
Determining the distance to monotonicity of a biological network:

a graph-theoretical approach

G. Iacono†, F. Ramezani‡, N. Soranzo† and C. Altafini†∗

† SISSA Int. School for Advanced Studies

via Beirut 2-4, 34014 Trieste, Italy
‡ Max-Planck-Institut für Informatik,

Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

August 31, 2009

Abstract

We use ideas from graph theory in order to determine how distant is a given biological
network from being monotone. On the signed graph representing the system, the minimal
number of sign inconsistencies (i.e., the distance to monotonicity) is shown to be equal to the
minimal number of fundamental cycles having a negative sign. Suitable operations aiming
at computing such number are also proposed and shown to outperform all algorithms so far
existing for this task.

Keywords: biological networks, monotone systems, consistency deficit, signed graphs, funda-
mental cycles.

1 Introduction

In a series of papers [4, 10, 20, 19], E. Sontag and colleagues have drawn to the attention of
the Systems Biology community the concept of monotone systems. Such systems have very
useful dynamical properties [17], like the tendency of their solution to converge to an equilib-
rium (a bounded trajectory generically converges to an equilibrium) and the lack of “chaotic”
behavior. The link with biological systems arise from the observation that, although nonlinear
and complex, these systems typically show highly predictable and ordered dynamical behavior,
and a tendency to remain at equilibrium or to robustly return to it when perturbed. Sontag’s
suggestion is that biological systems might have evolved so as to be, if not monotone, at least
near monotone [10, 20]. Monotonicity in dynamical systems is a well-studied property [7, 17],
and can be stated in several alternative ways. For biological networks, a very useful way to
formulate/verify it is in terms of the sign of all possible feedback loops among the variables of
the system. Given an arbitrary system of Ordinary Differential Equations (ODEs), consider the
graph corresponding to the matrix of signs associated to the terms of the Jacobian matrix (as-
sumed for simplicity to be constant regardless of the point in state space we consider). Looking
only at the signs of the Jacobian gives a basic indication of the effect (activatory/inhibitory) of
a variable on another variable. In most biological contexts, this information is the best one can
hope to obtain, as too little is known of the functional form of the ODE and of its dependence

∗Corresponding author: altafini@sissa.it

1

on concentrations, parameters, external conditions, hidden (non-modeled) variables, etc. For
the undirected graph corresponding to the symmetrization of this signed adjacency matrix, the
monotonicity property corresponds to all undirected cycles having positive sign, where the sign
of a cycle is computed as the product of the signs of the edges forming the cycle. Undirected
cycles may correspond to “true” oriented feedback loop or to e.g. distinct paths connecting
pairs of nodes [20].

It is argued in [20] that biological networks are “near monotone” in the sense that a relatively
small number of sign changes in edges is enough to make the graph monotone. Closely related
to this idea is the intuition that biological networks may have many more positive cycles than
negative ones, which is the approach taken in [10]. While the simple verification of whether a
network is monotone or less is feasible in polynomial-time, the problem of testing how distant a
given network is from monotonicity (i.e. estimating the “consistency deficit” in the terminology
of [20]) is an NP-hard one [4]. As the size of a network becomes of the order of the thousands of
nodes, like for example in any gene regulatory network, testing exhaustively the sign of all cycles
quickly becomes an untreatable problem, because the number of cycles grows exponentially.
In fact, in [10] only short cycles were tested for large networks, while in [4] approximation
algorithms based on semidefinite programming ideas were introduced.

The purpose of this paper is to tackle this problem from a different perspective, using tools
from graph theory, namely the notion of fundamental cycles. The concept of a fundamental cycle
was introduced by Kirchhoff [9]. What Kirchhoff showed is that no matter how many cycles a
network contains, considering only fundamental cycles with respect to a spanning tree is enough
as the rest of the cycles are obtained as linear combinations of some fundamental cycles. In
terms of linear algebra, fundamental cycles form a basis of a vector space whose elements are
cycles and disjoint unions of cycles. We show that in particular fundamental cycles of positive
sign form a subspace which is invariant to the positivity property: any cycle of this subspace
must have a positive sign, and the cycle subspaces obtained in this way correspond to monotone
subsystems. For the negative fundamental cycles, this property does not hold (the reason being
that elements of the subspace are not only cycles but also disjoint unions of cycles). However,
the number of negative fundamental cycles corresponds to the number of sign changes that are
required to render the network monotone. In fact, each fundamental cycle is uniquely associated
to a chord not shared with any other fundamental cycle. By changing sign to the chords of all
negative fundamental cycles we obtain a monotone graph.

As an easy byproduct, we get an upper bound on the number of inconsistencies of a network:
any network can be rendered monotone by at most a number of sign changes equal to the
cardinality of a basis of fundamental cycles. Unrelated (and usually sharper) upper bounds
can also be obtained from the theory of signed graphs [18]. These bounds are quite helpful in
defining a proper metric to test whether a given network can be classified as “near-monotone”.

If all bases of fundamental cycles have the same cardinality, the number of positive/negative
fundamental cycles in a given basis depends however on the choice of spanning tree (and can
vary widely with it). Needless to say, testing all spanning trees requires computational time
that grows exponentially with the size of the graph. In order to simplify the choice of a “good”
spanning tree (with fewest possible negative fundamental cycles, hence as near as possible
to monotonicity), we propose an algorithm which acts on cut sets and aims at maximizing
the overall number of positive edges on the graph while maintaining unaltered the sign of each
cycle. The rationale of the method is that changes of sign through a cut set leave the consistency
deficit invariant. In the theory of monotone systems [17], this operation corresponds to changing
sign to the order relationship in one or more orthants; in the theory of signed graphs [22] this
corresponds to changing the representative element in a “switching class of equivalence” where
the consistency deficit is an invariant of the equivalence relation.

2

Though this algorithm is heuristic, its performance is excellent both in terms of computa-
tional time and of improving previously known upper bounds on the consistency deficit [4, 8].
The signed adjacency matrix resulting from the iterated application of such an algorithm has
usually many less minus signs than the original system, while being equivalent to it in terms of
the consistency deficit. It is then possible to search for a lower bound on the consistency deficit
assigning to each residual minus sign a negative cycle in such a way that all these negative
cycles are edge disjoint. Also for this lower bound our algorithm improves the existing results
of [4, 8].

As examples, we consider four large biological networks (two transcriptional regulatory net-
works and two signaling networks) and compute upper and lower bounds for the consistency
deficit. Comparing the consistency deficit as estimated by the algorithms with the theoreti-
cally predicted maximal values for the upper bound, we obtain that the two transcriptional
networks are much more monotone than the two signaling ones. We interpret this difference in
terms of abundance of negative short cycles in the two signaling networks, abundance which in
turns originates from the stoichiometric level of detail used in the construction of these signed
networks.

The structure of the paper is as follows. In Section 2 we review the required background
material on monotone systems and on graph theory; in Section 3 we formulate the notion of
consistency deficit in graph-theoretical terms, and in Section 4 we provide the algorithms for
the computation of such a measure. Finally, in Section 5 the algorithms are applied to biological
networks taken from the literature.

