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Abstract

Background: In yeast, genome-wide periodic patterns associated with energy-metabolic
oscillations have been shown recently for both short (approx. 40 min) and long (approx.
300 min) periods.
Results: The dynamical regulation due to mRNA stability is shown to be an important
aspect of the genome-wide coordination of the long-period yeast metabolic cycle described
in [1]. It is shown that for periodic genes, arranged in classes according either to expression
profile or to function, the pulses of mRNA abundance have phase and width which are
directly proportional to the corresponding turnover rates.
Conclusion: The cascade of events occurring during the yeast metabolic cycle (and their
correlation with mRNA turnover) reflects to a large extent the gene expression program
observable in other dynamical contexts such as the response to stresses/stimuli.
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Introduction

Ultradian self-sustaining energy-metabolic oscillations arising spontaneously in high density
S.cerevisiae continuous cultures exposed to glucose-limited growth have been known and stud-
ied for decades [2, 3], and have more recently been observed to induce genome-wide periodic
patterns in different series of microarray experiments [4, 1], although with widely different
periodicities, ∼ 40 min for [4] and ∼ 300 min for [1].

Many studies aim at understanding the mechanisms inducing these sustained oscillations
and the rigorous temporal compartmentalization they induce, see [5, 6] for surveys. Suggested
causes range from a single critical pathway (like the feedback effect of cysteine on the sul-
fur assimilation pathway [7]) to the alternation of aerobic and anaerobic respiratory modes (as
deduced by the fluctuations in the concentration of dissolved O2 and of other observed metabo-
lites), from the interaction with cell cycle [8, 9] to the mutual incompatibility of different redox
biochemical processes [10, 11].

The scope of this work is to emphasize a different aspect, intrinsically dynamical and post-
transcriptional, which is likely to play an important role in the coordination of the “slower”
Yeast Metabolic Cycle (YMC) of [1], namely mRNA stability. We will show that there is a
roughly linear relationship between the average Half Life (HL) of the transcripts, clustered
according to expression or function, and the phase at which their concentration peaks in the
cycle. More generally, there seems to be a strong correlation between HL and the shape of the
pulses of gene expression: genes with short HL have short and sharp (almost impulsive in the
time scale considered) pulses, while genes with long HL have pulses that are not only delayed
but also broader and with more gentle slopes.

In recent years, post-transcriptional control is being recognized as an important aspect of
gene regulation, especially in monocistic eukaryotic DNA [12, 13, 14, 15]. It can occur in
many guises, through mRNA turnover [16, 17, 18, 19, 20], or through “RNA regulons” [21] i.e.,
groups of genes coordinately guided in the RNA processing, localization and protein synthesis
by RNA-binding proteins (RBP) [22, 23], or even through the mediation of a metabolic substrate
(typically a nutrient [24, 25, 26] or an enzyme [27]). Our result confirms the importance of post-
transcriptional control, and points at mRNA turnover as a regulatory mechanism at a genome-
wide level. Its peculiarity consists in putting the time axis into the picture in an intrinsically
dynamical way. Consequently, in order to be observed, it requires times series sampled at
a sufficiently high frequency and dynamics in the right time window, a combination seldom
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occurring in current expression profiling datasets. So for example the correlation between HL
and phase/shape of the oscillations cannot be observed in the much faster YMC of [4], where
HL and the period are of comparable duration, hence the system has no time to decay before
the arrival of the next wavefront.

In order to emphasize the dynamical aspects, we shall treat the YMC as the time response
of a genome-wide dynamical system to a sequence of impulsive “inputs” of transcription ac-
tivation. We will show that grouping genes in terms of progressively delayed and broadened
responses to a sequence of “input pulses” of transcriptional activation allows to see in a remark-
ably fine detail the causal chain of events constituting the transcriptional program of the cell.
The few ambiguities resulting from this classification can be interpreted in terms of some other
annotation, typically compartmental localization.

In the following we shall proceed in two complementary ways: first the YMC time series is
clustered in a completely unsupervised manner, only according to gene expression. The linear
relationship between pulse phase (also pulse width) and HL then emerges in a straightforward
way. Next, we consider families of genes whose products share some common annotation, for
example genes on the same pathway or genes that are subunits of the same protein complex,
and look at the type of time series they produce and at their “position” along the YMC. Both
approaches confirm that the YMC represents an organized cascade of events, in response to
precisely equispaced bursts of transcriptional activation, with the temporal order reflecting the
transcript turnover rate.

Extrapolating from the specific YMC context, this cascade of events is observable to a good
extent also in other gene expression time series (such as the response to a pulse of nutrient of
[28], or the stress responses of [29], suggesting it might reflect a prototypical dynamical mode
of action of transcriptional response.

