ON SUDAKOV’S TYPE DECOMPOSITION OF TRANSFERENCE PLANS WITH

NORM COSTS

STEFANO BIANCHINI AND SARA DANERI

ABSTRACT. We consider the original strategy proposed by Sudakov for solving the Monge transportation
problem with norm cost | - |p=*

min { / IT(z) — z|prdu(z), T:R? - RY, v = T#,u},

with p, v probability measures in R and p absolutely continuous w.r.t. £¢. The key idea in this approach
is to decompose (via disintegration of measures) the Kantorovich optimal transportation problem into
a family of transportation problems in Zg x R?, where {Zq}qca C R? are disjoint regions such that
the construction of an optimal map Ta : Zq — R? is simpler than in the original problem, and then to
obtain T by piecing together the maps Tq. When the norm | - |p= is strictly convex [27], the sets Z, are
a family of 1-dimensional segments determined by the Kantorovich potential called optimal rays, while
the existence of the map Tq is straightforward provided one can show that the disintegration of £¢ (and
thus of p) on such segments is absolutely continuous w.r.t. the 1-dimensional Hausdorff measure [12].
When the norm |- |p+ is not strictly convex, the main problems in this kind of approach are two: first, to
identify a suitable family of regions {Zs}4e on which the transport problem decomposes into simpler
ones, and then to prove the existence of optimal maps.

In this paper we show how these difficulties can be overcome, and that the original idea of Sudakov
can be successfully implemented.

The results yield a complete characterization of the Kantorovich optimal transportation problem,
whose straightforward corollary is the solution of the Monge problem in each set Z, and then in R9.
The strategy is sufficiently powerful to be applied to other optimal transportation problems.

The analysis requires

(1) the study of the transportation problem on directed locally affine partitions {Z%, Cf}k,a of R,
i.e. sets Z(If C R? which are relatively open in their k-dimensional affine hull and on which the
transport occurs only along directions belonging to a cone Cé“;

(2) the proof of the absolute continuity w.r.t. the suitable k-dimensional Hausdorff measure of the
disintegration of £% on these directed locally affine partitions;

(3) the definition of cyclically connected sets w.r.t. a family of transportation plans with finite cone
costs;

(4) the proof of the existence of cyclically connected directed locally affine partitions for transport
problems with cost functions which are indicator functions of cones and no potentials can be
constructed.
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1. INTRODUCTION

Let p,v € P(R?) with < £¢ and consider the Monge optimal transportation problem

(1.1) min { / IT(z) — z|p-du(z), T:R? - RY, v = T#,u},
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where |-|p- is a convex norm in R%, namely a positively 1-homogeneous function whose unit ball {z € R? :
|z|p+ < 1} is a closed d-dimensional convex set D with 0 € int D. The p-measurable maps T : R — R?
satisfying Typ = v are called transport maps. Well known examples show that if p is not absolutely

continuous w.r.t. £%, there may be no optimal transport maps (see Theorem 8.3 of [4]).

Due to the nonlinearity of the constraint T4 u, the classical approach to solve ([1.1)) is first to consider

the relaxed problem of finding optimal transference plans 7 € TP . (u,v) defined by

IIp
(1.2) [ o= alo-data) =min{ [y = olp-dnty.2).x < ) .
where
(1.3) M, v) = {r € PR x RY) : (p1)m = 1, (po)m = v}
and p; : HX ; — X, is the projection on the i-coordinate in the product space HX]'.
J

J
Assuming that

(1.4) inf / ly — z|p* dm(x,y) < +o0,
m€Il(p,v) JRd xRd

by standard theorems in optimal transportation there always exists an optimal transference plan, without

being in the degenerate situation where every plan = € I(u,v) is optimal.
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Then, if one can show that there exists at least an optimal transport plan 7 which is concentrated on
a graph of a p-measurable map T, i.e. m:= (I X T)xpu, then T is an optimal transport map solving .

The first strategy to show the existence of such a transference plan was proposed by Sudakov in [27]

and consists in decomposing via disintegration of measures the optimal transportation problem into
a family of transportation problems on Z, x RY, where {Z,}qcar C R? are disjoint regions where the
construction of an optimal map T, : Z, — R? is simpler than in the original problem, and then to obtain
T by piecing together the maps Ty.
With additional regularity properties on the densities of u, v or on the norm, such as uniform convexity,
an approach partially equal to the one proposed by Sudakov was successfully followed in [I], [4], [10]
and [28]. The most general case where up to now this approach has been successfully implemented (see
[12]) is the case in which |- |p~ is strictly convex, namely when the set D is strictly convex. Other
approaches have also been used. In [20], the problem for strictly convex norms has been solved
using PDE methods under the assumption that the marginals u, v have Lipschitz continuous densities
w.r.t. £%. The problem was solved for crystalline norms in [3]. Under some additional assumptions,
an approach similar to [I2] has been implemented in [13].

In [I7, [A8], the authors solved the Monge problem first with strictly convex and then with general
convex norms using a different method, which does not pass through a geometric/measure theoretic
decomposition of the optimal transportation problem into simpler ones, but is based on the selection
among the optimal transference plans m € Hﬁ’; (1, v) of a transference plan 7 which is also minimizing
a secondary cost: more precisely, one selects the (unique) transference plan 7 such that

7 is a minimizer of inf { / |z — y|?dn(z,y): ™€ Hﬁ’; (u, V)}
and the main issue consists in proving that 7 is actually induced by a transport map T, which clearly
satisfies (1.1]).

In [II] a mixed approach is used: by taking the standard Euclidean norm as secondary cost and
using an approach similar to [12] and I'-convergence, the author proves the existence of an optimal map,
monotone along one dimensional segments.

However, the problem of whether Sudakov’s strategy could be successfully implemented also in the
case of general convex norms has remained open for a long time. The aim of this paper is to show how
this problem can be solved. In order to introduce the notation that we need to state our main results
and explain the new ideas and concepts in the case of general convex norms, we first resume briefly how
Sudakov’s strategy works for strictly convex norms.

The first step of Sudakov’s approach consists in finding a suitable partition in R on which the transport
occurs, namely s.t. the optimal plans move the initial mass inside the elements of the partition. By duality
(see e.g. [29]), there exists a function 1 : R? — R, called Kantorovich potential, which satisfies

(1.5) U(y) = (@) < ly—alp-, Va,yeR,

(1.6) P(y) —v(x) =y — x|p~, for ma.e. (z,y),V7e Hﬁ’;* (u,v).
Observe that, by , for all (x,y) as in and VO <s<t<1

(1.7) U(ze) = (2s) = |z — 25|, 2= (1—t)z +ty.

The open oriented segments Z} :=]xz, y[ C R? (where a € 2! is a continuous parameter, 1 referring to the
dimension of the elements) whose extreme points satisfy (1.6) and which are maximal w.r.t. set inclusion
are called optimal rays. By strict convexity, if (z,y) and (y, ), with x, z # y, satisty (L.6)), then

(1.8) y €]z, 2.
In particular, if (z,y) and (z/,y’) satisfy (1.6) but R (y — z) # R*(y' — 2’), then
(1.9) Jz,y[ N ]2’y [= 0.