2 Background material

2.1 Graph theory and cycles

A basic reference for this Section is [5]. An undirected graph G is an ordered pair (V, E)
consisting of a set of nodes V = {v1, v2, ..., vn} and one of edges E = {e1, e2, ..., em}, such
that each edge ek is identified with an unordered pair (vi, vj) of vertices. The number of edges
incident on a vertex vi is called the degree of vertex vi, d(vi). A path is defined as a finite
alternating sequence of vertices and edges, beginning and ending with vertices, such that each
edge is incident with the vertices preceding and following it and such that no edge and no vertex
(except, perhaps for the first and last) appears more than once. A closed path is called a cycle.
Clearly, in a subgraph which is a cycle every vertex is of degree two.

A tree is a connected graph without any cycle. A tree with n vertices has n−1 edges. A tree
T is said to be a spanning tree of a connected graph G if T is a subgraph of G and T contains
all vertices of G. If we add an edge between any two vertices of a tree, a cycle is created. This
is because there already exists one path between any two vertices of a tree; adding an edge
between them creates an additional path and hence a cycle. Every connected graph has at least
one spanning tree. An edge in a spanning tree is called a branch of T and an edge of G that is
not in a given spanning tree T is called a chord. With respect to any spanning tree, a graph G
with n vertices has n− 1 branches and µ = m− n + 1 chords, where m = |E| (number of edges
of G).

Consider a spanning tree T in a connected graph G. Adding any chord to T will create
exactly one cycle. Such a cycle formed by adding a chord to a spanning tree, is called a
fundamental cycle. A connected graph G has exactly µ fundamental cycles with respect to any
spanning tree T , because each spanning tree has µ chords and each chord creates its own cycle.
A given cycle may be fundamental with respect to one spanning tree but not with respect to
another spanning tree of the same graph.

3

The ring sum of two graphs G1 and G2 (written as G1 ⊕ G2) is a graph consisting of the
vertex set V1 ∪V2 and edges that are either in G1 or in G2, but not in both. For example G⊕G
is a graph without any edge.

Consider a graph G with m edges. Any subgraph of G can be represented by an m-tuple
representing a subset of edges. There are 2m such m-tuples possible, including the zero vector
which represents the null graph and (1, . . . , 1) which is G itself. The ring sum between two
subgraphs corresponds to the modulo 2 addition between the two tuples representing the two
subgraphs. The set of all m-tuples forms a vector space WG with GF (2) as field. The natural
basis for this vector space WG is a set of m linearly independent vectors, each representing a
subgraph consisting of one edge of G, so dim(WG) = m. The vector space operation restricted
to cycles yields the following Theorem.

Theorem 1 The ring sum of two cycles in a graph G is either a cycle or an edge disjoint union
of cycles.

A cycle vector is a vector in WG representing either a cycle or a union of edge disjoint cycles
in a graph G. Therefore the linear combination of two cycle vectors is also a cycle vector, so
this set is closed with respect to both addition and scalar multiplication and hence it is a vector
subspace of WG, call it WΓ. The set of cycle vectors corresponding to the set of fundamental
cycles with respect to any spanning tree, forms a basis for the cycle subspace WΓ ([5], Thm
6.6), so dim(WΓ) = µ.

Assume G is connected. A cut set is a set of edges whose removal from G leaves G discon-
nected, provided removal of no proper subset of these edges disconnects G. Every cut set in
a connected graph G must contain at least one branch of every spanning tree of G. We shall
make use of the following Theorem.

Theorem 2 Every cycle has an even number of edges in common with any cut set.

A graph (V, E) is signed if its edges are endowed with a sign: ei ∈ {±1}. A cycle of a signed
graph is positive if it contains an even number of negative edges, it is negative otherwise.

2.2 Monotone systems and positive cycles

The material of this Section is taken from [20]. The system considered is described by the
time-dependent vector x(t) = [x1(t), ..., xn(t)]T whose components xi may represent concen-
trations of chemical species such as proteins, RNA or metabolites. We assume that xi(t) are
nonnegative: xi(t) ∈ R+, ∀t. The model we consider is a system of autonomous differential
equations describing the rate of change of each variable as a function of the concentrations of
all the variables:

dx

dt
= f(x), (1)

where f : R
n
+ → R

n is a vector function with components fi. The species graph G associated
with the Jacobian of the system (1) is a signed graph with n nodes v1, ..., vn, one node for each
species xi. No edge is drawn from node vj to node vi if the partial derivative ∂fi/∂xj vanishes
identically for any x, meaning that there is no direct effect of the jth species upon the ith
species. If this derivative is not identically zero, then there are three possibilities: ∂fi/∂xj ≥ 0
for all x, or ∂fi/∂xj ≤ 0 for all x, or ∂fi/∂xj changes sign depending on the particular entries
of the concentrations vector x. For the sake of simplicity we do not consider this third case.
In the first case (activation), we draw an edge labeled Jij = +1 from vj to vi, in the second
case (inhibition) we draw this edge with label Jij = −1. Following [20], self-loops (i.e., edges
starting and ending on the same vi) are ignored: Jii = 0. Again following [20], we symmetrize

4

the signed adjacency matrix by imposing Jji = Jij . In all the real networks we treat in Section 5,
this operation (which yields an undirected graph G) leads to very few inconsistent edges pairs
which can be disregarded. Denote by J the resulting n × n symmetric sign adjacency matrix,
of elements Jij ∈ {0, +1,−1}. A spin assignment (or signature) σ for the graph G is a labeling
of each node vi with a number σi equal to +1 or −1. If there is an edge from node vj to node
vi, with label Jij ∈ {+1,−1}, we say that this edge is consistent with the spin assignment σ
provided that

Jijσiσj = 1.

We say that σ is a consistent spin assignment for the signed graph G if every edge of G is
consistent with σ. In other words, if for a pair of vertices vi and vj there is a positive edge
from node vj to node vi then vj and vi must have the same spin, and if there is a negative
edge connecting vj to vi then vj and vi must have opposite spins. A signed graph is said to be
consistent if there exists a consistent sign assignment for it.

Lemma 1 A signed graph G is consistent if and only if every undirected cycle in G has a
positive sign.

Given any partial order ≤ defined on R
n, the system (1) is said to be monotone with respect

to ≤ if x′
0 ≤ x′′

0 implies x′(t) ≤ x′′(t) for every t ≥ 0. Here x′(t) and x′′(t) are solutions of
system (1) with initial conditions x′

0 and x′′
0 respectively. A useful way to define partial orders

in R
n is through a vector z = (z1, ..., zn), where zi ∈ {1,−1}. We say that x ≤z y if zixi ≤ ziyi

for every i.

Lemma 2 (Kamke condition) Consider an order ≤z generated by z = (z1, ..., zn). The
system (1) is monotone with respect to ≤z if and only if

zizj∂fj/∂xi ≥ 0, i, j = 1, ..., n, i 6= j.

Consider the species graph G for the system (1) with order ≤z generated by z and let the spin
assignment σ be equal to z. Then zizj∂fj/∂xi ≥ 0 if and only if

Jijzizj = 1. (2)

In other words, the system (1) is monotone with respect to ≤z if and only if z is a consistent
spin assignment for the species graph G.

Corollary 1 Consider an order ≤z generated by z = (z1, ..., zn). If the system (1) is monotone
with respect to z then every undirected cycle in the associated graph G has positive sign.

A dynamical system is said to be monotone if there exists at least one consistent spin
assignment for its associated graph G.