1 Results & Discussion

The ∼ 2000 genes labeled as periodic by a periodogram test are subdivided into 16 clusters, see
Fig. 1. In Fig. 1(a) the clusters are sorted in increasing order of HLs (computed as the average
of the HLs of the cluster elements). It is immediately evident that the typical profiles, both in
terms of the phase of the peaks (for each gene the phase is computed maximizing the correlation
with respect to a train of shifted sinusoids) and of their width (although in a less regular way)
is modified in an almost continuous manner as we move along the clusters figures. Notice in
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particular how the peaks of the first clusters match the “valleys” of the last ones. For the average
phase on each cluster, the phase/HL relationship is almost linear (Fig. 1(b)). The scatter plot
in (d) confirms this linear proportionality but also shows a growing variance along the HL axis
(see Table 1 for details). The deviations from linearity of clusters 6 and 9 admits a reasonable
explanation, mostly in terms of compartmental localization. Cluster 6 is essentially composed
of retrotransposons (all Ty1 and Ty2) and long term repeat mRNAs (mostly of δ type) for a total
of 73 out of 102 genes. For most of these genes (59) an HL measure is missing. Hence the
average HL for this cluster (and this cluster alone) may be biased or unreliable. Cluster 9 in-
stead is almost entirely composed of cytoplasmic ribosomal subunits (109 out of 151 genes). In
between, Clusters 7 and 8 contain to a large extent genes with mitochondrial localization and/or
function (mitochondria organization and biogenesis, protein import into mitochondrial matrix,
oxidoreductase activity for Cluster 7, mitochondrial ribosomes, envelope and membranes for
Cluster 8). As is explained in detail below and in Fig. 3, the large deviation from linearity seen
in Cluster 9 can be due to an extremely fast and short lived response of the mRNAs deputed
to the biosynthesis of the cytoplasmic ribosomal complexes, not deducible from the available
HL data, neither from the current literature (in [30] it is affirmed that cytoplasmic ribosomal
genes tend to be stabilized by nutrient uptake), see also Fig. 6 for a further comment. Although
less precise, also the relation between HL and pulse width on each cluster (Fig. 1(c)) is ap-
proximately linear. Unlike the phase/HL proptionality, this last result is expected from simple
dynamical considerations, as longer HL means longer “kernel width”, see also Fig. 5.

The emergence of a linear relation between HL and phase once the genes are arranged in
classes according to profile similarity suggests that a corresponding cascade of causally or-
ganized events may be taking place during the YMC. To some extent this is already visible
through an ontological analysis of the clusters of Fig. 1 (see Table 1), but in order to investigate
more in detail the biological meaning and significance of such a genomic “assembly line” we
computed HLs, phases and pulse widths along the main yeast pathways and for some of the
annotated yeast protein complexes. The data for the pathways (see Fig. S2 in the Supplemen-
tary Notes) are then lumped together into the 15 functional macrocategories shown in Fig. 2.
In terms of these macrocategories (sorted by phase), the result is that the mRNAs activation
reflects tightly the gene expression program expected to take place in the cell, especially for
the “fast” categories, i.e., transcription, nucleotide metabolism and translation starting essen-
tially synchronously in the time scale of the YMC, followed by DNA replication and repair
and aminoacid metabolism. Progressing further toward the slow processes, one encounters the
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metabolism of energy, carbohydrates and lipids. Also for this classification, the progression in
terms of phase along the cycle is substantially faithful to the increase in HL (in the top plot of
Fig. 2(b) the most significant outlier is still the category “translation” already mentioned, see
also Fig. 3), and the progression in phase is paralleled by an increase in pulse width (see bottom
plot of Fig. 2(b)).

A detailed functional analysis With the help of Fig. S2 and S5, we can zoom on these cate-
gories in much more detail. The first phase of this cascade consists of the activation of the tran-
scription machinery with the synchronous bursts of transcription of the three RNA polymerases
(see Fig. S1) and of most of the RNA processing components, like the tRNA processing com-
plexes (RNase P) and rRNA processing complexes (Exosome, RNase MRP, Nop56/Nop1), with
the nuclear splicing complexes following closely. While the mRNAs for the polymerases are
highly coordinated, the same cannot be said for the basal transcription factors required for their
initiation. Overall only a few of these genes follow the bursting trend of the RNA polymerases,
notably, among them, SPT15 which forms the TATA-binding protein TBP and is also a com-
ponent of the Pol I core factor complex and of TFIIIB. Most other genes involved with these
general TF do not show any periodic pattern, and their mRNA concentrations never surpass
very low levels.

From Fig. 2, the peak of mRNA concentrations associated with the category “translation”
seems to be synchronous with the RNA processing burst. However, a more careful analysis
reveals that this phase is an average of two “compartmentalized” activations of the translation
machinery, having fairly different phases: while cytoplasmic translation follows almost simul-
taneously the RNA machinery, the mitochondrial translation activation has a phase lag of more
than one sixth of the period. In terms of time delay, this amounts to approximately 50 min,
see Fig. 3. More in detail, most of the mRNAs of ribosomal small and large subunits for both
cytoplasmic and mitochondrial localizations are highly correlated within their complex (aver-
age Pearson correlation for both is around 0.8) and correlated with the translation complexes
at the corresponding location. In particular, among the cytoplasmic translation complexes, the
initiation factors eIF and the termination factors eRF are very coordinated and respond very
fast, while of the three elongation factors only eEF2 and eEF3 are well-coordinated, whereas
the larger complex eEF1 shows a less-defined response pattern, with only the subunit eEF1−β