Hence, the optimal rays {Z1},con form a Borel partition of R? into 1-dimensional open segments, up to

the set of their initial points UQUI(Z;) C R? and of their final points UQUE(Z;) C R?, defined for every
ac ac

ac A by

(1.10) Zy={(1-t)I(Z})+t&(Zy)},  E(Zy

a a

) —I(Z,) € Co,
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(A) The construction of optimal rays through (B) A set of optimal rays and
the potential ¢ and the epigraph of | - |p=. a simple cone vector field.

being C} the half-line in R? giving the direction on Z! along which the transport occurs, i.e.

U(y) =) =ly—=lp-, wyeZ, = y-zeCy
The partition into optimal rays with directions of transport {Z}, C1},cqu is the simplest example of what
we will call directed locally affine partition. Moreover, the set of initial/final points of the optimal rays

is L%negligible (and then also p-negligible). Indeed, if (z,y) satisfies (1.6) and 1 is differentiable at x
~notice that this happens £%a.e. (and then p-a.e.) since 1 is Lipschitz—, then

(1.11) yeat (A o) (Vi)

where || p~ is the subdifferential of the convex norm, and, by strict convexity of || p«, (9]|p+) "1 (V) (z))
is an half-line corresponding to a unique CL. We recall that the convex cones of the form (9| - |p~)~1(¢)
for some ¢ € D* are called exposed faces of |- |p+, while more generally the extremal faces of | -|p« are by
definition the projections on R? of the extremal faces of the convex cone epi| - |p~ C R4*1. In the strictly
convex case, both concepts coincide and are given by half-lines.

Assume w.l.o.g. that u L v ~hence 7{(z,y) : y # 2} = 1- and that, for the moment, also v < L.
Then, this first step yields that the optimal rays {Z!},con on which v is differentiable form a partition
in R? —up to the £%negligible set (thus also (i + v)-negligible) where 9 is not differentiable- s.t.

7r( U 7zl x Z;) =1, Vme H‘O_Pl’;* (,v).
acut

The second step of the strategy consists in decomposing the transport problem in the sets {Z! x
R%} 4con. More precisely, for any given cone C' C R?, let us denote by cc the cost function

co(z,y) = 1oy — z),

where 14 is the indicator function of the set A (see (2.6))). For notational convenience, if ¢ : R? x R? —
[0, 00] is a Borel cost function, we use the notation

G0 i= {r € M) [ cloy) daann) < oo

Then, by (1.11) and (L.9) it follows that if 7 = [ 7l dm(a), p = [ pldm(a) and v = [ v} dm(a) denote
the strongly consistent disintegrations (see Definition [2.3]) of 7 w.r.t. {Z} x R?},cq and of y and v w.r.t.
{Z1}aeaur, one has

(1.12) REIT () e = [aldm@. whe Nl (ko)

I p*
being chl (tq, vq) the plans of finite cci-cost between pq and vq.

In other words, the transport problem on R? reduces to a family of independent 1-dimensional transport
problems with linear cost and prescribed direction. If sl has no atoms, then the unique transference plan
concentrated on a monotone graph in Z! x Z} is actually concentrated on a map Ti. In this setting,
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monotone means monotone w.r.t. the order induced by Ci on Z!, and the statement is a well known
and simple result for 1-dimensional problems, which can be seen as a particular case of a more general
structure result for optimal transportation problems with quadratic cost (see for example [9]).

Then, the main problem in [I2] was to prove that the disintegration of £¢ (and thus of u) on the
optimal rays has non-atomic conditional measures. Indeed, for a general Borel partition into segments
this might not be true, as discovered in a counterexample to the original Sudakov’s proof by Alberti,
Kirchheim and Preiss (see personal communication in [3]). The main issue was then to prove that the
optimal rays satisfy an additional regularity property which guarantees that the conditional measures of
L4 are not atomic. In [1], [4], [I0] and [28], due to the additional regularity assumptions either on the
measures f, ¥ or on the norm, the unit vector field giving at each point of an optimal ray the direction
of transport is locally Lipschitz. Then, via changes of variables using the classical Coarea Formula one
can reduce to study the disintegration of the Lebesgue measure on families of parallel segments, namely
Fubini theorem, which gives the absolute continuity of the conditional measures w.r.t. the 1-dimensional
Hausdorff measure ! on the segments on which they are concentrated. The absolute continuity of the
conditional measures w.r.t. the 1-dimensional Hausdorff measure on the optimal rays —thus implying
the solvability of the Monge problem— for general strictly convex norms was proved in [I2]. Since in
the general case no Lipschitz regularity is available, the author used a technique first introduced for a
partition into segments arising from a different variational problem in [7]. Such a technique is based on
the validity for the family of segments (in this case, the optimal rays) of an approximation property via
sequences of cone vector fields, that we call cone approzimation property (with the same terminology
used in the first part of [19]).

We point out that, compared to the approach followed in [I7], [18], Sudakov’s approach for the Monge
problem gives and relies upon a deeper geometric characterization of the transport via optimal plans,
namely the existence of a family of lower dimensional regions (in the strictly convex case, 1-dimensional)
on which the transport occurs and on which the existence of optimal maps becomes easier to prove.

It remained unclear if the original strategy of Sudakov can be successful not only in the case of strictly
convex norms, thus giving a complete geometric characterization of the optimal transport plans via
decomposition into lower dimensional transportation problems.

The aim of this paper is to show how Sudakov’s approach can be carried on also in the general convex
case. In the next section we define new concepts, which in the strictly convex case (i.e. when the extremal
faces of |-|p~ are 1-dimensional) are trivially satisfied by the decomposition in optimal rays Z!, and state
our main results, giving an overall idea of the whole construction.

1.1. Sudakov’s strategy in the general convex case. Recall that, for all (z,y) as in (1.6, (1.7)
holds. In the strictly convex case, we have seen that (1.7) and (1.8) imply that whenever

(1.13) 3y, y" #Fx st P) =) =y —z[p- and Y(z) —P(y") = |z —y"|p~,

then z belongs to a segment Z! called optimal ray, which belongs to a partition on R? on which the
transport occurs along the direction C} = R¥(y' — ) = RT(x —y"). However, for general convex norms,
the optimal rays do not satisfy (1.9) and then do not form a partition in R%. Actually, Vo € R?, the sets

(1.14)  0(a) = {y : ¥(y) —d(x) = [y —2|p-}, 97¢(z) == {y" : d(z) —¥(y") = [z — y"|p- },

called respectively superdifferential and subdifferential of 1 at x, may be contained in one or even more
higher dimensional cones corresponding to extremal faces of || p+. Now, unlike in the strictly convex case,
an extremal face is not in general a 1-dimensional half line but a k-dimensional cone, with £k =1,...,d.
Hence Sudakov claimed that the regions on which the transport occurs are relatively open subsets of
affine planes whose dimension is equal to k. However, even when considering the set of points in the
super/subdifferential of ¢ at a certain point « which are contained in a single k-extremal cone of epi|-|p-,
it may not be a convex k-dimensional set or more generally a set with a well defined affine dimension
(see Figure [1]).