3 Fundamental cycles and inconsistencies

Consider a dynamical system f(·) and its associated symmetric signed graph G of adjacency
matrix J . Checking whether f(·) is monotone or less, i.e., whether G is consistent or less, is
a simple task, verifiable in polynomial-time. A possible approach is based on considering the
Laplacian L = D − J , where D is a diagonal matrix of elements d(vi), i = 1, . . . , n. The signed
graph G is consistent if and only if L is singular, i.e., 0 is an eigenvalue of L [22]. In general,
for any given system f(·) the corresponding signed graph G will not be consistent, although
in a biological context it might be ”near-monotone”, i.e closer to monotone than expected by

5

random edge assignments, as claimed in [20]. Our goal is to identify the smallest number of
edges such that if we change their signs the new graph obtained is consistent, and the tool we
use for this scope is an extension of the theory of fundamental cycles for signed graphs.

Lemma 3 Let {F1, F2, ..., Fµ} be the fundamental cycles associated to a given spanning tree of
G. A nonempty intersection of an arbitrary number of these fundamental cycles is a path.

Proof. The proof is by induction on the number of fundamental cycles in the intersection. If
s = 1, the intersection is just the fundamental cycle, which is obviously a path.

For s > 2, assume the statement true for any r, r < s, we want to show it for r = s. By
induction F1 ∩F2 ∩ ...∩Fs−1 is a path, call it H1. Assuming F1 ∩F2 ∩ ...∩Fs not connected, let
e1 and e2 be two edges belonging to two disconnected paths of the intersection F1, ..., Fs. Since
F1 ∩ F2 ∩ ... ∩ Fs ⊆ F1 ∩ F2 ∩ ... ∩ Fs−1 then e1, e2 ∈ H1. So there is a path between e1 and e2

in H1. Since e1 and e2 are also in Fs, there must exist another path between them in Fs such
that it does not contain the chord of Fs, call it H2. Now omitting all chords from the graph,
we must obtain a graph without cycles, however H1 ∪ H2 ∪ e1 ∪ e2 contains a cycle and hence
we have a contradiction. In fact since each fundamental cycle has its own chord, chords are not
in the intersection of fundamental cycles, so after omitting all chords H1 remains. Furthermore
each fundamental cycle has only one chord and since H2 does not contain the chord of Fs, H2

still exists after we have deleted all chords. Therefore we have two different paths between e1

and e2, hence a cycle and a contradiction. We must conclude that F1 ∩F2 ∩ ...∩Fs is a path.

The elements of the vector space WΓ are cycles and disjoint unions of cycles. As a matter
of fact, the ring sum of two cycles can consist of more than one cycle. As a consequence, while
the sign of a cycle vector obtained in this ring sum is always univocally defined, in general it
does not provide any information on the sign of the (edge disjoint) cycles in which the cycle
vector can be decomposed. Lemma 3 suggests that for fundamental cycles, the situation is to
some extent simplified. In fact, we show in the following that subspaces composed entirely of
positive cycles can be obtained only by looking at the signs of the basis elements.

Lemma 4 The ring sum of two positive or two negative nondisjoint fundamental cycles is a
positive cycle and the ring sum of one positive and one negative nondisjoint fundamental cycles
is a negative cycle.

Proof. The Lemma is proved for the case of both positive cycles, the other cases being similar.
By assumption F1 and F2 have a nontrivial intersection, then by Lemma 3 this intersection is a
path, call it H1. Hence there exist paths H2 and H3 such that F1 = H1∪H2 and F2 = H1∪H3,
from which F1 ⊕ F2 = H2 ∪ H3 is a cycle. With regard to the sign of H1, we have two cases.

1. If H1 has positive sign, then H2 and H3 must have positive sign and so must F1 ⊕ F2.

2. If H1 has negative sign, then H2 and H3 must have negative sign. Also in this case F1⊕F2

must have positive sign.

The following theorem shows that part of the result of Lemma 4 extends to an arbitrary
number of positive fundamental cycles.

Theorem 3 The ring sum of s positive fundamental cycles is a positive cycle or a disjoint
union of positive cycles.

6

Proof. The proof is by induction. Letting C = ⊕r
i=1Fi, if r = 2 then Lemma 4 holds and the

cycle is positive. By induction, we assume that F1 ⊕ ... ⊕ Fr, r < s, is a positive cycle or a
disjoint union of positive cycles, and we prove it for the case r = s. Since the set of all cycle
vectors forms a subspace in WG, this set is closed under the operation of ring sum and therefore
the ring sum of arbitrary cycles or disjoint union of cycles is either a single cycle or a disjoint
union of cycles. Consider the two cases.

1. Let C = ⊕s
i=1Fi be a single cycle. Letting B = ⊕s−1

i=1Fi, the inductive hypothesis is that
B is a positive cycle or a disjoint union of positive cycles, and we have C = B⊕Fs, where
Fs by assumption is a positive cycle. Denoting the edges in common between B and Fs

by A, since Fs has positive sign, A and (Fs−A) must have the same sign. In the ring sum
we omit the common edges, i.e., we have C = (B − A) ∪ (Fs − A). The sign of the cycle
C is the product of the signs of the edges in (B − A) multiplied by the product of the
edges in (Fs −A). But this is the same as the product of the signs of the edges in (B−A)
multiplied by the product of the edges in A, that is the product of edges in B. As B is
composed of positive cycles the sign of B is positive, hence C must have a positive sign.

2. Let C = ⊕s
i=1Fi be a disjoint union of ℓ cycles C = C1 ⊕ ...⊕Cℓ, ℓ ≥ 2. Then for each Ci,

i = 1, .., ℓ, we can write Ci = Fi1 ⊕ ... ⊕ Fiq where q < s and Ci ∩ Cj = ∅ ∀ 1 6 i 6= j 6 ℓ.
Denote the chord of each Fi, 1 ≤ i ≤ s, by ei. Each Ci must contain some chords belonging
to e1, ..., es, since if we have a cycle Ci without any of the chords e1, ..., es, after omitting
all the chords Ci remains a cycle and hence we have a contradiction. Also, if Ci contains
the chords ei1 , ..., eiq , q < s, then it is uniquely identified by Fi1 ⊕ ...⊕Fiq (the ring sum of
fundamental cycles corresponding to its chords). Fi1 ⊕ ... ⊕ Fiq , by Theorem 1, is a cycle
or a disjoint union of cycles and so (Fi1 ⊕ ...⊕Fiq)⊕Ci is also a cycle or a disjoint union of
cycles, and both of them contain only the chords ei1 , ..., eiq , therefore Ci = Fi1 ⊕ ...⊕Fiq ,
otherwise we would have a cycle without any chords which is another contradiction. So
F1 ⊕ ⊕ Fs is the disjoint sum C1 ⊕ ... ⊕ Cℓ in which each Ci can be written as a sum
of q fundamental cycles, Ci = Fi1 ⊕ ... ⊕ Fiq where q < s and by induction each Ci has
positive sign.

Corollary 2 If there exists a spanning tree such that every cycle in the fundamental basis it
induces has positive sign, then the system is monotone.

Proof. From the previous Theorem, a fundamental basis of cycles having positive signs implies
that every cycle (and every disjoint union of cycles) has positive sign.