clearly expressed. Overall for the class of translation complexes the pattern of activation of the
response reflects closely the corresponding HL distributions [20] (eIF and eRF have short HL,
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eEF has not). Notice that a simple comparison of the HLs of the cytoplasmic and mitochondrial
ribosomal and translation machineries (both approximately 24 min) does not show the signifi-
cant difference which can be seen on the time series profiles and which is instead revealed by
the phase delay analysis. For cytoplasmic ribosomal biogenesis, a similar anomaly is encoun-
tered also in the analysis of the stress/stimuli responses, see Fig. 6. For mitochondria, the same
type of pattern is verified also by other complexes, for example by both the translocases located
in the outer and inner mitochondrial membranes (TOM and TIM) which are known to mediate
the protein import into the mitochondria, see Fig. 3.

A neat organization can be seen also in the phase of the nucleotide and aminoacid metabolism:
while pyrimidine and purine synthesis, as well as e.g. the CTP synthase enzyme involved in
pyrimidine biosynthesis, are synchronous with the burst of transcription, the peaks for most of
the enzymes involved in amminoacid pathways tend to be in phase with the activation of the
translational machinery. Also the synthesis of aminoacyl-tRNAs, necessary for the delivery of
the amino acids to the ribosomes during translation has a similar phase. In Fig. S2, notice how
the “synthesis” pathway of an aminoacid always anticipates its “degradation” pathway. In order
to start translation, the initiator tRNA carrying methionine is required, and in fact, among the
amino acid metabolic pathways, methionine is one of the fastest. As a matter of fact, the path-
ways of sulfur metabolism and of the sulfur-related aminoacids (methionine, cysteine, as well as
the closely related seleno aminoacid metabolic pathway) present very similar and very compact
time series (see correlation-based clusterization in Fig. S3), with an early (synchronous with the
main burst) but long lasting activation (duration of the pulse is more than 100 min). This tight
coordination may hint at a special role played by the sulfur pathways in the yeast population
synchronization [31, 32].

To conclude the protein synthesis, the nascent polypeptide chains must fold into 3D struc-
tures. The molecular chaperones TPC RING complex and the Gim complex, which help in the
folding, behave synchronously with the main burst. On the contrary, ubiquitine and proteasome,
that proceed to the recognition and degradation of anomalous proteins, as well as the SCF and
anaphase promoting complexes, that cause the proteolysis of the cyclin-CDK complexes, have
patterns of activation which are more delayed and broadened. Actually, this class of proteolytic
processes (macrocategory “folding, sorting and degradation” in Fig. 2) has the highest values
of phase i.e., it has the slowest response to the transcription bursts.

In terms of protein complexes, the macrocategory “DNA replication and repair” contains
what remains of the “fast” responses to a large extent synchronous (complexes: DNA damage
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checkpoint, DNA repair, pre-replication, replication, replication fork, which includes all DNA
polymerases, helicases and ligases, Cyclin-CDK) or within a short time delay from the initial
bursts of transcription. From Fig. 2 and Fig. S5, the peculiarity of this class is that the pulses
are more long lived than in the “transcription” and (cytoplasmic) “translation” categories. Also
the complexes regulating the cohesion and separation of sister chromatids during the S-phase
(nuclear cohesion family of complexes in Fig. S5) follow the same pattern.

Moving to the core of the cell’s metabolic activity, the average phase increases further (see
Fig. 2), but the main qualitative difference is on the shape of the pulses, which are now broader
and often with an asymmetric rise/decay profile: still sufficiently fast activation but slower and
less abrupt decay. This difference is likely to reflect the longer HL associated to these categories
(all have average HL > 30 min), and implies metabolic functions more overlapping than se-
quential. Along each metabolic pathway, the degree of correlation among enzymes catalyzing
neighboring reactions is higher than it is expected (the “expected value” is inferred from a large
collection of yeast microarray experiments, see Fig. S4) implying a coherent and coordinated
temporal behavior along the metabolic routes. Especially for mitochondrially localized path-
ways such as TCA cycle and oxidative phosphorylation the pulses are very broad, with a neat
downregulation only in correspondence of the bursts of transcription and an overall profile often
exhibiting a double peak on each period (occurring with a phase lag of ∼ 100◦ one from the
other, see Fig. S8). The four respiratory chain complexes for example follow this pattern in a
fairly precise manner. As shown in the Supplementary Notes, this double peak characteristic
is often associable with pairs of genes whose products are isoenzymes oscillating in antiphase,
especially for enzymes involved in oxidoreductive processes (e.g. along the pentose phosphate
pathway).