When we faced this problem for general convex norms, the first main issue was to find other conditions
which determine that a point x belongs to one of the desired k-dimensional regions, thus generalizing
the property that whenever y' € 97¢(z) \ {z}, v’ € 07 ¢(z) \ {z} then RT(y —z) = R*(z — y”) and =
belongs to the optimal ray containing the segment |y”, y'[.
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Otgraph ¢ (z)

Otgraph(z)

O~ graph (=)

FIGURE 1. In the left picture a possible superdifferential 9+t graph at a point z of
graph v is depicted in black and different blue colors. Notice that it is not convex, not
even inside extremal faces of the norm. We also underline in dark blue a set 0(z,w) for
some w € T graph)(z), in order to show the completeness property. In the right picture
we depict in red the super/subdifferential at a point z of the regular set (yellow region)
in graph . The cone z + epi| - | p~ is also represented.

The natural generalization of the partition into optimal rays for strictly convex norms is to look for
a directed locally affine partition {ZF Ck} k=1, of R (see Definition 7 namely a Borel partition of

acA
R into sets Z¥ which are locally affine and k-dimensional, i.e. relatively open in their affine hull whose

linear dimension is k, together with an extremal cone C¥ of | - |p- that will correspond to the union of
directions of the optimal rays starting from = € Z¥.
The first key idea is to observe that Kantorovich duality (1.5)-(1.6) can be rewritten as follows (see

Section B.1). Let o= (I x ¢)up, o = (Ix ¢)ur and 7 = ((I x 1) x (I x ¢))»w. One has

(1.15) s Hﬁ’;* (n,v) & 7€ Hchmm (f1, D)
(1.16) & ﬁ(8+graph¢) =1,

where
Otgraphvy := (graphw X graph w) N {cep”,‘D* < —|—oo}
(1.17) = graph) x graph N pﬂg(}(c?ﬂ/)).

is the superdifferential of the set graph C R?*1. In other words, tells us that studying the optimal
transportation problem between ; and v in R is equivalent to study the finite cost transportation problem
in R for a convex cone cost (precisely Cepi|.,.) between measures (i, 7) concentrated on a | - |p«-
Lipschitz graph (namely graph) or, by (L.16), to study transport plans which are concentrated on the
superdifferential of the graph of the | - | p«-Lipschitz function 1.

The advantage of this point of view is that the properties of the super/subdifferential of ¢) which permit
to generalize 7 and then to find a locally affine directed partition, can be more naturally expressed in
terms of geometric properties of the super/subdifferential of graph ¢ —where the subdifferential of graph ¢

is the set 9~ graph := (0T graph 1/1)71.

First we will find a directed locally affine partition {fo, C'f}:ml,..}.c,d in R4t for this transportation
acA

problem, whose direction cones C’ff are extremal faces of epi|-|p+ and on which the disintegration of the d-

dimensional Hausdorff measure H? on graph has conditional measures which are absolutely continuous

w.r.t. H¥LZ¥, and then we will find the desired locally affine partition {Z¥, C*}x=1... « simply projecting
ac

Ak
it on R?. Indeed, the extremal faces of |- |p~ are by definition the projections on R? of the extremal faces
of epi| - |p+ and the “lifting map” I x 1 is bi-Lipschitz, thus mapping negligible sets into negligible sets.
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The crucial properties of the super /subdifferential 9*graph 1 that we will use to find the partition are
the so-called transitivity property

(1.18) w' € OFgraph(w) = OFgraphe(w') C 0 graph¢(w)
and the completeness property of the | - |p~-Lipschitz graph graph ), that we define below. Let F' be an

extremal face of the convex cone epi| - |p+ and denote by int,o F its relative interior, namely its interior
w.r.t. its affine hull. Moreover, for any z,w € R¥*! let

(1.19) 0(z,w) := z +epi| - |p~ Nw —epi| - | p=.

The completeness property of graph is the following:

(1.20) w € dtgraphi(z), w—z€int,qF = 0(z,w)=z+FNw—F C 0 graphy(z),
(1.21) w € 0 graph¥(z), z—w €intyqF = O0O(w,2z)=w+ FNz—F CJ graphy(z),

where z + F Nw — F is convex and satisfies R* ((z + FNw —F) —z) =RT(w— (2 + FNw—F)) = F
(see Proposition [4.6)).

In the strictly convex case, the extremal faces F of epi| - |p+ are half-lines. Moreover, whenever
(resp. (1.21))) holds praF is the extremal face of | - |p+ giving the direction of an optimal ray starting
(resp. arriving) at @ = pgaz, and pra0(z,w) = [pgaz, Praw|.

In the general convex case, the completeness property @D— then implies that whenever the
directions of the optimal rays starting/arriving at a point z are contained in a certain face F' and there
exists a direction in int.qF', then they are a cone of directions coinciding with F. Moreover, by the
transitivity property , whenever the same thing happens also for two points each belonging to one
of the sets B(z,d) N (z £ int;q F'), then z has a locally affine neighborhood, of the same dimension as F
and contained in z + aff F', made of points for which the admissible directions of transport coincide with
the directions of F'. Roughly speaking, the relative interior of the extremal face F' plays the role of a
direction of an optimal ray and the set pra0(z,w) the role of the segment [z,y] inside such optimal ray
in the strictly convex case (see Figure [1)).

The suitable generalization of and its implications can then be found in the concept of what we
call regular transport set Rfy. The notation will be clear in Section E| when we study the more general
transport problem for cg-Lipschitz foliations, namely a family of graphs of | - | p(q)«-Lipschitz functions
depending on a continuous parameter a (Section [ and Proposition [£.11)). The study of cg-Lipschitz
foliations will be one of the main issues to complete the construction of a suitable directed locally affine
partition (Theorem [1.3]) on which to solve (1.1). The points in R, are the points z such that

(1) the set of directions
ace |
of the optimal rays starting in z is convex in S~ !, and the same for the set of directions

cw € 0~ graphi(z) \ {z}},

w

T2 e o graphp(z) \ {Z}}a

w — 2|

z—w
D hy(z) =4 2
w(2) { )
of the optimal rays arriving in z,
(2) the two sets D10y (z), D™ 0y(z) coincide,
(3) there are points w’, w’ such that
2 — w/ w// _

z
S intreﬂ)_ﬁw (Z), m S intrelD+9¢(Z)

|z — w'|
and Points (142]) hold for w’, w” too.
Then the sets Z¥, C* are now determined by
~ Zc}f = RO, NaffoT graph(z),
ezl — o
C3 =epi|-|p«N (aff8+graph ¥(z) — z)

Such a directed locally affine partition will be called differential partition. One can see that the sets Z§
are relatively open in their affine hull, and that Cf are extremal faces of epi| - |p~. Recall that the index
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k denotes the affine dimension of Z %k which coincides with the linear dimension of Ck, while a € 2A* is
an index of continuum cardinality.