Theorem 3 essentially affirms that the cycle subspace generated by positive fundamental
cycles is invariant with respect to the positivity property, i.e., each cycle (also those obtained as
disjoint unions of other cycles) in this subspace must have a positive sign. In general, nothing
can be said about the sign of the ring sum of fundamental cycles if some of them have negative
sign. In fact, as long as this ring sum yields a single cycle, then arguments such as Lemma 4
still hold, but they are in general not applicable for a disjoint union of cycles (in a disjoint union
of cycles there could be two disjoint cycles each having a negative sign, but still the cycle vector
would be positive).

Given G with µ fundamental cycles of which ν have positive sign and µ − ν have negative
signs, one way to render the entire system monotone is to change the sign of the last µ − ν
fundamental cycles. This can be achieved simply by changing sign on the µ − ν chords that
identify the fundamental cycles having negative sign.

7

Corollary 3 Any signed graph G having a µ-dimensional fundamental cycle basis characterized
by ν cycles having positive sign and µ − ν having negative sign, can be rendered consistent by
exchanging the signs of the µ−ν chords corresponding to the fundamental cycles having negative
sign.

Of course, the worst case is when all fundamental cycles are negative, i.e., any G can be
rendered consistent with at most µ sign changes. From the theory of signed graphs, see [18], we
also have another worst-case upper bound on the consistency deficit, η = (m −√

m)/2. Hence
we have the following Proposition.

Proposition 1 Any signed graph G can be rendered consistent with at most min(µ, η) sign
changes in its edges.

The two values for the upper bound are unrelated: for very sparse networks (with average
connectivity of a node < 2) then µ < η, viceversa for more dense networks. While the value
of µ is always attainable in a network, it is not clear from the literature in which cases η is
achievable as a worst-case upper bound.

In general the sign associated with a basis of fundamental cycles is not invariant to changes
of basis (i.e. of spanning tree). Therefore if we can find a fundamental cycle basis with fewer
negative cycles, we have to do fewer changes of sign in order to obtain a monotone system. The
following Proposition is the starting point of a series of algorithms aiming at “simplifying” the
graph by changing its signs in a suitable equivalence class in which the monotonicity properties
and the number of inconsistencies are preserved.

Proposition 2 Exchanging the sign of the edges through a cut set preserves the sign of each
cycle of a given graph.

Proof. From Theorem 2, every cycle of G intersects a cut set in an even number of edges and
hence a sign change through an entire cut set does not alter the sign of a cycle.

In the literature about signed graphs, operations of sign change through a cut set are called
“switching equivalences” [22], while in the statistical physics literature they are called “gauge
transformations” [21].

Proposition 2 admits a simple linear-algebraic interpretation. It is known ([17] Lemma 2.1)
that a symmetric matrix J is monotone with respect to an order ≤σ if and only if PσJPσ

with Pσ = diag(σ) has all nonnegative off-diagonal elements, see (2), where the signature
σ of the order corresponds to a spin assignment to the nodes of σ. A cut set s induces a
bipartite partition of the vertices V of G into the subsets V1 and V2. Switching sign through
the cut set s corresponds to changing sign in the spin assignment of one (and only one) of the
subsets of vertices, say V1. For example, for a graph partitioning V into V1 = {v1, . . . , vk}
and V2 = {vk+1, . . . , vn}, σ = {−1, . . . ,−1

︸ ︷︷ ︸

k times

, 1, . . . , 1}. After the switching through s (i.e. the

multiplication PσJPσ), any edge (vi, vj) such that i, j 6 k or i, j > k maintains the same sign,
while (vi, vj) such that i 6 k and j > k switches sign. Denote by G(σ) the signed graph G with
spin assignment σ (G without an explicit σ obviously corresponds to G({1, . . . , 1}), i.e. the “all
spins up” assignment). For the cut set s, let d+

s , d−s be, respectively, the number of + and −
signs through s. Likewise, d+

G(σ) and d−
G(σ) are the total number of + and − signs on the edges

of G(σ). If we select a cut set s such that d+
s < d−s , then, from Proposition 2, switching sign

through s results in a new signed graph with the same monotonicity properties as the original
one, but with a lower number of − signs overall. If we can find a spin assignment σ such that
d−

G(σ) is a global minimum, then the residual − signs of G(σ) will all be unremovable violations
of consistency. Denoting S the set of all cut sets of G, we have in fact the following.

8

Proposition 3 Under sign changes through cut sets, d−
G(σ) is minimal with respect to all σ if

and only if d+
s > d−s ∀ s ∈ S.

Proof. By contradiction, assume that in correspondence of the minimum number of − signs
d−

G(σ) there exists s̄ ∈ S such that d+
s̄ < d−s̄ . Changing sign through s̄ the number of − signs on

G(σ) decreases and hence it cannot be minimal. For the other direction the claim follows from
the definition of minimal (“minimal under sign changes through cut sets”). In fact, assuming
that the number of − sign is not minimal means that there must exist one or more cut sets that
allow to decrease that total number. But this is impossible if d+

s > d−s ∀ s ∈ S.

Denote δ = minσ d−
G(σ) the consistency deficit, i.e., the global minimum number of sign

inconsistencies of the graph G (also called “distance to monotonicity” or “frustration index” in
the context of spin systems).

Needless to say, testing sign changes through all s ∈ S is computationally hard, hence it is
not a viable method to compute δ. In the following Section we provide a few heuristic algorithms
to do this calculation in a reasonable time.

4 Computing a minimal number of sign inconsistencies: algo-

rithms

Computing how close a given signed network is to a monotone network is an NP-hard problem,
equivalent to the well-known MAX-CUT problem [4] or to the problem of finding the ground
state of a frustrated spin system in statistical physics [20]. Like in [4] and [8], we formulate it as
a problem of identifying the minimal number of edges whose removal leave the graph consistent.
In the following, we briefly review the approach of [4] and [8] and then formulate a series of
algorithms for the computation of an upper and lower bound of δ.

In [4] the authors use a polynomial-time approximation algorithm derived from the work
of Goemans and Williamson [6]; this algorithm, based on semi-definite programming, is char-
acterized by a performance guarantee α = 0.87856, which means that the solutions delivered
by the program are always at least α times the optimal value (i.e. the maximum possible size
of the balanced edge subset). The authors were in this way able to obtain upper and lower
bounds for δ. In particular, in a graph G = (V, E), let B be the subset of edges of the balanced
subgraph of G found by the algorithm. Then the optimal δ is limited to the interval [δ−, δ+],
where δ− = |E| − |B|/α and δ+ = |E| − |B|. Unfortunately, the computational speed of the
implementation provided by [4] is quite low, hence the software is unable to calculate a truly
large number of randomizations within a reasonable time. Furthermore, the performance guar-
antee α results in a lower bound which is not sufficiently tight, and worsens for near-monotone
networks (when the upper bound gets closer to the “true” one, i.e., |B| is large).

In [8], the problem is tackled from a different perspective. Their “balanced subgraph”
approach uses a fixed parameter system and a data reduction scheme. This last works by
substituting portions of the starting graph G with simpler parts called gadgets, exhibiting the
same behavior of the original counterpart (in terms of δ). In this way, their algorithm is claimed
to be capable of drastically reducing the size of the starting graph, eventually obtaining a much
simpler one which is then solved by an iterative compression procedure. The final result of
[8] is an upper bound for δ that is slightly better than the one of [4] and that is calculated
in a computational time which depends on both the size and the topology of the network.
With the software implementation provided in [8] we were unable to obtain an estimate of δ in
large networks, see Section 5. In addition, for other networks our algorithms (described below)

9

improve considerably the bounds found in [8], which, of course, questions the exactness claimed
in the paper [8], or at least the correctness of the implementation provided with it.