Regulation via transcription factors versus RNA binding proteins. In terms of regula-
tory influence, while the importance of transcription initiation via Transcription Factors (TF) is
widely studied and a large amount of data (computational and experimental) is available about
the binding of TF to target genes, similar post-transcriptional systematic data on the regulation
by means of RBP are still sporadic [33]. Notable examples are mRNAs associable to the nuclear
export proteins MEX67 and YRA1 [34], the PUF family of RBP [23], and the 3’ UTR motif
collection of [22]. Inspired by [35], we applied these RBP lists as well as the list of TF binding
sites from [36, 37] to the YMC time series comparing the average correlation among genes
being common targets of a TF or of a RBP. The two distributions are shown in Fig. 4. For both
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TF and RBP, only a few motifs emerge as having a significantly high correlation. The number
of genes regulated by the same TF varies between 1 and 226 with a mean of 35.2, while the
number of genes with a common target mRNA motif varies between 6 and 1138 with a mean of
81.7. If we draw from a null distribution representing random grouping, increasing the number
of genes in a group the probability of finding a high mean correlation obviously decreases, so
we expect the distribution for the second set to be tighter around 0. In our case, on the contrary,
there are 6 groups out of 110 with a mean correlation > 0.4 for the TF target genes (versus an
expected value of 1 for random groups of genes with the same cardinalities of these groups) and
7 groups out of 83 for the genes with a target mRNA motif (versus the expected 0 for random
groups with same cardinalities). This suggests that post-transcriptional regulation is more sig-
nificant that transcriptional regulation in the coordination of the metabolic cycle, although the
evidence is not conclusive. When checking the groups of periodic genes with high correlation
we found the following significant annotations:

• 44 genes out of 56 having FHL1p as TF and 10 genes out of 12 having SFP1p as TF are
constituents of cytoplasmic ribosomes; notice that instead other cytoplasmic ribosomal
TF such as RAP1p do not correspond to a sufficiently high correlation;

• 22 genes out of 26 having HAP4p as TF code for subunits of respiration chain complexes;

• 62 out of 220 genes whose mRNA is bound by PUF3p are annotated for mitochondrial
transcription/translation (56 are part of mitochondrial ribosomes, of which 47 are peri-
odic), see Fig. 3.

Dynamical features of the unfolding cycle. Possible origins of the sustained oscillations are
discussed at length in the literature [4, 5, 6, 7, 8, 10, 11, 38]. Also Tu et. al. explain the cycle
and its time compartimentalization in terms of metabolism and redox balance [1, 39, 32].

Rather than adding to the list of mechanisms for metabolic regulation, by viewing each cycle
as the dynamical response to a burst of transcriptional activation, this work aims at providing a
characterization of the dynamics of the unfolding of the cycle, i.e., of how these “impulse re-
sponses” are progressively delayed and broadened with respect to the input pulses, and of how
this correlates with the stability of the corresponding transcripts. The compactness in terms of
phase and width of the early categories over repeated oscillatory cycles is an argument in favour
of the existence of a single triggering event for each cycle, corresponding to the transcriptional
activation bursts mentioned above. In fact, sharp, equispaced pulses are maintained in spite of
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the broader and less coordinated profiles of the events immediately preceeding them. This hy-
pothesis is not in contraddiction with the observations about the metabolic origin of the YMC,
neither with the observed alterations of the period following a genetic disruption [39, 8, 32]
(which could in principle preserve the sequence of events described). On the contrary, it merges
the metabolic control level described in [1] with an extra regulatory element which is known to
play a role in dynamical contexts. In fact, the mNRA stability reflects known properties of the
corresponding gene products: while mRNAs encoding transcriptional machinery or regulatory
components tend to be short-lived and to turn over more quickly, transcripts encoding core en-
zymatic proteins are typically more stable [15, 20, 19]. For what is known, protein synthesis
tends to follow the concentration of the corresponding mRNA [40] and to be at least as stable if
not longer-lived [41, 42]. Hence, it is expected that the concentration of the gene products fol-
lows profiles that are similar to those of the mRNA. The observation that the dynamics through
a metabolic pathway can be considered as a timed and sequential process at the level of gene
expression appears in several papers in the literature, see [43, 44]. The same principle seems to
be reflected in the YMC, although it is not observable at the level of detail investigated e.g. in
[44] but more macroscopically and of genome-wide level.

An input-output dynamical model In terms of dynamical models, the a progressive broad-
ening and smoothing of the response to a sequence of (transcriptional) pulses can be described
by means of simple linear input-output models (i.e., transfer functions in the Laplace domain)
of increasing order having “low-pass” characteristics. As the time constant of this low-pass
filter is essentially given by the HL of the mRNA, this type of model naturally predicts the cor-
relation HL-pulse width. In order to describe correctly also the phase along the cycle, a time
delay is added to the response, see Methods for a thorough description and Fig. 5 (a,b) for an
example. If the order of such a fitted minimal dynamical model is used to sort the annotated
categories of Fig. 2, we still recover both the same expected cascade of events and the same
direct proportionality with HL, see Fig. 5, meaning that even in terms of the simplest possi-
ble dynamical model the kernels providing the best fitting become increasingly complex as we
progress through the cycle. This is of course expected as the mRNAs gradually pass from fast
turnover to high stability.

