇒ system may be noncontrollable
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Two spin 1

2
: controllability

case 2: selective control
2 control degrees of freedom u01 and u10

=⇒ LARC is always verified
=⇒ the system

ρ̇ = −i[Hf + u01Λ01 + u10Λ10, ρ]

is always controllable
you also have small time controllability =⇒ possibility to “kill” the drift
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Two spin 1

2
: adjoint representation

commutator of A1 ⊗A2 and B1 ⊗B2

[A1 ⊗A2, B1 ⊗B2] =
1

2

“

[A1, B1]⊗ {A2, B2}+ {A1, B1} ⊗ [A2, B2]
”

commutator for basis elements

[Λjk, Λlm] =
1

2

`
[λj , λl]⊗ {λk, λm}+ {λj , λl} ⊗ [λk, λm]

´

want to write it as “linear” operator

[Λjk, Λlm] = adΛjk
Λlm

need to compute the structure constants (both symmetric and
skew-symmetric ones)
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Two spin 1

2
: adjoint representation

skew-symmetric structure constants

[λj , λk] = adλj
λk =

3X

l=0

cl
jkλl

adλ0
= 0, adλ1

= i

2

6
6
6
4

0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

3

7
7
7
5

adλ2
= i

2

6
6
6
4

0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

3

7
7
7
5

, adλ3
= i

2

6
6
6
4

0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

3

7
7
7
5
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Two spin 1

2
: adjoint representation

symmetric structure constants

{λj , λk} = aadλj
λk =

3X

l=0

sl
jkλl

aadλ0
=

2

6
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6
4
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0 1 0 0

0 0 1 0

0 0 0 1

3

7
7
7
5
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=
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aadλ2
=

2

6
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4
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0 0 0 0
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, aadλ3
=
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Two spin 1

2
: adjoint representation

Lie bracket

[Λjk, Λlm] =
1

2

`
[λj , λl]⊗ {λk, λm}+ {λj , λl} ⊗ [λk, λm]

´

=
1

2

`
adλj

λl ⊗ aadλk
λm + aadλj

λl ⊗ adλk
λm

´

=
1

2

`
adλj

⊗ aadλk
+ aadλj

⊗ adλk

´
λl ⊗ λm

= adΛjk
Λlm

adjoint operators adΛjk
−→ infinitesimal superoperators

adΛjk
=

1

2

`
adλj

⊗ aadλk
+ aadλj

⊗ adλk

´

16× 16 skew-symmetric matrices
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Two spin 1

2
: Lie algebra of “unitary” superoperators

“local” adjoint Lie algebra

adsu(2) ⊕ adsu(2) = so(3)⊕ so(3) = span{−iadΛj0
, −iadΛ0k

}

“nonlocal” adjoint Lie algebra

adsu(2) ⊗ adsu(2) = so(3)⊗ so(3) = span{−iadΛjk
, j, k 6= 0}

“total” Lie algebra:

adg2s = Lie{−iadΛjk
, j, k = 0, . . . , 3} = so(3)⊕ so(3) ∪ so(3)⊗ so(3)

dim(adg2s) = 3 + 3 + 9 = 15
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State feedback stabilization

Assumptions: state feedback stabilization problem:
the entire state % is available on-line
nonselective case: only one control degree of freedom
desired state to track %d is a pseudopure state
ρ and ρd have the same eigenvalues

Scheme:

ρd(t) k=u ( d ,ρ ρ) ρd
dt

reference trajectory feedback law forced Liouville eq.
= [ H− f +i uHc , ρ]

MIT, January 2005 – p. 20/61



Feedback problem formulation

given “reference density” %d(t)

“reference evolution” given by Hfd

%̇d = −iadHfd
%d

want that the “true” evolution

%̇ = −i
`
adHf

+ u adHc

´
%

tracks the reference state determined by %d(t)

%
t→∞−−−−→ %d

full state stabilization

MIT, January 2005 – p. 21/61



Jurdjevic-Quinn sufficient condition for stabilization

given a bilinear control system, if the so-called “ad-brackets” generate the
entire Lie algebra, then ∃ a Lyapunov based feedback design −→ global
stabilization

=⇒ automatically answers the problem of convergence (LaSalle
invariance principle)

it is never the case for manifolds with nontrivial topology

span
˘
−iadHf

, −iadHc
, [−iadHf

, −iadHc
], [−iadHf

, [−iadHf
, −iadHc

] ], . . . ,
¯
6= adg2s

to show it: compute the first commutators and verify that the basis
directions −iΛ11, −iΛ12, −iΛ21 and −iΛ22 are never touched by such
commutators

stabilization design cannot be global!

