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The material of this Supplement is divided into 3 Sections:

1. Synthetic data: integrates the content of Section 3.1 of the paper.

2. Influence of sparsity on the predictive power: compares inference on 2 networks with different
sparsity.

3. Comparing B-spline and Gaussian Kernel in the computation of I: evaluate how much the
matrix I changes with the algorithm chosen.

1 Synthetic data

This Section integrates the results obtained in Section 3.1 of the paper. For both AUC(ROC) and AUC(PvsR),
standard deviations (not shown) are around one order of magnitude smaller than the mean values, thus in-
dicating that the repetitions are substantially faithful.

For the random and scale-free networks reconstructed in Fig. 1 of the paper, Fig. S1 reports the average
runtimes (over the 10 repetitions) of the various algorithms: RC2

is clearly one order of magnitude slower
than the other methods. It must be remarked that for R, RC1

, RC2
we used MATLAB code, while for I,

IC , IDPI C++ code was created (so faster than MATLAB) and RCall
was computed under R environment.

Notice that IC grows faster than the other methods with respect to the number of experiments.
The first row of Fig. S2 evaluates the algorithms on a 1000 gene scale-free network. The experiments

are of knockout type, with steady-state measurements. It can be seen that all three parameters shown
AUC(ROC), AUC(PvsR) and TP for fixed FP are similar to the equivalent ones on Fig. 1 of the paper
(second row) for the same value of the ratio m/n.

2 Influence of sparsity on the predictive power

In this Section we show that a sparse network is easier to infer than a dense (or less sparse) one. For
this scope we consider two classes of artificial networks of 1000 genes, both of scale-free topology, the first
having an average node degree equal to 1.5 and the second equal to 3. The graphs for steady state knockout
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Figure S1: Runtime of the algorithms for the random (left) and scale-free (right) networks of 100 genes
shown in Fig. 1 of the paper.
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Figure S2: Evaluating the reconstructions via R, RC1
, RCall

, I and IDPI on 1000 gene artificial networks
of scale-free type, for increasing numbers of measurements, all for knockout experiments and all at steady
state. First row: average node degree 1.5. Second row: average node degree 3. Left column: AUC(ROC).
Central column: AUC(PvsR). Right column: number of TP for a number of FP equal to 200. Values shown
are means over 3 repetitions.

experiments are shown in Fig. S2. They clearly show that on the sparser network the inference algorithms
are more incisive, having better performances for all the three metrics considered.
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Figure S3: Comparison of I computed via Gaussian Kernel method from [2] and B-spline method used in the
paper with 4 bins and spline order 2 for a network of 100 genes and 200 experiments. The elements of the
two matrices are sorted and the sorted values divided in 1000 bins. The figure shows the cumulative counts
of the values of the sorted elements (y-axis) up to the i-th bin (x-axis). The counts for the two algorithms
overlap (by construction), while the number of edges in common differs for less than 10% of the total.

3 Comparing B-spline and Gaussian Kernel in the computation

of I

In [2] the computation of MIs is carried out using a Gaussian Kernel method. This is known to be computa-
tionally more intense than binning into an histogram, even when the B-spline approach is used [1]. In order
to evaluate how much the choice of the algorithm can influence the reconstruction, we compared two MI
matrices computed using a Gaussian Kernel estimator (with the routines provided in [3]) and the B-spline
approach. A typical result is shown in Fig. S3 for a rather conservative choice of number of bins (q = 4) and
spline order 2. It can be seen that the two ordering of edges weights always differ for less than 10%.
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