A common dynamical gene expression program As the YMC is obtained only in particular
conditions (long-term continuous cultures in chemostats), an intriguing question is whether this
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highly organized unfolding of the dynamical response to pulses of transcriptional activation is
peculiar only of the YMC or can be observed also in other experimental conditions. For this
purpose, we consider the gene expression response of steady-state yeast to pulses of glucose de-
scribed in [28]. In this case, the yeast shows a transient dynamical response but no oscillatory
behavior. Furthermore, the transient peaks are more or less synchronous for all genes, i.e., there
is no time-ordering in the dynamics, unlike in the YMC. However, if for a gene we compare the
maximal signed amplitude of each expression profile on these time series with the correspond-
ing phase and pulse width in the YMC, a sizeable correlation emerges, see Fig. 6 (a). If, on the
contrary, we consider the stress responses time series of [29], the YMC phase/pulse width turn
out to be positively correlated (rather than anticorrelated) with amplitude, i.e., categories ap-
pearing early in the YMC tend to be downregulated in most stress responses, while “late phase”
categories tend to be upregulated, see Fig. 6 (b). It is known that in the stress responses genes
annotated for ribosomal proteins and/or RNA metabolism are in general downregulated, while
e.g. respiratory genes (such as those of the TCA cycle and of the oxidative phosphorylation) be-
come upregulated [29]. On Fig. 6, notice that also in all these responses cytoplasmic ribosomes
(cluster 9 in Fig. 1) are aligned with the rest of the (cytoplasmic) transcriptional/translational
machinery rather than with the assigned HL values.

The conclusion of this analysis is therefore that in intrinsically dynamical contexts some
form of common response might indeed be taking place, although exerted by different means.
Such genome-wide coordinated response shows a graded ordering which reflects the degree of
stability of the genes involved.

Conclusion

In [1, 39] the time compartimentalization of the cycle is interpreted in terms of the need to ac-
cumulate sufficient products from the metabolic reactions in order to move on to the next phase
of the cycle and to autoinduce further cycles of oscillations. This picture is not contraddicted
by our observations.

If, as we do in this paper, rather than looking at the YMC merely as cyclic oscillations, we
study it as a highly organized dynamical response to pulses of transcriptional activation, then
this response can be analyzed in much more detail at genome-wide level and we can observe
how an important role in the coordination seems to be played by the mRNA turnover rate.
The self-sustained character of what we consider the most upstream event of the cycle, the
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transcriptional activation bursts, can still be conditioned to the accumulation of the required
metabolites, while the unfolding of the cycle, which from the analysis of [1] is already known
to be functional to the distribution of e.g. the redox load of the cells, is enriched of an extra,
intrinsically dynamical feature. This feature is a fine-graded detail of our notion that genes with
a fast turnover are typically regulatory while slow genes are enzymatic and metabolic [15, 19].
It can be used to describe the sequence of events occurring in the YMC as a “natural” gene
expression program.

Extrapolating from the specific YMC context, the ordered pattern of events described for the
YMC is to a good extent similar to that found on other intrinsically dynamical contexts such as
the stress/stimuli responses. Whether the mRNA stability is the cause of this coherent behavior
or is simply another effect of a more profound regulatory mechanism is a question to which we
cannot provide a definitive answer at the moment.

Methods and Data

Data sources. The YMC time series of [1], the compendium of 790 gene profile experiments
(all performed with the Affymetrix GeneChip Yeast Genome S98 platform) and the dataseries
from [28] were downloaded from Gene Expression Omnibus, http://www.ncbi.nlm.nih.gov/geo/.
Five stress responses from [29] (2 heat shocks of different amplitude, hydrogen peroxide,
diamide, and sorbitol responses) are considered. The amplitudes are averaged over the 5
dataseries (the signs of these responses are known to be higly similar, see [29]).

The metabolic pathways used are those of the Kyoto Encyclopedia of Genes and Genomes
(http://www.genome.jp/kegg). Also the assembling into the 15 macrocategories discussed in
the paper follows the KEGG hierarchy.

The HL are computed averaging the values of the three experimental datasets [17, 18, 20].
None of these data are specific for high density continuous cultures. As HL might vary on
different experimental conditions [15, 17], we expect the correlation to improve in presence of
more tailored HL data.

Time series analysis. To each of the genes labeled as periodic, we associated a phase, com-
puted maximizing the correlation with respect to a train of 360 shifted sinusoids (resolution
of 1◦). The 0 phase was chosen so as to anticipate of ∼ 30◦ the “crucial” transcription bursts
(see Supplementary Notes for details). Given that the period is approximately 287.5 minutes
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(see Fig. S1), the phase delay φ can be transformed into time delay τ by means of the rela-
tion τ = φ287.5

360
. Under the convention for the 0 phase, each period “begins” approximately

24 min before the transcription bursts. For each gene, the pulse width is computed estimating
on each period the interval in which the expression level stays above the median value across
consecutive samples.

Least squares regressions The p.value for the least squares regressions in Fig. 1-2 is com-
puted via a Fisher test statistics. More detailed weighted regressions on the Supplementary
Notes.