The second step in the strategy is then to show that the transport problem ITf il
epil-| p

decomposed, via disintegration of measures, into a family of finite cost transport problems on {Z’“

R} oy, o with first marginals which are absolutely continuous w.r.t. the Hausdorff measure #* on
acA

the k-dimensional set fo on which they are concentrated. Since the definition of “good points”, i.e.
of the regular transport set ROy, is definitely more complicated than in the strictly convex case, it is
perfectly understandable that the proof of the absolute continuity w.r.t. to the Hausdorff measure on
the k-dimensional sets {Z¥}; o of the conditional probabilities of the disintegration of #¢ (and then of
fi) are considerably more intricate. The main reference for the approach used in this part is [14], where
the so-called cone approzimation property introduced in [7] (with the terminology used in [19]) was first
generalized to partitions into higher dimensional sets, showing the absolute continuity property for the
conditional probabilities of the disintegration of the surface measure on the graph of a convex function
w.r.t. the partition induced by the relative interior of the extremal faces. In particular, in Section [5] it
is shown that the differential partition satisfies both the forward and the backward cone approximation
property, namely the cone approximation property holds both for the optimal rays starting at a point z
and for the points arriving at z, thus giving that the conditional measures of H? are indeed equivalent
to the k-dimensional Hausdorff measure on the set on which they are concentrated.

As for the proof of the H%-negligibility of the set R4*! \ Rf,, since for general convex norms the
extremal faces may be more than the exposed ones, it is not possible to use the same reasoning as in the
strictly convex case. However, we will show that the set RZ*! \ ROy is made of initial/final points for two
other partitions (the super/subdifferential partitions introduced in , which satisfy the (initial/final)
forward/backward cone approximation property. Hence, the same disintegration technique used in [14]
permits to show that they are H%_graph 1)-negligible (see Theorem

Denoting with {Z¥ Ck} .oy i the projection of the differential partltlon {ZF, C’k}k:1 ..... « on R in

cak
Section [6] we deduce the followmg theorem. The statement includes also the points Wthh do not belong

to any optimal ray, and in that case the dimension k of the elements of the directed locally affine partition
they belong to, is k = 0, as well as C? = {0}. Since we will often write the graph of a directed locally
affine partition {Z¥, C*},. 4 as

(fi, ) can be

= {(k,u,z,C"f): ke{0,...,d}, aecAr, zer},

we will use also the notation

1 — if 3k .t A
(1.22) (z y)::{ cr(y—z) i ,ast.x € Z7,

+00 otherwise.

Notice that for costs c of the form (T.22)), one has clearly TI%%(y, v) = I1f (i, ), since the only values of
c are 0, oo.

Theorem 1.1. Let pu,v € P(RY) with p < L% and let | - |p+ be a conver norm in R%. Then there evists

a locally affine directed partition {Z% CkY,_ . in RY with the following properties:
acA

(1) for all a € A* the cone C¥ is a k-dimensional extremal face of |- |p-;
(2) L? (Rd U fo) =0;
k,a

(3) the disintegration of LT w.r.t. the partition {Z¥} q, LA pe= /v]: dn(k,a), satisfies
k,a a
o~ ’Hkl_Z;:;

(4) for all w € Hﬁ’t (u,v), the disintegration ™ = /Wf dm(k,a) w.r.t. the partition {ZF x R}y o

satisfies
ﬂ-lcf € H{:cc,k (ME, (pz)#ﬂ];),
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where p = /u’; dm(k,a) is the disintegration w.r.t. the partition {Z¥}1 , and moreover

(p2) w7k (Zf U (Rd\ U Zf,/)) =1.

(k",a")#(k,a)

If also v < L%, then for all w € Hﬁ)}i* (u,v)
(p2)#7a = vy

where v = /uf dm(k,a) is the disintegration w.r.t. the partition {Z¥} o, and the converse of Point
holds:

opt
|-l

el (Whok) — wel™ (uw).

A locally affine directed partition satisfying Point is called Lebesgue-regular (see Definition .
This concludes the first part of the paper.

A remark is in order here: in Point (), the conditional second marginals (ps)47¥ are independent on
the potential 1) but depend on the particular transference plan m which we are decomposing. This can be
seen with elementary examples (see Example in Section. From now on the analysis will be done
in a class of transference plans which have the same conditional second marginals: in fact, we will see
in a moment that the partition of Theorem needs to be refined and by inspection one sees that such
refinement changes when changing the conditional marginals. We will consider then nonempty subsets
of the optimal plans of the form

I, (1, {7a}) 1= {7 € Ty () + (P2)ma = 7.

that is equivalent to fix a transport plan of finite cp-cost @ and consider all transport plans 7 €

I, (1, {(P2) 4770 })-
In the strictly convex case, Theorem has been proven in [I2]. There the dimensions of the sets

of the locally affine partition is equal to one, and it is classical and fairly easy to see that the optimal
transportation problems

I (g va)s Ha(Z) =1,
where

ol (z,y) = ly—z|> ifzeZzl y—xeCl,
* 400 otherwise,

have a solution induced by a map T. : Z! — R?. More precisely, one shows that any ci)2—cyclically
monotone transference plan is induced by a unique transport map Ti. Since the dependence of the maps
T, on a is m-measurable, the map T(x) := > .y Ta(2)xz1 (x) is an optimal map for (L.I). Actually, T is
the unique optimal transport map relative to the cost

_ |2 if
(1.23) co(z,y) = ly —x* i CD(m,’ y) < +oo,
+o00 otherwise.

In the general convex case, the analogous way to solve (1.1)) would be to prove that the optimal
transportation problems on the sets of the partition of Theorem

" (neove), ma(Z) =1,

where

ckQ(;v,y) _ ly — x> ifzezk y—xeCk,
a’ 400 otherwise,

have a solution induced by a map TF : ZF — R? whose graph is the support of any ck ,-cyclically
monotone transference plan, and then to glue together the maps T%.
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This fact would be true, by classical results in optimal transportation, if there existed a pair of optimal
potentials ¢, ¥¥ for the cost ccr. Recall that, for a cost c : R?x R? — [0, 0], one calls optimal potentials
a pair of functions ¢, i s.t.

b, 9 : RT - [—00,+00), ¢ p-measurable and 1) v-measurable,

¢(x) +9(y) < clz,y), Ya,yeR?
o(z) +Y(y) = c(z,y), m-ae. for some 7 € II(u,v).