−→ nontrivial singular locus

−→ in general: difficult to find what is the region of attraction
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State tracking

Proposition When h03 6= h30 and Hfd
= Hf , the feedback law

u = k〈〈%d, −iadHc
%〉〉, k > 0

asymptotically stabilizes the system

%̇ = −i
`
adHf

+ u adHc

´
%

to the reference state %d(t) for all %(0) except for the following initial
conditions
1. antipodal point of the reduced densities

(%A(0), %B(0)) = −(%Ad
(0), %Bd

(0))

2. horizontal great circles of the reduced densities (%3
A, %3

Ad
) = (0, 0)

and (%3
B , %3

Bd
) = (0, 0)

singular locus is the “replica” of the 1 spin 1/2 case

k = feedback gain = parameter to tune
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State tracking

Sketch of the proof

take Lyapunov function as before

V (t) = ‖%d‖2 − 〈〈%d(t), %(t)〉〉 > 0

differentiate V

Hfd
= Hf =⇒ drift disappears

V̇ = −u〈〈%d, −iadHc
%〉〉

with u = k〈〈%d, −iadHc
%〉〉 =⇒ V̇ = −k〈〈%d, −iadHc

%〉〉2 6 0

LaSalle invariance principle: want to find closed-loop trajectories that are
in N = {% s.t. V̇ = 0}
h03 6= h30

=⇒ local dynamics must be distinguishable
=⇒ u = 0 cannot belong to N , except for the singular points
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Jurdjevic-Quinn sufficient condition for stabilization

meaning of the Jurdjevic-Quinn condition:
take the linearization around the reference trajectory %d

%̇ = −iadHf
% + bu b = −iadHc

%d

linearization lives on the tangent plane of %d

if linearization satisfies the Kalman controllability condition

rank
h

b − iadHf
b (−iadHf

)2b . . .
i

= dim(S)

then there is no “direction” in which you can move the closed loop
system while staying in N =⇒ N is empty
ad-bracket⇐⇒ Kalman controllability

when topology is nontrivial:
linearization does not give global
answers, only local

ρ
d
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State tracking

desirede state %d −1
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State tracking

the 15 components
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State tracking

presence of singularities
“theoretically” state-to-state trasfer may fail
“practically” state-to-state transfer may be slow around the singular
points (control action has to “build up” from 0)

example |00〉 → |11〉
it is better to apply an open-loop
pulse to get approximately near
the target and only then switch on
the feedback
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Generalizations

1. selective controls: tracking is easier since there are more control degrees
of freedom

2. same theorem holds for n coupled spin 1/2

3. tracking Hamiltonians with any coupling

Hf −→ Hf =
X

jk

hjkΛjk

example: Heisenberg or dipole-dipole Hamiltonian

Hf = h03Λ03 + h30Λ30 + h11Λ11 + h22Λ22 + h33Λ33

any other transversal term can be added as well, also hjkΛjk, j 6= k

prerequisite: controllability

4. only caveat: need to use Hfd
= Hf in the theorem. Next: want to relax

this constraint
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Suppression of unwanted couplings

so far: Hfd
= Hf

=⇒ the derivative of the Lyapunov function is homogeneous in u

V̇ = −u〈〈%d, −iadHc
%〉〉

=⇒ design of the feedback is “natural”

u = k〈〈%d, −iadHc
%〉〉

and guarantees at least V̇ 6 0.

if Hfd
6= Hf then feedback design is more difficult, since V̇ is no longer

homogeneous in u:

V̇ = 〈〈%d, −iad(Hfd
−Hf )%〉〉

| {z }

sign indefinite term

−u〈〈%d, −iadHc
%〉〉

want to see whether the algorithm is still converging
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Suppression of unwanted couplings

call Hδ = Hfd
−Hf

Hδ = unwanted Hamiltonian
−→ disturbance to reject

example:
Hfd

Ising Hamiltonian

Hfd
= h03Λ03 + h30Λ30 + h33Λ33

Hf Heisenberg Hamiltonian or dipole-dipole Hamiltonian

Hf = h03Λ03 + h30Λ30 + h11Λ11 + h22Λ22 + h33Λ33

=⇒ Hδ contains only transversal couplings

Hδ = h11Λ11 + h22Λ22
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Suppression of unwanted couplings

Proposition If Hδ contains only “slow” couplings (approximately of one order of
magnitude smaller than those of Hfd

) then ∃ a sufficiently high feedback
gain k and a ωrf such that %̇ = −i(adHf

+ uadHc
)% with the

(nonselective) feedback controller u = 〈〈%d, −iadHc
%〉〉 tracks the

reference trajectory %̇d = −iadHfd
%d

Hδ is a “persistent” disturbance −→ never vanish
=⇒ you never reach a steady state because of the persistent
excitation
=⇒ stability is only up to a small error −→ practical stability

meaning of the Proposition: if Hδ is slow with respect to the feedback
dynamics then it may not destroy convergence
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Suppression of unwanted couplings

Sketch of the proof

derivative of the Lyapunov function

V̇ = 〈〈%d, −iad(Hfd
−Hf )%〉〉

| {z }

slow time scale τδ

−u〈〈%d, −iadHc
%〉〉

| {z }

fast time scale τu

in the fast time scale τu: disturbance can be thought as frozen

=⇒ in the closed-loop dynamics it amounts to a constant “displacement”

if the feedback can recover fast from such a displacement then
convergence still holds

τδτu

disturbance
closed−loop state
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Suppression of unwanted couplings

Problem: control is along the λ1 axis =⇒ when reduced density is aligned
with λ1 axis you have no control action

=⇒ singularity of the control law

|

you need to get away from this alignement
by means of the coupling
by means of the local precession

to do it fast: choose ωrf so that the Larmor frequencies

h30 = −(ω0,α − ωrf ) and h03 = −(ω0,β − ωrf ) are in the fast time scale

=⇒ feedback loop
exits fast from the singularities
can recover the disturbance Hδ in the fast time scale

feedback does not work for Hδ of the same order as Hfd
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Suppression of unwanted couplings

example mentioned above:

Hfd
Ising, Hf Heisenbeg

Hδ = h11Λ11 + h22Λ22
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Suppression of unwanted couplings

if the controls are selective, then any coupling can be suppressed

previous example: slow coupling
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Suppression of unwanted couplings

selective controls

example: fast coupling to reject

Hδ = h11Λ11 + h22Λ22

τδ ' τu
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Suppression of unwanted couplings

selective controls

choosing two rf frequencies slightly off-resonance helps convergence

same example:

Hδ = h11Λ11 + h22Λ22

h03 = h30 = 0
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Using the algorithm for open loop control

full state is not available =⇒ impossible to implement for real

use scheme in an open-loop fashion, to generate time-dependent shaped
pulses mapping % −→ %d

standard open-loop control methods

1. hard pulses
high power =⇒ shorter times

2. soft, shaped pulses
low power =⇒ long times

both need selectivity
simultaneous selective pulses =⇒ cross talk =⇒ need to
precalculate the corrections
In presence of complicated couplings (solid state), both methods are
difficult to use (remember: open-loop methods are “NP-hard”)

Is it possible to let the simulator compute the pulses by means of the
“feedback on the model”?
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Using the algorithm for open loop control

open-loop control based on feedback on the model can be used for
1. “one-shot” gate (more properly: state transfer map)
2. “learn” from the simulator the control inputs that decouple an

unwanted Hamiltonian

ρd(t) k=u ( d ,ρ ρ) ρd
dt

forced Liouville eq.
= [ H− f +i uHc , ρ]

k=u ( d ,ρ ρ)

comparison
off−line

model

reference trajectory feedback law

true
system
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Using the algorithm for open loop control

have the “true” state of the simulator track the desired reference, take the
time-dependent control signal produced by the simulator and go to the
lab.