A minimal dynamical model: low-pass transfer functions and their dynamical system re-

alizations The aim of this Section is to set up a minimal dynamical model describing the
response to the periodic bursts of transcriptional activation represented as “impulsive inputs” to
the system. Such a model has to be able to reproduce the following features observable in the
dataset:

• impulse responses get delayed and broadened in a way which is roughly proportional to
HL;

• profile changes get progressively less steep with HL;

• the system “discharges” completely (i.e. the mRNA concentrations return to a basal level)
in absence of further pulses.

At the same time, to be internally consistent a dynamical model has to:

• respect causality (i.e., be non-anticipating);

• preserve positivity of the mRNA concentrations.

In the Engineering practice of Systems Theory, one of the most elementary formalism that can
be used to build dynamical models is the input-output design based on Laplace transform and
elementary transfer functions [45], see e.g. [46] for example of application to a transcriptional
time-series.

The concentration of mRNA of a gene y can be described as the response to the pulse of
transcriptional activation u by the linear integral

y =

∫

t

0

g(t − τ)u(τ)dτ. (1)
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In the Laplace domain, a convolution integral such as (1) corresponds to

Y (s) = L

[
∫

t

0

g(t − τ)u(τ)dτ

]

= G(s)U(s) (2)

where s is the Laplace variable and G(s) is called a transfer function. If u(t) is a perfect impulse
δ0 (Dirac delta) then U(s) = L [δ0(t)] = 1. When the transfer function G(s) represents a linear
differential equation (i.e. it derives from a linear convolution such as (1)), it can be expressed
as a rational polynomial in the Laplace variable s. A simple such polynomial is

G1(s) =
s + n1

s + d1

(3)

where s = −d1 is called the pole of G1 and s = −n1 its zero. Choosing d1 > 0 the transfer
function is stable (the pole is in the left half of the complex plane), i.e., a bounded input will
always result in a bounded output. When n1 > 0 the system is said to be minimum phase. In
this context this is an important condition in order to guarantee positivity of the output signal for
all times. The requirements above can be translated into easy-to-handle design specifications
on the values of the poles and zeros of the transfer function. For example, the first requirement
(at least for what concerns pulse broadening) is met by the class of so-called low-pass filters,
the most basic of which has the form given in (3), provided we choose 0 < d1 < n1. The term
“low-pass” literally means that low frequencies in the input signal pass unchanged through the
transfer function G1(s), while high frequencies get damped, hence the impulsive input exits
from G1(s) smoothed and with more gentle slopes. Such a transfer function is proper and
therefore respects causality; it discharges completely as required (since it has no integrator, i.e.,
no factors of the form 1/s in G1(s)). Strictly speaking, it is not a positive filter [47], however
as long as u(t) > 0 and 0 < d1 < n1 it is also y(t) > 0. In the Laplace domain, a time delay
T1 has Laplace transform equal to e−T1s. This operator does not add poles or zeros to (3) but
yields the irrational transfer function

y = G1(s)e
−T1su. (4)

In the time domain, each convolution integral (1) can be expressed as a linear input-output
systems (of ODEs). For the transfer function in (3) and the delay operator in (4) this corresponds
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to

dx(t)

dt
= −d1x(t) + (n1 − d1)u(t − T1)

y(t) = x(t) + u(t − T1)

i.e., the pole d1 plays the role of “degradation rate” while the activation amplitude is propor-
tional to n1 − d1 (> 0). The typical impulse response of a low-pass filter transfer function such
as (3) is shown in the top plot of Fig. 5(b). Given a pulse shape, the capabilities of a single
low-pass filter in terms of broadening and smoothing of the responses are limited, hence, in or-
der to obtain a progressive effect of delayed and broadened impulse responses, several delayed
low-pass filters should be put in cascade. For example the order-2 transfer function obtained
concatenating 2 filters is

G2(s) =
(s + n1)(s + n2)

(s + d1)(s + d2)
,

or, in the time domain,

dx1(t)

dt
= −d1x1(t) + (n1 − d1)u(t − T2)

dx2(t)

dt
= −d2x2(t) + (n2 − d2) (x1(t) + u(t − T2))

y2(t) = x1(t) + x2(t) + u(t − T2).

In this case both d1 and d2 contribute to forming the degradation profile of the mRNA concen-
tration y2(t). Likewise both dynamical variables x1 and x2 contribute to shape the pulse of a
gene. Typically this model induces a steeper upregulation and a slower degradation front, co-
herently with what we observe on the YMC time series. The intermediate variables xi are only
meant to describe the complexity of the input-output relationship. Qualitatively, they might
reflect intermediate steps in the gene expression program. For example, the transcription of
the genes of the central metabolism is activated downstream of the genes for translation and
aminoacid synthesis, which in their turn follow the principal bursts of transcription machinery
(polymerases and other RNA processing components). Downstream activation of the genes of
a category translates in this modeling framework into delayed and broadened pulses. Typical
output responses for 1, 2, 3, and 4 such concatenated blocks are shown in Fig. 5(b).