Recall also that, if I' ¢ R? x R is a carriage for m and (x¢,yo) € I, then

I

(1.24) ¢(x) := inf { Zc(xi+17yi) —c(i,yi) s TEN, (z4,y:) €T, w14 = x},
=0

(1.25) P(x) = c(z,y) — o()

yield a pair ¢, ¥ of optimal potentials provided ¢ is p-a.e. finite. When c is a convex norm, then ¢ = —¢
is a Kantorovich potential.

Indeed, by formula , if ﬂqb];, wlg optimal potentials w.r.t. ccr then there exist also ¢§’27 1/15’2
optimal potentials for c§,2 and it is then classical to show that any c’;’Q—cyclicaHy monotone transference
plan is unique and induced by an optimal map T¥.

However, as shown in [I1], in general the transport problem in chk (1k, {(p2)x7k}) on ZF with cost
cox does not have a potential #* (see the final example of [L1]), thus the directed locally affine partition
of Theorem [I.1] is not refined enough to give immediately the existence of transport maps in each of the
sets Z% x RZ. Another approach that has been used at this point to show the existence of an optimal
map assuming the existence of a directed locally affine partition is the one adopted in [23], which though
uses techniques similar to [I§], and then is not really simplifying the problem in the spirit of Sudakov’s
strategy.

What we show in the second part of the paper, more precisely in Section [7] is that the directed
locally affine partition of Theorem can be refined into another directed locally affine partition

{va,e, éh’z}l’.:o,..zd such that, given a carriage of any c’§72—cyclically monotone transference plan, a pair of
be®B

optimal potentials (;VS;’Z, 1%’[ can be constructed on each of its elements ZV;’[.

In order to explain what we mean by a “refinement” of the partition of Theorem[I.] referring to Section
for wider motivations and more precise statements, let us consider formula ([1.24). The sequence of
points

(l.anO)v (‘ThyO)v (l.layl)? (‘T27y1)7 LR (xiayi)a (xiJrlvyi)a (xi+17yi+1)a teey (.’E, yl)a (xlvyl) € Fv

is an azial path, and we say that the axial path is a (I', ¢)-azial path if c(z,y) < oo for all couples
(z,y) in the axial path: since we can assume that I' C {c < oo}, this condition is equivalent to
c(xiv1,¥i),c(x,yr) < oo. Tt is a well know fact that if p-a.a. points belong to an axial path start-
ing from and ending in (w9, o) (which will be called a (T, c)-cycle), then formula yields a p-a.e.
finite potential ¢. Its dual ¢ turns out then to be finite and independent on z for v-a.e. y € R%.

It becomes then natural to ask for a directed locally affine partition {Zc’f, C§ }.a that, in addition to
, , and of Theorem for all w € H{D (1, {Pq}), it satisfies the following property. For all
carriages I' C {cp < +oo} s.t. w(I') = 1 for some 7 € IIJ_(u, {7a}), the sets ZF are contained in a
(I'; cor )-cycle up to a pkE-negligible set (eventually depending on T'): the cost in each Z¥ is the cone cost
given by cer(z,y) = Lok (y — o).

This cyclical connectedness condition is called in this paper II_ (u, {7a})-cyclical connectedness (see
Definition [2.10)) and, as discussed above, when verified it guarantees the existence of optimal potentials.

The second main result of this paper claims the existence of such a partition. The fact that it is a
refinement of an already existing locally affine partition, such as the one of Theorem namely that
each of its sets is contained in some Z¥ and the corresponding cone of directions is an extremal face of
the cone C¥ is expressed by saying that it is a subpartition of {Zk CF} (see Definition . Recall
Definition [3.10] of Lebesgue-regular partition.
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Theorem 1.2. Let {ZF CF} =, 4 be a Lebesgue-regular directed locally affine partition in R and let

acak

p< LY vePRY) such that I (p,v) # 0.
Then, for all # € TII_(u,v) there exists a directed locally affine subpartition {Z;’Z,C;’é}z:o ..... a of
be

cD Y

such that

s

{Zk, Cé:}k::(),..l.c,d, up to a u-negligible set N
acA

{Z;’Z, C’;’Z}z,b is Lebesgue-reqular,
and if D;’[ = (pg)#fr;’e, where ﬁ';’z is the conditional probability on the partition {Z;’é x R}, then each
set Zb’e is I (w, {Db’f})—cyclically connected, for all £, b.

Applying Theorem to the directed locally affine partition given by Theorem one obtains
immediately the following result. As in the case of Theorem the second part of Point of the next
theorem is a consequence of the precise analysis of the regions where the mass transport occurs.

Theorem 1.3. Let pu,v € P(RY) with p < L% and let | - |p- be a convex norm in R:. Then, for all

S H’ﬁ’;* (1, v) there exists a locally affine directed partition {ZF,C*}ieo 4 in RY with the following
eAk
properties: ‘

(1) for all a € A* the cone CF is a k-dimensional extremal face of | - |p-;

@ (=Y 2E) =0

(3) the partfg;on is Lebesgue-regular;

(4) the disintegration 7t = /fr’; dm(k,a) w.r.t. the partition {ZF x R?},. . satisfies

tq € I (g, (p2) #75)

where p1 = /[/; dm(k,a) is the disintegration w.r.t. the partition {Z*}y o, and moreover

(p2)#7a (Zf U (Rd\ U Zf)) =1

(k',a")#(k,0)
(5) the partition {ZF}y.q is I (1, {(p2) 75 })-cyclically connected.

%)
Remark 1.4. We note that the elements of the locally affine partition {Zf, C‘f} K=l given by the above
acAR

theorem have maximal linear dimension
max {k: ZF # 0} < max{dimC : C extremal face of epi| - |p- }.

In particular, if D is strictly convex, the locally affine decomposition is made only of directed rays, and
one recovers the results of [12] for strictly convex norms.

In the case v < L%, the decomposition does not depends on the transference plan, as in the strictly
convex case. In particular, we can say that it is universal, i.e. it is independent on the particular

transference plan 7 € HT_T;* (u, ) used.

Theorem 1.5. Assume that v < L. Then the directed locally affine partition of Theorem satisfies
the following properties:

(1) for all a € AF the cone C’f is a k-dimensional extremal face of | - |p«;
@) n(BNU2E) =v(r\U ) =0
k,a k,a
(2) the partition is Lebesgue-regular;
(4°) for all # € I (u,v), the disintegration 7 = /ﬁ'f dm(k,a) w.r.t. the partition {ZF x R}y o

I'lp
satisfies

e € 1L, (jig, 7q),

a
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where p = /[ﬂaC dm(k,a), v = /Df dm(k,a) are the disintegration of p, v w.r.t. the partition

{ng}k,a;
(5°) {ZF}p.a is Hfﬁ (1, v)-cyclically connected.