4.1 Algorithms for the upper bound

The starting point of our approach is the idea, enunciated in Proposition 2, that switching sign
to the edges of a cut set leaves δ invariant, and hence that such switching equivalences can
be used to look for a representative G(σ) in the equivalence class of δ which is easier to treat,
namely a G(σ) having a minimal number of − signs. The following (heuristic) algorithm acts on
cut sets partitioning the graph into subgraphs V1 = {vi} and V2 = {v1, . . . , vi−1, vi+1, . . . , vn}.
For a vertex vi ∈ V , let d+(vi) be the number of positive edges adjacent to vi and d−(vi) the
number of negative edges adjacent to vi.

Algorithm 1 Consider a vertex vi, i = 1, . . . , n, in a signed graph G.

• If d−(vi) > d+(vi), change sign to all the edges adjacent to vi, so now d+(vi) > d−(vi).

• Repeat for all i until d−(vi) ≤ d+(vi), ∀ i = 1, . . . , n (or until there is no improvement in
the total number of positive edges in G(σ)).

The set of all edges adjacent to a given vertex vi is a cut set partitioning G into the
isolated vertex vi and n − 1 other vertices, hence Proposition 2 applies. Consequently, all
switches of signs in cut sets inducing graph-partitioning of the type {1 vertex}/{n− 1 vertices}
do not alter the sign of any cycle of the graph. Of course any {k vertices}/{n − k vertices}
cut set could be used instead. In particular, if the signature σi corresponds to the partition
{vi}/{v1, . . . , vi−1, vi+1, . . . , vn}, the iterative procedure of Algorithm 1 corresponds to a matrix
multiplication of Pσi

: Pσ = Pσi1
Pσi2

. . . Pσik
where the order is irrelevant as Pσi

commutes with
Pσj

. Hence the new signed graph G(σ) of adjacency matrix PσJPσ has the same consistency
properties as the original G of adjacency matrix J , but for it the violations of consistency are
easier to identify. In fact, its edges with a minus sign are typically much less than in the origi-
nal graph. Therefore constructing a suitable fundamental cycle basis with minimal number of
negative cycles is an easier task. For example, whenever possible we can choose a spanning tree
which does not pass through edges with negative sign. In the “best” cases, edges with negative
sign will be chords and hence associated with only one of the fundamental cycles. Provided we
associate high weights to the edges having a negative sign after the application of Algorithm 1,
any algorithm for a minimal spanning tree [5] will select a spanning tree with minimal number
of minus signs. From Corollary 2, the cycle subspace associated with the set of fundamental
cycles having positive sign corresponds to the monotone subsystem of the original system.

This greedy algorithm, inspired from the idea of “gauge transformation” of Ising spin systems
[21] and from the literature on “switching equivalence” of signed graphs [23], shows an extremely
fast computational speed, and the solutions delivered are comparable to those obtained by [8].

In order to improve slightly on the termination point of Algorithm 1 (in particular in the
case d+(vi) = d−(vi) for some i), the following can be used.

Algorithm 2 Consider a vertex vi, i = 1, . . . , n, in a graph G = (V, E). If d−(vi) ≤ d+(vi),
∀ i = 1, . . . , n then:

• Create the set W = {w ∈ V | d−(w) = d+(w)}.

• Consider the subset W ′ ⊂ W such that ∀wi, wj ∈ W ′ ⇒ (wi, wj) /∈ E (i.e., W ′ contains
all the vertices that have d+ = d− and that are not directly linked by an edge).

10

• Find the vertex v ∈ V \W ′ which maximizes the function f(v) = 2∗ |W ′
v|+d−(v)−d+(v),

where W ′
v = {w′ ∈ W ′|(v, w′) ∈ E and (v, w′) is a positive edge}.

• If the maximized f(v) is > 0, then switch all the vertices w′ ∈ W ′
v; now, since f(v) is

positive it must be d−(v) > d+(v) and the graph G can again be processed by Algorithm
1.

In other terms, such an algorithm is able to manipulate a graph G(σ1) in which there are
no vertices suitable for a convenient sign inversion in order to obtain a graph G(σ2) in which
there is at least one vertex suitable for sign inversion. It does so by excluding from the count
of d+ and d− of a vertex the edges having the other vertex in the set W ′ of vertices whose edge
signs can be freely switched without increasing the total number of negative edges.

The combined use of Algorithms 1-2, though fast, yield a solution which is only locally
optimal: this is a well-recognized limit of greedy-like algorithms [2], especially in classes of global
optimization problems characterized by a large number of different local minima like the max-
cut or balanced-subgraph problems, to which finding δ is equivalent. If a random perturbation
(i.e a sign switch through a random cut set) is applied to G(σ), its signature σ is moved away
from the local minimum, and re-running Algorithms 1-2 typically results in a new minimum,
with different d−

G(σ). The following rule of thumb concerns the size of the randomization step:
the larger the applied cut set is, the greater is the distance between the signatures of the local
minimum and the new initial condition. Thus, a possible algorithm iterating Algorithms 1-2
operates as follows:

Algorithm 3 Consider a graph G = (V, E) with signature σ.

• Process G with Algorithms 1-2 and save the resulting final signature.

• Apply to G a random sign change on a randomly chosen small cut set, then process again
G with Algorithms 1-2.

• Repeat last step for τ times: if a better minimum cannot be found within the τ iterations,
increase the size of random cut set. When a better minimum is found, restore the starting
size of random cut set.

Starting from the current value of the minimum, Algorithm 3 gradually moves away from
it, increasing the size of the cut set through which switching the signs. With such a method,
the space of the solutions is gradually explored while seeking for a global minimum. As the key
concept inspiring Algorithm 3 is a stochastic-like exploration of the space of the solutions, it
belongs to the category of randomized global optimization heuristic algorithms.

4.2 An algorithm for the lower bound

After the application of Algorithm 3 to G for enough iterations, the spin assignment σ of G
will have a reduced amount of negative edges, although it will be in general d−

G(σ) > δ. It is
unlikely for biological regulatory networks to be exactly monotone, if not because they contain
particular negative subnetworks (like the incoherent feedforward loops of [11]) which cannot be
eliminated, implying that δ > 0.

Consider G(σ), with the minimal number of − signs obtained after the application of Algo-
rithm 1-3. In order to bound δ from below, the idea is to iteratively assign to each remaining
negative edge a cycle made only of positive edges so as to obtain a negative cycle edge-disjoint
from the previously assigned negative cycles. As long as we can associate to each negative edge
one such cycle, and all these cycles have no edge in common, then we are guaranteed that no
cut set can improve d−

G(σ).

11

Proposition 4 In a collection of edge-disjoint cycles presenting each one and only one negative
edge, no cycle can be rendered positive by sign changes through any cut set.

Proof. For a single cycle, the Proposition follows directly from Theorem 2. As long as the
cycles are edge-disjoint, also its generalization to a collection of cycles is straightforward.