A simple parameter search can be set up to identify values of ni, di and Ti, i = 1, . . . , 4, that
guarantee for each gene a sufficiently well-reproduced time course. The best transfer function
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order for each gene is identified as that maximizing the correlation between true and model-
based time series.

HL and the short-period YMC of [4] The HL of a gene is defined as the time needed to
halve the concentration of mRNA in absence of new transcription. Hence in order for a “full”
degradation of mRNA to be observed, the interval between two consecutive waves of transcrip-
tion has to be at least twice or three times the HL. For yeast, the mean HL extrapolated from
[17, 18, 20] is ∼ 26 ± 17 min. Hence for the long-period YMC the response to bursts of
transcription has the time to exhaust completely before the arrival of the next wavefront. On
the contrary, for the short-period YMC described in [4] the period is approximately 40 min,
meaning that excitation and degradation fronts are substantially overlapping.
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cl. genes HL phase width ontology
mean std mean std mean std

1 101 13.26 (9.54) 32.4 (9.4) 2.2 (0.56)
RNA, rRNA, and tRNA processing and
metabolism, ribosome biogenesis and
assembly

2 58 16.02 (19.07) 26.3 (7.6) 2.3 (0.66)
RNA, rRNA and tRNA processing and
metabolism, RNA helicase, ribosome
assembly

3 101 16.46 (8.65) 43.3 (15.4) 2.1 (0.65)
RNA polymerase, translation initia-
tion, regulation, and termination, nu-
cleotide biosynthesis

4 34 19.44 (10.19) 98.2 (9.7) 6.3 (3.54)
transferase activity, DNA replication,
cell cycle

5 102 22.99 (10.27) 67.7 (11.8) 3.3 (1.95)
glycine metabolism, nitrogen and sul-
fur metabolism, amino acid biosynthe-
sis

6 102 24.59 (11.67) 177.4 (51.0) 5.2 (3.43) retrotransposons, long term repeats

7 124 24.59 (13.45) 109.6 (15.8) 5.0 (2.88)
mitochondrial membrane organization
and biogenesis, mitochondrial trans-
port

8 151 24.72 (11.80) 128.3 (9.4) 7.6 (2.96)
mitochondrial ribosome, envelope, and
membranes

9 232 25.76 (13.78) 44.8 (22.5) 2.6 (1.46)
cytoplasmic ribosomes, translation
processes

10 154 28.34 (16.36) 169.7 (20.3) 6.0 (3.59)
ion/cation transmembrane transport,
electron transport, oxidative phospho-
rylation

11 230 31.99 (19.05) 246.7 (35.5) 5.4 (3.90)

endopeptidase activity, protein
catabolic process, proteasome, actin
filament organization, glycolysis,
gluconeogenesis

12 65 32.69 (18.68) 214.8 (14.8) 5.5 (2.28)
lipid and alcohol metabolic process,
peroxisome

13 223 38.24 (28.35) 245.8 (12.6) 9.2 (3.71)
kinase activity, vacuolar transport,
membrane organization and biogenesis

14 128 39.10 (29.27) 285.5 (16.1) 10.1 (4.19) arginine biosynthesys, protein folding

15 117 42.83 (28.02) 258.7 (11.5) 10.2 (4.59)
hydrolase activity, fatty acid oxidation,
cytokinesis