In particular 7?<UZ§ X Zf) =1
k,a
The main step in the proof of Theorem is the following

Theorem 1.6. Let {ZF CF}i—o, 4 be a Lebesque-reqular directed locally affine partition in RY and let y,

acak

v be probability measures in P(R?) such that p < L and IT{_ (u,v) # 0. Then, for all fived % € II_ (1, v),
there exists a directed locally affine subpartition {Zf, C’é}i:(},,“e,d of {ZF, C{:}k:o,“i@,d, up to a p-negligible
beB acA
set Ny, such that o : ©
{Zg, Cg}e o s Lebesgue-regular,

and setting v, = (pa)x7t, where 7l is the conditional probability on the partition {Z{ x R}y, then the
sets

(1.26) {Zﬁ . Zy C ZL for someaeﬂe,ﬁzl,...,d}
Jorm a T (p, {&r})-cyclically connected partition.
Theorem [1.6| allows to construct a locally directed affine subpartition {Z¢,C¢}e=o...a to a directed
be

D234

locally affine partition {Z* C*} k=0, such that the sets which do not lower their affine dimensions (i.e.
acA

for which Z{ C Z¥ and ¢ = k) are II{_ (11, {#{})-cyclically connected.
Since the subpartition
{Zﬁ, C‘ﬁ} e=0,.. -1 such that if Z{ C Z¥ then ¢ < k (equivalently neglecting the sets of (L:26))
beDB
is a Lebesgue-regular directed locally affine partition, and as a subpartition of {Z¥, C*};. , the index ¢ is
decreasing of at least 1 in each ZC’f, by a finite iterative argument one immediately obtains Theorem

The proof of Theorem relies on nonstandard tools in measure theory —namely, the sufficient con-
dition for uniqueness/optimality of transference plans based on the existence of suitable Borel linear
preorders given in [6]- and on the existence of Lebesgue-regular directed locally affine partitions for one
parameter families of graphs of Lipschitz functions w.r.t. convex norms (called cg-Lipschitz foliations),
whose construction generalizes the one of the differential partition of Theorem [I.1

We give now a brief scheme of the main steps of the proof of Theorem[I.6] Then, we will go on stating
its consequences, ending with the solution of Monge’s problem in Theorem

First of all, one can reduce to study the finite cost transportation problem on directed locally affine
partitions with fixed dimension k£ and whose cones of directions are close to a given one, called k-directed
sheaf sets (see Section Definition . Moreover, by a change of variables which preserves the
characteristics of the optimal transportation problem I/ (u, {#¥}), one can assume that the sets Z* of
the sheaf set are contained in distinct parallel planes, thus studying the so called k-directed fibrations
with cones of directions C C A x C(k,R¥) (see Definition . C(a) is the cone of directions of the
region Z%.

To give an idea of how the subpartition is constructed, in this introduction we assume that A* = {a},
so that the finite cost transportation problem on such C-directed fibration is a finite transportation
problem for a single k-dimensional cone cost in R*. In the paper, the variable a € 2 plays the role
of a parameter and is kept in all the constructions and definitions in order to show that the sufficient
measurability conditions w.r.t. a, which are needed in order to define global objects, are satisfied.

By the discussion made before Theorem it is natural to fix a carriage I' C {CCI; < +oo} of some

7k e H{ck (uk, vE) and to see whether the partition of R* into (T, cor)-cycles satisfies our requirements.

It turns out that in general this is not true, the first main reason being that not all the other transport
plans are necessarily concentrated on its sets.

However —as proven for general cost functions c in [6] in order to give very general sufficient con-
ditions for uniqueness/optimality of transport plans— a partition on which all the transport plans = €
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k .k

II9P (pf vk are concentrated exists provided one can find a Borel linear preorder (i.e., a transitive

CC{:
relation such that every two points can be compared) which contains the set {chf < +oo} (i.e, it is
cor -compatible according to Definition ) and extends the linear preorder < (Toepr) whose equivalence
classes are the (I, ccr)-cycles (ie., x <S(Nyeor) Y if there is a (T, con )-axial path of finite cost connecting
y to x). )

In Section[7.1] Theorem[7.2] we show how to construct such a preorder. The preorder will be denoted in
the following by < yr, where W' is related to the countable procedure to construct the Borel preorder (see
Section . Its equivalence classes turn out to be either families of graphs of | - |p(q)«-Lipschitz functions
{hf(a)}ies —being epi] - ID(a)- = Ck— or k-dimensional equivalence classes. Such families of sets are
called cg-Lipschitz foliations and are studied in Section @ In particular, the finite cost transportation
problem w.r.t. ccr in R* reduces to a family of finite cost transportation problems w.r.t. ccr on the sets
of this C&(a)” Llpschltz foliation.

The equivalence classes {Zb}b which do not lower the affine dimension of the Z* are connected by
(T, ccg)—cycles, up to a p-negligible set, and then in principle they are candidate to be the k-dimensional
sets of Theorem However, they are not necessarily connected by (I”, con )-cycles for the other carriages
I’ of plans in Hcck (u’;, Véf) In fact, changing I', the Borel preorder < yr also varies. Hence we need

to use an abstract result on measure theory [6] (recalled here in Appendix , assuring that there is a
minimal Borel linear preorder among the ones of the type <pyr: for this one, the sets which do not
lower the dimension of the Z¥ and are of positive p¥-measure are Hf (,u]; ,v¥)-cyclically connected (see

Theorem [7.1). Notice that this Hf (ua, vk)-cyclically connectedness property can be indeed interpreted

as a mlmmahty or 1ndecomposablhty property of the new k-dimensional sets.

As for the finite cost transportation problem for the cost cor on the classes of the minimal equivalence
relation which are graphs of | - [p(q)«-Lipschitz functions {h¢(a)}¢cs, one uses the same tools as in the
proof of Theorem . to show the existence of a differential locally affine partition {Zh,Ch}kk p On
which the transportation problem decomposes (see Section [4 ' Indeed, the sets of such partition which
are contained in graphh(a) are constructed as the sets of the differential partition for the Kantorovich
potential ¥: the only difference now is that one has to take care of the measurability of these sets w.r.t.
the parameters a, t.

The only missing point in the proof that the union of the differential partition and of the k-dimensional
equivalence classes {Zg , C’g }op satisfies the conclusions of Theorem is then the Lebesgue-regularity.
Notice that now the directed locally affine partition is obtained applying the same reasoning as in Theorem
but for a family of norm-Lipschitz graphs depending on a continuous parameter. Hence one would
be tempted to deduce the Lebesgue-regularity property first disintegrating the Lebesgue measure £* on
such graphs and then using the cone approximation property (as for the Kantorovich potential) for each
conditional measure of £* on a single graph. However, as we will show in a counterexample (see Remark
, this is not possible because in general the conditional measures of £ on a family of Lipschitz graphs
might to be absolutely continuous w.r.t. the (k — 1)-dimensional Hausdorff measure on the graphs on
which they are concentrated.