The algorithm (also heuristic) for the lower bound aims at assigning as many such edge-
disjoint negative cycles as possible to the negative edges of G(σ).

Algorithm 4 Consider a graph G = (V, E) and denote E− the subset of E containing only
negative edges.

• Create the subgraph G′ ⊂ G such that G′ = (V, E \ E−).

• Select an edge (v, w) ∈ E− and find the shortest possible path in G′ connecting the vertices
v, w.

• Remove from the graph G′ all the edges used in the path.

• Repeat until all the |E−| negative edges are connected with a path in G′. If, for some
i = 1, . . . , |E−|, there does not exist a path in G′ connecting (vi, wi), start removing the
i − 1 previous assigned paths in G′, until (vi, wi) can be connected.

• Stop if a program loop is detected.

In the literature, the problems of constructing edge-disjoint cycles are called cycle packing
problems, and are known to be NP-hard [3]. Of course, the success rate of Algorithm 4 is
greatly improved by the pre-application of Algorithms 1-3 which (typically) drastically reduce
the number of residual negative signs in G. Algorithm 4 outperforms simpler methods such as
the recursive deletion of the shortest negative cycles (in the original graph), see Supplementary
Table S1.

The combined application of Algorithms 1-3 and Algorithm 4 usually leaves a gap between
lower and upper bound for δ: δlow 6 δ 6 δup. However, as we will see in the next Section, this
gap is much tighter than the one proposed in [4]. At the same time, the overall computational
time is greatly reduced, enabling us to treat also networks which are considerably larger than
those discussed in [4, 8].

5 Examples

The 8-node network shown in Fig. 1 is useful in order to explain the methodology introduced
in the paper. By simply inspecting the graph of Fig. 1 (a), it is not easy to draw a conclusion
on how close to monotone the network is. Neither the number of − signs on the edges, nor
the number of fundamental cycles having negative sign in a randomly chosen spanning tree
is indicative of the minimal number of signs required to achieve monotonicity. For example,
with the choice of spanning tree of Fig. 1 (a), 4 out of 5 fundamental cycles of the basis are
negative. However, when we apply the procedure described in Algorithm 1, we are left with a
single negative fundamental cycle. As only one edge maintains the negative sign, finding the
single inconsistency is obviously straightforward.

Four large scale biological networks were tested with Algorithms 1-4 and the results were
compared to those of [4] and [8]. All the networks have been previously rendered symmetric
by removing when needed symmetric-incompatible or sign-ambiguous edges pairs, as done in
previous studies, see Table 1 for details.

12

1

2

3

56

7
8

4

+
−

+

+

+

+

−
−

−

−

−

−

(a) Original graph G.

1

2

3

56

7
8

4

+

_

+

+

+

+ +

+

++
+

+

(b) The graph G̃, after the application of Algo-
rithm 1.

Figure 1: Example of application of Algorithm 1. The network represented has 8 nodes and 12
edges with signs given in (a). Choosing a spanning tree like in (a) leads to a fundamental cycle
basis in which 4 out of 5 cycles have negative sign. Applying a sign change along the 4 cut sets
shown as dotted segments in (a) (i.e., σ = {1, 1,−1, 1,−1,−1,−1, 1}) yields a graph G(σ) with
only a single − sign, see (b). Hence only one element of the basis needs to have negative sign
in the “optimal” choice of spanning tree. In this case the network has distance “1 edge” from
monotonicity.

• EGFR Epidermal growth factor receptor pathway is a network consisting of 330 nodes
and 852 edges. It was created by [13].

• Macrophage network is the molecular interaction map of a macrophage obtained by [12].
It has of 697 nodes and 1582 edges.

• Yeast network: gene regulatory network of S.cerevisiae originally developed in [11]. It
contains 690 nodes and 1082 edges (representing transcription factor - binding site inter-
actions).

• E.coli network is the gene regulatory network of the E.coli. Our version, downloaded from
RegulonDB database (http://regulondb.ccg.unam.mx), version 6.3, for E.coli [15] is an
updated and expanded version of the one originally developed in [11, 16] and used in [10].
It has 1475 nodes and 3320 edges. The ∼ 200 arcs labeled with both signs (dual actions)
are disregarded.

Table 1: Networks used in this study and their original signed edges

n m incompat./symm. edges pairs pos./neg. edges
EGFR 330 852 4/65 515/264

macrophage 697 1582 1/155 947/478
yeast 690 1082 1/0 860/220
E.coli 1476 3228 8/10 1879/1336

The first three of these networks are considered also in [8] (the first is also in [4] and the
third also in [10]). As for the E.coli transcriptional network, our version is almost double in size
with respect to the other three (and with respect also to the version considered in [10]).

13

As a way of understanding how Algorithm 1-4 work, in Fig. 2 the local minima for δup on
104 iterations are shown for the EGFR and E.coli networks. Upon reaching a local minimum
of Algorithm 1-2, Algorithm 3 applies a random sign change on a randomly chosen cut set.
The size of the cut set is progressively increased as long as the δup reached by Algorithm 1-2
remains worse than the best value of δup achieved so far. Fig. 2 shows that when the size of the
cut set gets large, the local minimum achieved suddenly drops. All the times this happens, the
new value of δup is the same in each network (in the Figure: 193 for the EGFR and 371 for the
E.coli), suggesting that the local optimum might be a global optimum.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

180

200

220

240

260

280

iterations

m
in

 (
δ up

)

EGFR

0 1 2 3 4 5 6 7 8 9 10

x 10
4

350

400

450

500

550

600

650

iterations

m
in

 (
δ up

)

E.coli

Figure 2: Upper bound δup achieved in 104 iterations of Algorithms 1-3 on the EGFR (top)
and on the E.coli networks (bottom). Whenever a local minimum of Algorithms 1-2 is reached,
a random sign switch on a randomly chosen cut set is applied. The size of this cut set is
progressively increased as long as the new local minimum remains worse than the best one
achieved so far. When the local minimum is improved, the size of the cut set is reset in order
to look for improvements in a neighborhood. In both plots the same local minimum is always
achieved (in E.coli after a transient) hence suggesting that the δup achieved might be the globally
optimal δ.

Looking more in detail at the most complex of our networks (E.coli), its graph is composed of
a large connected component (of 1376 genes) and of other 22 small connected components which
have only (few) positive cycles and need no further analysis. The large connected component
has 3150 edges (1848 + and 1362 −) and many millions of cycles. A fundamental cycle basis has
1775 cycles. Computing a minimal spanning tree with a basic Prim algorithm [14], we obtain
that 970 cycles have positive sign and 805 have negative sign. Already with the application
of a single run of Algorithm 1, we are left with 1317 cycles having positive sign and only
458 having negative sign. This is a local minimum in a landscape which is known to be very
rough. The entire landscape can be explored changing randomly the initial σ in PσJPσ and
applying Algorithms 1-2 to the resulting signed graph (equivalent to G in terms of distance to
monotonicity). The upper bound found for the distance to monotonicity in the E.coli network
in correspondence of 4.7 · 106 iterations is 371 (corresponding to 371 negative edges left in the
graph). As a matter of fact, in the 4 · 104 times the algorithm converged to 371, the bulk of
the edges have a concordant sign, see Fig. 3. In particular, a spanning tree completely formed
by positive edges always exists, meaning that the 371 negative signs can always be relegated

14

to chords, whose removal leave the system monotone and the largest connected component still
connected. Furthermore, on the subgraph with inconsistent edges removed, we can observe that
the vast majority (1343 out of 1404) of the positive fundamental cycles are also edge connected
i.e., they share pairwise at least an edge. Therefore, from Theorem 3, the network has a very
large cycle subspace in which all the cycles formed by ring sums of the basis elements are
guaranteed to be positive, meaning that the subspace is monotone. Hence we can conclude that
the transcriptional network of E.coli behaves de facto as a monotone system.