16 29 45.74 (26.30) 307.8 (15.1) 8.7 (2.84) catalytic activity

Table 1: Statistics for the 16 clusters for Fig. 1 of the paper.
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Figure 1: Linearity of the relation phase/HL in the clustered YMC. In (a) the time series
of the periodic genes is clustered according to a nonnormalized correlation distance function
(see Table 1 for details on the clusters). The clusters are then sorted (from left to right from
top to bottom) according to the average HL. Moving along the clusters, a change in the phase
and in the width of the pulses is clearly visible, thus suggesting a direct relationship between
HL and phase/width of the pulses. This is made explicit in (b), where the average HL is plotted
against the average phase for each cluster, and in (c) where the average HL is shown against the
average pulse width. In the scatter plot of HL versus phase (d), the color indicates the cluster
number (see colorbar on the right). As can be notice, along the HL axis the standard deviation
of a cluster grows with the mean, see Table 1 for exact values, and the cloud of points looks
like a cone (the cone delimited by the two red lines contains 95% of the periodic genes. Still
the increase of HL with the phase is clearly visible. In the least-squares linear fit in (b) (green)
half of the L2 norm of the residues is due to Cluster 9 (cytoplasmic ribosomes, see text). The
p.value for both linear regressions is < 10−5. Further details on these regressions are provided
in the Supplementary Notes. It is worth remarking that the direct proportionality phase / HL is
robust with respect to the number of clusters chosen.
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Figure 2: Gene expression program emerging from the YMC. Periodic genes of the YMC
are grouped according to KEGG pathways (Fig. S2) and then in the 15 macrocategories shown.
Sorting by phase reveals the expected concatenation of events of the yeast gene expression
program, especially in the first part with transcription preceding protein synthesis and DNA
replication, followed by the slower categories of central metabolism. (b): Comparing HL and
phase (or pulse width) roughly the same type of direct proportionality still appear. The trend in
the average profiles of each category (black thick lines in Fig. 2 (c)) reflects to a large extent
that of Fig. 1. The third plot in (b) shows that also phase and pulse width are directly correlated:
pulses that are delayed are also broadened. Linear regression for these plots is discussed in the
Supplementary Notes.
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Figure 3: Mitochondrial compartmentalization. (a): Cytoplasmic vs. mitochondrial splic-
ing, ribosomal (small and large subunits are lumped together) and ribosomal translational com-
plexes. All genes are nuclear-encoded. Black profiles represent mRNAs classified as periodic.
Within each of the two compartments, the time courses of gene expression are similar and fairly
coordinated. Even the amount of correlation among the complexes subunits is similar, with e.g.
ribosomal mRNAs in both compartments being more tightly coordinated than the corresponding
translational machineries. The bursts for the cytoplasmic localizations are much sharper, higher
and shorter than in the mitochondria. These last accumulate an average phase lag of ∼ 90◦, or
around 50 minutes of delay (recall that the phase is computed by autocorrelation with a train of
sinusoids, hence the value for the phase represents the “center” of the pulse). The cytoplasmic
ribosomal complex substantially overlaps with cluster 9 of Fig. 1 (a), while the mitochondrial
ribosomal complex is contained in cluster 8 of the same Figure. (b): Mitochondrial translocases
across outer and inner membranes, and mRNAs having PUF3p as a RBP (220 genes, 134 pe-
riodic). Of the 236 mRNAs belonging to at least one of the mitochondrial categories shown in
the Figure, 62 have PUF3p as RBP. This tells us that in this case the “localization” constraint
is stronger than co-sharing a single RBP, but that the two conditions are coupled and induce a
similar pattern of dynamical regulation.
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Figure 4: TF regulation versus RBP regulation. Top row: Distribution of the mean corre-
lations for groups of genes having a common DNA motif likely to be the target of a TF [36].
Bottom row: Distribution of the mean correlations for groups of genes having a common mRNA
motif likely to be the target of a RNA-binding protein (YRA1, MEX67 [34] or the five PUF pro-
teins [23]) or having a common 3’ UTR motif implicated in the stability or in the subcellular
localization of the mRNA [22]. The mean correlation of a group of genes is defined as the
average of the correlations between the expressions of each gene pair in the group. The mean
correlations calculated for all the gene pairs are shown on the left, while on the right only the
periodic genes of each group are considered.
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Figure 5: Dynamical model of the response to a sequence of transcriptional pulses. Dynam-
ically, the response of the system to the sharp pulses of transcriptional activation can be modeled
in terms of input-output transfer functions (i.e., convolution integrals in the Laplace domain, see
Methods for details). The main feature of a simple zero-pole transfer function with low-pass
characteristic is that in correspondence of an impulse-like input it yields an output which is a
smoothed and broadened version of the input. Concatenations of such zero-pole transfer func-
tions describe accurately the progressive broadening and delaying of the YMC gene expression
time series. Typical time profiles obtained for transfer functions of order 1 to 4 sketched in (a)
are shown in (b). The top plot in (b) shows the larger kernels obtained by concatenating up
to 4 first order transfer function blocks. The lower plot in (b) shows how consecutive impulse
responses look like for the various orders of transfer functions and an extra delay element as in
(4). A simple fitting of the ni, di and Ti parameters and of the best model order for each gene
allows to accurately reconstruct the average profiles for the 15 macrocategories of Fig. 2 (in
(c) the model-based time courses are shown in red). With the usual exception of the category
“translation”, the best transfer function order is roughly proportional to the corresponding HL
values, coherently with the other variables discussed in the paper.
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Figure 6: Common unfolding of gene expression responses. The short-term responses of
steady-state yeast to pulses of nutrient discussed in [28] and the stress responses of [29] show a
transient peak of up/down regulation. The peaking times are substantially uniform on the genes.
For each gene we compute the maximal signed amplitude at the peak and lump together genes
belonging to each of the protein complexes of Fig. S5. If for [28] we compare this amplitude
with the phase (left) and the pulse width (right) of the corresponding genes for the YMC, we
can observe that both scatter plots have a consistent anticorrelation: complexes upregulated
in the glucose stimulations of [28] correspond roughly to “early” complexes in the YMC and
also to genes with a fast turnover. At the other end, complexes downregulated in [28] are late
in the YMC and are more stable, see (a). This shows how, in spite of different growth and
stimulation conditions, the gene expression program is substantially faithful. On the contrary
stressful stimuli such as those described in [29] yield correlated pattern with phase/width of the
YMC (b). Just like for the YMC, for both types of responses cytoplasmic translation behave
differently from the mitochondrial one. In red circles the first 3 complexes of Fig. 3 (c) are
shown, in magenta squares their mitochondrial counterparts. Hence the anomaly representated
by cluster 9 of Fig. 1 with respect to the HL classification is confirmed by these other dynamical
responses.