In fact, the Lebesgue-regularity property for the sets {Zf, C’f }e.6 follows by the fact that the Lipschitz
graphs of {h¢(a)} are the equivalence classes of a ccr-compatible Borel linear preorder on which all the

transport plans in Hf (uu, vk) are concentrated. Indeed, by the uniqueness theorem stated in [6] one can

prove the cone approx1mat10n property for the subpartition. The procedure is similar to the procedure
followed in the case a single potential v is present: however, the convergence of the cone approximating
vector fields is now due to the uniqueness of a suitable transference plan (see Section .

As discussed before, Theorem [I.3gives as an application the possibility to construct optimal potentials
w.r.t. secondary cost functions such as cq on each set of the partition Zf In the case in which the
secondary cost function is obtained by minimizing the original transport problem w.r.t. another convex
norm | - |(ps)«, one obtains a refinement of the directed locally affine partition of Theorem with cones
of directions given by intersections of extremal faces of | - |(pr)- and | - |p-.
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More precisely, let | -|( D7y~ be a convex norm with unit ball D', and consider the secondary minimization
problem

(1.27) min { / ly — z|(pry dm(z,y) : ™ e Hﬁa i (u,y)}.

If 7 is a minimizer of the above problem, by the fact that 7 is also a minimizer of

—z|py z€ZF y—aelCk,
/CD,D’(xay) d7T(£L’7y), CD,D/(xvy) = |y ‘(D ) a.y °
400 otherwise,

and that each Zc}f is H(fjk (/ﬂg, ng)—cyclically connected, Proposition [2.11|yields that in each Zf there exists

a potential pair ¢¥, /¥ and since cp ps satisfies the triangle inequality we can take ¢ = —y*. By the
existence of such a potential, restricting then to a single set Z¥ one can prove as in the proof of Theorem
the existence of a directed locally affine partition {Z Cf f }e 0,,.‘,,[ In the resulting statement one

a,b>

has to replace the ambient space R? with Z§, the measure £¢ Wlth ’H Lzk the marginals y, v with u¥,
vk and the cost | - |p« with

ly —z|(py- y—az€Ck

1.28 R
( ) a D,D'-Zk xRd {+oo otherwise.

More precisely, we obtain the following theorem.

Theorem 1.7. Let u,v € P(R?) with p < L and let © be an optimal transport plan for the prob-
lem (L.27). Then there exists a locally affine directed partition {ZIM Ckf} i—o...aacak in R with the

a,b’
Lk, he%k ¢
following properties:

(1) for all k, a € A*, the cone Cv'f:g is an (-dimensional extremal face of the cost ck given by (1.28),
i.e. the intersection of a k-dimensional face of |- |p~ with an extremal face of | - |(py«;

d Skl \ _
(2) u(R v U Za,b) =
k,a,l,b
(8) the partition is Lebesgue-regular;

(4) the disintegration 7t = /ir’:’ﬁ dm(k,a,€,b) w.r.t. the partition {Z:f x R4y a0 satisfies

Apenl, (,z’:;ﬁ {(P2) 970 })s

where p = /uu p dm(k,a,0,b) is the disintegration w.r.t. the partition {Za h}k a,6,6, and more-

Skl ke Sk 0
(pg)#ﬂ'a b (Za)h U <Rd\ U Zu,7b,)> =1;

(k’,a,€’,b")#(k,a,L,b)

over

(5) the partition {Zf”f}ha,e’b is H{D (i, {(pg)#ﬁfjﬁ})-cyclically connected.

A completely similar extension can be given to Theorem
A particular case is when each extremal face of | - |(ps)- is contained in an extremal face of |- |p~: in
this case condition (1) becomes
(1°) for all k, a € A*, the cone Cv’f‘f is an (-dimensional extremal face of | - |(pr-

The only difference w.r.t. Theorem is that now 7 is a minimum for the secondary minimization
problem (1.27)), not a transference plan in Hﬁ’t - (1, v).

The case (1’) above happens if for example |- |(p/)- is strictly convex, so that the zZk o b are now directed
segments, i.e. £ = 1. By the standard analysis on transportation problems in 1-d, and the measurable
dependence on k, a, b, the existence of an optimal transport map T for the Monge problem (|1.1]) follows
as a sunple corollary. In particular, the restriction TL ;.1 is a monotone increasing map in the dlrectlon

a,b
of Cyy on aff Zyg, for all k, a, b.
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Theorem 1.8. Let y,v € P(RY), u < L. Then, there exists an optimal transport map T for the Monge

problem (|1.1)).

As a final remark, in the case where the measures have finite second order moments (in order to have
finite secondary transport cost), by using [I5] Theorem 3.1] one can prove the existence of an optimal

map directly by considering as a secondary cost |« — y|?: in fact, the potentials ¢, 1 exist because of the
k.t
a,b?

that ¢, ¢ are L£%a.e. approximatively differentiable.

cyclical connectedness of Z7;, and since the cone C'f.’f is not degenerate is a quite easy argument to show

1.2. Structure of the paper. The paper is organized as follows.

In Section [2] we collect the main notations, definitions and the basic tools we will need in the paper.
After recalling some standard definitions of commonly used sets and o-algebras, we introduce some
notations for functions and multifunctions in Section The basic tools in convex analysis as well as
the definitions of the Polish spaces A(k,V) made of k-dimensional affine subspaces of the affine space
V C R? and the Polish space C(k,V) made of non degenerate k-dimensional cones of a vector space
V C R? are listed in Section
The fundamental tools on measure theory and the disintegration theorem are recalled in Section [2.3]
while the definition of the optimal transportation problem with the classical sufficient conditions for
optimality of transference plans are listed in Section The key analysis on transportation problems
for which no potential is available and the role of Borel linear preorders is presented in Section In
particular, we define IT{ (11, v)-cyclically connected partitions (see Definition , we state Proposition
[2.17] yielding the existence of a family of potentials on the elements of a partition for secondary costs
under the assumption of IT7 (i, v)-cyclical connectedness, and we show in Theorem m [6] that whenever
a Borel linear preorder is c-compatible and extends a =<(r )-preorder, then all the transport plans are
concentrated on its equivalence classes.

In Section [3| we analyze the optimal transportation for cone costs of the form . In Section
we show the equivalence between optimal transportation problems in R? with cost | - |p~ and marginals
w,v € P(RY) and optimal transportation problems in R4*! with cost Cepi|.|p~ and marginals 1,0 €
P(RI*1), where the measures fi, # are supported on a | - | p--Lipschitz graph grapht and pu = (pga)#fl,
v = (PRra)#fl-

In Section we generalize the single cone cost transportation problem to the transportation problem
on a directed locally affine partition. Here we introduce also the notion of initial and final points of a
directed locally affine partition and the notion of conditional second marginals, as well as an example of
their dependence w.r.t. the transference plan (Example and a special case where the conditional
second marginals correspond to the disintegration of v (Proposition .