0 10 20 30 40 50 60 70 80 90 100 110
0

20

40

60

80

100

 Frequency of a − sign on an edge (%)

 c
ou

nt

EGFR

0 10 20 30 40 50 60 70 80 90 100 110
0

50

100

150

200

250

300

 Frequency of a − sign on an edge (%)

 c
ou

nt

E.coli

Figure 3: Frequency of assignment of the residual negative signs to the edges in the signed graph
G(σ) having a minimal number of − signs for the EGFR (top) and E.coli network (bottom).
For the EGFR network, only 85 of the 193 edges are unanimously assigned to the same edges
(100% means unanimous assignment to an edge of a − sign in all trials) while the other 108
(56%) are assigned with various probabilities to 377 edges. For E.coli, (in 4 ·104 successful trials
in 4.7 · 106 attempts), most (258 out of 371) negative signs are always assigned to the same
edges, as can be seen by the higher peak on the left of the histogram. Only 30% of the 371
negative signs are located on different edges in our trials. However, these 113 negative edges
are distributed only on a total of 231 edges.

Even a large network such as E.coli is treated efficiently by our algorithms in a fairly limited
amount of time (a few minutes on an ordinary PC for ∼ 106 iterations of Algorithms 1-3).
Analogous performances are obtained with the other networks under study: the algorithm is
always extremely fast and efficient, regardless of the size and the topology of the networks. In
each of these networks the best estimate for δup is reached in almost every cycle of iterations,
thus indicating a high reliability of the algorithms.

In the second step of the analysis, the networks with reduced negative edges are tested
with Algorithm 4 for the lower bound δlow. The program receives as input the list of negative
edges remaining after the simplification, and tries to verify how many of them can be labeled
as unremovable by assigning to each of them a disjoint negative cycle (in which all other edges
are positive). For the EGFR network 186 out of 193 edges can be confirmed as unremovable,
meaning that for the true δ we have 186 ≤ δ ≤ 193. For the macrophage network 302 out of 332
edges are confirmed as unremovable, i.e., 302 ≤ δ ≤ 332. For the remaining networks the results
are notably better: 365 out of 371 edges can be confirmed for the E.coli network, while all the
41 edges are confirmed for the yeast regulatory network, meaning that in this case 41 is the

15

true value of the consistency deficit. The results obtained on the four networks are summarized

Table 2: Estimation of the consistency deficit δ from the literature and from our Algorithms.
The ”*” correspond to a case in which the algorithm of [8] did not converge.

Ref. [4] Ref. [8] Algorithm 1-4
EGFR 124 6 δ 6 219 δ 6 210 186 6 δ 6 193

macrophage 204 6 δ 6 383 δ 6 374 302 6 δ 6 332
yeast 0 6 δ 6 43 δ 6 41 41 6 δ 6 41
E.coli 0 6 δ 6 385 * 365 6 δ 6 371

and compared with the literature in Table 2. In all cases, we are able to improve the existing
results for both lower and upper bounds. Explicit partial order vectors σ achieving the δup

values for the 4 networks are provided in the Supplementary Files. For the lower bounds, in
the Supplementary Table S1 the performances of Algorithm 4 are also compared with those of
a simpler algorithm based on progressively deleting the shortest negative cycles on the original
graph. In the last column of Table 4, the ratio between δup and δlow is shown. For all 4
networks it is higher than 90%, meaning that at least 90% of the remaining negative edges are
confirmed to belong to edge-distinct negative cycles, i.e., to give rise to non-eliminable negative
cycles. The gap between lower and upper bound appears to be a function of the density and of
the consistency of the network rather than of its size. The best results are obtained for those
networks in which the consistency deficit is lower, as reported in Table 4. This happens because
when δ is low, the ratio between positive/negative edges is high, i.e. there are more positive
edges available to pack the negative edges in disjoint cycles.

Table 3: The theoretical worst-case upper bound of Proposition 1 for the consistency deficit.
The tighter value is shown in boldface.

µ η
EGFR 452 376

macrophage 751 704

yeast 401 528
E.coli 1775 1581

In Table 3, we compare the two theoretical worst-case upper bounds for the consistency
deficit mentioned in Proposition 1. Only for the yeast transcriptional network µ < η, meaning
that the ratio m/n is particularly low for it. The bound min(µ, η) allows to evaluate the
consistency deficit of the network relative to its values of n and m and hence to its number of
“independent” cycles. From Table 4, we have that for the transcriptional networks of yeast and
E.coli only 10.22% and 23.47% of the possible independent cycles are negative, while for the
macrophage and EGFR networks the percentages grow to 47.16% and 51.13%. In other words,
for these two last networks the independent inconsistent cycles are roughly half the maximum
possible number, meaning that these networks cannot be classified as “near-monotone”. Notice
that when comparing δup with the total number of edges (first column of Table 4) the relative
percentages of negative cycles are much below 50% also for these last two networks. However,
this is not a significant statistics from the point of view of establishing monotonicity.

To further compare the differences between transcriptional and signaling networks, we per-
formed an analysis of the ratio δup/ min(µ, η) while varying the number of initial negative edges

16

Table 4: Statistics for δup: percentage of negative cycles with respect to m and with respect to
the upper bound of Table 3. Last column: number of negative cycles confirmed by the lower
bound of Algorithm 4.

δup/m (%) δup/min(µ, η) (%) δlow/δup (%)
EGFR 24.71 51.13 96.37

macrophage 22.94 47.16 90.96
yeast 3.76 10.22 100
E.coli 11.17 23.47 98.38

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

 % of negative edges

 δ
/m

in
(µ

 ,
η)

 (
%

)

EGFR
macrophage
yeast
E.coli

Figure 4: Value of the ratio δ/δmax with varying number of negative edges randomly assigned
to each of the 4 networks (mean over 1000 random instances for each of 20 different percentages
of negative edges between 5% and 100%). All plots begin growing linearly for low concentration
of negative signs, then reach a plateau. For the transcriptional networks (yeast and E.coli) the
graph is essentially symmetric around 50% of negative edges. For signaling networks, instead,
the second half of the plot is fairly different, with δ increasing. This difference is largely due to
the cycles of length 3 introduced in the construction of these networks. The 4 boxes represent
the true values of δ/δmax (see Table 4).

randomly assigned to each of the four networks. The results are shown in Fig. 4. Clearly, the
macrophage and the EGFR networks exhibit a substantially different behavior with respect to
the transcriptional ones in the right tail of the graphs, where the number of initial negative edges
approaches the 100%. This different behavior, with the (relative) consistency deficit growing
for the two signaling networks and decreasing for the transcriptional ones, is necessarily arising
from topological differences, since the negative edges are assigned randomly in the same manner
for all the networks. Investigating more in detail how the signaling networks are constructed
[4], we can observe that they are assembled largely from the interconnection of reactions of the
type:

X1 + . . . + Xp ⇋ Z1 + . . . + Zq (3)

where Xi and Zi are chemical species (nodes of our network). The simplest possible such
reaction is bimolecular

X1 + X2 ⇋ Z1 (4)

17

x

z

x

1

2

1

+

+

−

Figure 5: Signed graph for the ODE (5).

and its associated kinetics is

dx1

dt
= −f1(x1, x2) + f2(z1)

dx2

dt
= −f1(x1, x2) + f2(z1)

dz1

dt
= f1(x1, x2) − f2(z1)

(5)

for some functions f1(·), f2(·). According to the procedure described in Section 2.2, we derive
from these kinetics the following symmetric adjacency matrix:

J =

0 −1 1
−1 0 1
1 1 0

i.e., the graph of Fig. 5, which corresponds to a simple negative cycle, implying that the system
(5) is not monotone. For this particular case, the lack of order can be easily understood from
the dynamics of the system (4)-(5) with respect to an equilibrium state. When more product Z1

is added, both the reagents X1 and X2 increase, owing to the backward dissociation reaction.
However, when more of one of the reagents, e.g. X1, is added to the equilibrium state, the
concentration of the other reagent X2 decreases because the excess of X1 depletes it. Therefore,
an order relationship in the sense of Sec. 2.2 for the reagents X1 and X2 does not exist. Thus
in this simple prototype system the lack of monotonicity is due to the process of compound
formation/destruction from multiple reagents. Since the macrophage and the EGFR signaling
networks arise from the interconnection of reactions such as (3), this causes both of them to
have a higher consistency deficit δ with respect to the transcriptional networks. In addition,
referring to Fig. 4, it is easy to explain the behavior of signaling networks when the amount of
negative edges reaches the 100% in terms of abundance of odd length (usually length 3) cycles.

Since the original networks are essentially directed (especially the transcriptional networks),
only a small fraction of the undirected fundamental cycles just mentioned correspond to directed
cycles. However, the spin assignment interpretation is not restricted to complete directed cycles,
but includes also e.g. 2 converging directed half cycles (e.g. feedforward loops) and also more
complex concatenations of directed paths [20, 16, 1].

6 Conclusions and outlook

Testing how far or how close a biological network (represented as a signed graph) is from being
monotone is a NP-hard problem, equivalent to well-known problems such as the MAX-CUT.

18

For it, in this paper, we proposed efficient heuristic algorithms, able to treat also large networks
in a limited computational time. The output of the algorithms is an interval inside which the
optimal value (i.e., the consistency deficit) must lie. For the four biological networks we analyze
in this paper, we obtain that the two gene regulatory networks are indeed near-monotone i.e.,
close to monotone, while the two signaling networks have a number of inconsistencies which is
roughly half the worst-case theoretical upper bound known for these networks. Our suggestion
is that the higher consistency deficit δ characterizing signaling networks is due to the dynamics
of compound formation/destruction inherent to this kind of networks. However, further work
is required to asses more properly the distance to monotonicity of biological networks. In fact,
our considerations are primarily based on a comparison with the worst-case upper bound, which
in principle may not be attainable for certain topologies. Validation on other networks is also
necessary before any claim can be reasonably established.

7 Acknowledgments

The work was sponsored in part by a grant from Illy Caffé, Trieste. We would like to thank E.
Sontag and A. Canton for discussions on the topic of the work.

References

[1] U. Alon. Network motifs: theory and experimental approaches. Nat Rev Genet, 8(6):450–461, 2007.

[2] A. Bang-Jensen, G.Gutin. When the greedy algorithm fails. Discrete optimization, 1:121–127, 2004.

[3] A. Caprara, A. Panconesi, and R. Rizzi. Packing cycles in undirected graphs. J. Algorithms,
48(1):239–256, 2003.

[4] B. DasGupta, G. A. Enciso, E. Sontag, and Y. Zhang. Algorithmic and complexity results for
decompositions of biological networks into monotone subsystems. Biosystems, 90(1):161–178, 2007.

[5] N. Deo. Graph theory with applications to engineering and computer science. Prentice-Hall, Engle-
wood Cliffs, N. J., 1974.

[6] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145, 1995.

[7] M. Hirsch and H. L. Smith. Monotone dynamical systems. In Handbook of differential equations,
ordinary differential equations. Elsevier, Amsterdam, 2005.

[8] F. Hüffner, N. Betzler, and R. Niedermeier. Separator-based data reduction for signed graph bal-
ancing. Journal of Combinatorial Optimization, page (to appear), 2009.

[9] G. Kirchhoff. Über die Auflösung der Gleichungen, auf welche man bei der untersuchung der linearen
Verteilung galvanischer ströme geführt wird. Ann. Phys. Chem., 72:497–508, 1847.

[10] A. Ma’ayan, R. Iyengar, and E. Sontag. Proximity of intracellular regulatory networks to monotone.
IET Systems Biology, 2:103–112, 2008.

[11] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs: simple
building blocks of complex networks. Science, 298(5594):824–827, 2002.

[12] K. Oda, T. Kimura, Y. Matsuoka, A. Funahashi, M. Muramatsu, and H. Kitano. Molecular inter-
action map of a macrophage. AfCS reports, 2(14), 2004.

[13] K. Oda, Y. Matsuoka, A. Funahashi, and H. Kitano. A comprehensive pathway map of epidermal
growth factor receptor signaling. Mol Syst Biol, 1:2005, 2005.

[14] R. Prim. Shortest connection networks and some generalizations. Bell System Technical Journal,
36:1389–1401, 1957.

19

[15] H. Salgado, S. Gama-Castro, M. Peralta-Gil, E. Diaz-Peredo, F. Sanchez-Solano, A. Santos-Zavaleta,
I. Martinez-Flores, V. Jimenez-Jacinto, C. Bonavides-Martinez, J. Segura-Salazar, A. Martinez-
Antonio, and J. Collado-Vides. RegulonDB (version 5.0): Escherichia coli K-12 transcriptional
regulatory network, operon organization, and growth conditions. Nucleic Acids Res., 34(Database
issue):D394–D397, 2006.

[16] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation
network of Escherichia coli. Nat. Genet., 31(1):64–68, 2002.

[17] H. L. Smith. Systems of ordinary differential equations which generate an order preserving flow. A
survey of results. SIAM Review, 30(1):87–113, 1988.

[18] P. Solé and T. Zaslavsky. A coding approach to signed graphs. SIAM J. Discrete Math., 7(4):544–
553, 1994.

[19] E. Sontag, A. Veliz-Cuba, R. Laubenbacher, and A. S. Jarrah. The effect of negative feedback loops
on the dynamics of boolean networks. Biophys J, 95(2):518–526, 2008.

[20] E. D. Sontag. Monotone and near-monotone biochemical networks. Systems and Synthetic Biology,
1:59–87, 2007.

[21] G. Toulouse. Theory of the frustration effect in spin glasses : I. Communications on Physics, 2:115,
1977.

[22] T. Zaslavsky. Signed graphs. Discrete Appl. Math., 4(1):47–74, 1982.

[23] T. Zaslavsky. Bibliography of signed and gain graphs. Electr. J. Combinatorics, DS8, 1998.

20