improvement w.r.t. the previous simulations: at t = 0 % can start already
on the desired %d

−→ no need to “show asymptotic stability”
−→ no “transient” behavior

prerequisite: need to known the initial condition −→ always the case in
NMR

any time you change the initial condition u(t) is different (simulator and
feedback algorithms remain the same)

drawback: profile of u(t) is normally not “nice”
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Open loop control: a 3 spin example

A B Caim: suppress unwanted couplings

three identical spins, no chemical shift

free Hamiltonian: dipole-dipole coupling
1. two couplings between A-B and B-C

(−Λ110 − Λ220 + 2Λ330) + (−Λ011 − Λ022 + 2Λ033)

2. one coupling (of weak strength) that I want to suppress between A-C

1

8
(−Λ101 − Λ202 + 2Λ303)

control Hamiltonian: nonselective control field

u1(Λ001 + Λ010 + Λ100)
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Open loop control: a 3 spin example

“disturbance” Hamiltonian

Hδ = Hfd
−Hf =

1

8
(−Λ101 − Λ202 + 2Λ303)

initial state along the λ1 axis

%(0) =
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(
√
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7
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5
⊗

2

6
6
6
4

1

1

0

0

3

7
7
7
5

look at the FID of the signal %001 + %010 + %100
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Open loop control: a 3 spin example

FID without control
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Open loop control: a 3 spin example

FID without control
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Open loop control: a 3 spin example

control signal that does it
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Open loop control: a 3 spin example

how about the rest of the state? The feedback is decoupling the entire
state space!
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Open loop control: a 3 spin example

for the 3 reduced densities
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Open loop control: another 3 spin example

A B

C

three identical spins, no chemical shift

free Hamiltonian: dipole-dipole coupling
1. a couplings between A-B

(−Λ110 − Λ220 + 2Λ330)

2. two couplings (of weak strength) that I want to suppress between A-C
and B-C

+
1

8
(−Λ011 − Λ022 + 2Λ033) +

1

8
(−Λ101 − Λ202 + 2Λ303)

=⇒ I want to decouple C from A-B

control Hamiltonian: nonselective control field

u1(Λ001 + Λ010 + Λ100)
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Open loop control: another 3 spin example

“disturbance” Hamiltonian

Hδ = Hfd
−Hf =

1

8
(−Λ101 − Λ202 + 2Λ303) +

1

8
(−Λ011 − Λ022 + 2Λ033)

initial state along the λ1 axis
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look at the FID of the signal %001 + %010 + %100
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Open loop control: another 3 spin example

FID without control
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decoupling is not very good....
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Open loop control: another 3 spin example

FID without control
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Open loop control: another 3 spin example

rest of the state
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Open loop control: another 3 spin example

for the 3 reduced densities
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Open loop control: a 4 spin example

A B C D
4 identical spins, no chemical shift

free Hamiltonian: dipole-dipole coupling
1. a couplings between A-B, B-C, C-D
2. couplings to reject: A-C, B-D and A-D
3. =⇒ want to make a linear spin chain

control Hamiltonian: nonselective control field

u1(Λ0001 + Λ0010 + Λ0100 + Λ1000)
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Open loop control: a 4 spin example

FID without control
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entire state space is already decoupled? Not really....
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Open loop control: a 4 spin example

take e.g. a 3-body correlation: %0213

%0213 without control
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=⇒ solution is improved
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Open loop control: a 4 spin example

FID without control
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Open loop control: another 4 spin example

A B C D4 identical spins, no chemical shift

free Hamiltonian: dipole-dipole coupling
1. a couplings between A-B, B-C, C-D
2. couplings to reject: A-C and B-D
3. =⇒ want to make a linear spin chain

control Hamiltonian: nonselective control field

u1(Λ0001 + Λ0010 + Λ0100 + Λ1000)

MIT, January 2005 – p. 59/61



Open loop control: another 4 spin example

FID without control
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Open loop control: another 4 spin example

FID without control
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FID with feedback
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