A standard covering argument allows to decompose a directed locally affine partition into k-directed
sheaf sets, i.e. directed locally affine partitions whose components ng and cones Céf are close to a given
reference plane V* and cone C*, and their projection on V¥ contains a given open k-dimensional cube,
Proposition and Definition This allows to map these sets into directed fibrations, where the Z¥
are contained in the planes {a} x R* a € R?~* (Proposition . In this case the transport problem
splits into a family of transport problems, each one moving mass on a plane of the form {a} x R¥ and
with cost

(1.29) ey (W, w') 1= Ly (w0 — w),

where a — C(a) a o-compact map with values in C(k,R¥): since k is fixed on a fibration, we can skip it
in order to simplify the notation.

The final part of the section shows that the mapping of a sheaf set into a fibration preserves the key
structures of the optimal transportation problem needed in the proofs of Theorems and and thus
allows us to work from now onwards on fibrations.

In Section [4] we present a technique in order to find the so called differential directed locally affine
subpartition of a given cg-Lipschitz foliation of a C-directed fibration. The reason why we introduce
and study cg-Lipschitz foliations is that they are the natural generalization of the notions of graphs of
cone-Lipschitz functions —as the Kantorovich potential 1)— and equivalence classes of a ccr-compatible
Borel linear preorder (see Proposition . For the terminology used to briefly list the content of this
section we refer also to the discussion made in this introduction at the beginning of Section 1.1
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Due to the results of the previous section, when the differential subpartition is mapped back from the
cg-Lipschitz foliation to the k-directed sheaf set, one obtains subpartitions of the sheaf sets covering a
given directed locally affine partition, and thus we have a method which yields a subpartition of a given
directed locally affine partition.

In Section we first analyze the simplest example of ca-Lipschitz foliation: a &y a)—Lipschitz graph,

namely a graph of a | - |p(q)--Lipschitz function (with C(a) = epi] - ID(a)+) in a fibration consisting of a
single fiber {a} x R¥, whose super/subdifferential satisfy the completeness property — (as the
graph of the Kantorovich potential for the cost cep .|, )-

In Section we consider general cg-Lipschitz foliations, namely partitions of 2 x RF whose sets are
contained in {a} x R¥ as a varies in 2 and are given by collections of complete gy a)—Lipschitz graphs (see
Proposition [£.9). We extend to these families of sets the notion of super/subdifferential (see Definition
and in Section we show that its completeness and transitivity properties permit to select regions
called forward/backward regular set and regular set.

These regions are respectively partitioned in the so called super/subdifferential partition and differential
partition in Section (see Theorem and Corollary .

In Section [4.5] we analyze the residual set, namely the complementary of the regular set, and characterize
it as the union of the initial/final points of the super/subdifferential partition (Theorem [4.22).

In Section [£.6] we give a descriptive characterization of the support of the optimal transportation problem
on a cg-Lipschitz foliation in terms of the forward/backward regular set and initial/final points.

Section [5] concerns the problem of Lebesgue-regularity of the disintegration on directed locally affine
partitions. The main property which allows to deduce the regularity is the cone approximation property.
First we consider 1-directed sheaf sets made of segments whose projection on the line generated by the
reference cone is a given interval. These particular sheaf sets are called model sets of directed segments
(see Section . In the case of strictly convex norms it is sufficient to analyze this special case.

The analysis is then extended to k-dimensional model sets, namely k-directed sheaf sets whose projection
on the k-dimensional plane generated by the reference cone is a given rhomboid (Section. In this case,
the cone approximation property refers to the cone approximation property of any of its 1-dimensional
slices, the latter being sections of a k-dimensional model set with (d—k+1)-dimensional planes transversal
to the reference plane (see Definition : by transversality, on each of these planes the k-dimensional
model set becomes a model set of directed segments.

Next the analysis is extended to k-dimensional sheaf sets (Section . The main observation is that one
can partition the sheaf set into countably many k-dimensional model sets (Theorem .

Finally, the property of approximation by cone vector fields also for initial/final points yields the Lebesgue-
negligibility of the initial/final points by means of a technique developed first in [16], and then extended
in 7 12} [14] (see Section [5.4)).

At this point all the techniques needed in order to prove Theorem [1.1] are presented, and its proof is
done in Section[6} Indeed, in Section [4 we develop a technique to find directed locally affine subpartitions
by means of cg-Lipschitz foliations, and the graph of the potential v is in particular a cg( u)—Lipschitz
graph. The only point which remains to be proved is that the disintegration of the Lebesgue measure is
regular, which is a consequence of the cone approximation property. The section is thus devoted to the
proof of the cone approximation property for cone-Lipschitz graphs (Theorem .

Let D = {Z% Ck} be a directed fibration with the associated transportation problem; as said before,
we assume that HZ]_D (u,v) # 0. In Sectionwe show how to further partition {Z%, C*} into a cs-Lipschitz
foliation, whose k-dimensional sets satisfy the assumptions of Theorem (see Theorem [7.1)). The key
results are stated in Theorem and Proposition The sets of this cg-Lipschitz foliation are given by
the equivalence classes of a cg-compatible linear preorder on which all the transport plans in Hfﬁ (u,v)
are concentrated (called (cg, p, v)-compatible linear preorder in Deﬁnition, as anticipated after the
statement of Theorem [L.6l

In Section |§| we prove the cone approximation property for the differential partition of a cg-Lipschitz
foliation whose sets are given by equivalence classes of a Borel (cg, jt, v)-compatible linear preorder. Since
we do not have a potential, we need to use the uniqueness theorem of the linear preorder (Theorem [8.1)):
as a corollary, one immediately obtains the Lebesgue-regularity of the disintegration (Corollary .
The section is concluded which an example (Remark which shows that this result cannot be deduced
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as a consequence of the analysis of Section [6] even if the level sets of 6 are Lipschitz graphs. In fact, the
disintegration of the Lebesgue measure on a Lipschitz foliation is in general not absolutely continuous
w.r.t. the natural Hausdorff measures on the level sets: we show an example where the level sets of the
function € : [0,1]2 — [0, 1] generating the foliation are C>°, nevertheless the disintegration of £2|_[071]2 on
the level sets of § have Dirac masses.

The proof of Theorems and are done in Section [0} and they are obtained as direct consequences
of the results proved so far.

Finally, in Appendix [A| we present one of the main result of [6] about the minimality of equivalence
relations and prove a key consequence used in our proof, Corollary

In Appendix [B] we collect the notations used in this paper.

2. GENERAL NOTATIONS AND DEFINITIONS

As standard notation, we will write N for the natural numbers, Ng = N U {0}, Q for the rational
numbers and R for the real numbers. The sets of positive rational and real numbers will be denoted by
Q™ and R respectively.

The d-dimensional real vector space will be denoted by R%. B?(x,r) is the open unit ball in R? with
center z and radius » > 0 and S?! is the (d — 1)-dimensional unit sphere. The scalar product of two
vectors x,y € R? will be denoted by x - 3, and the Euclidean norm of z € R? by |z| = \/z - z. To avoid
the analysis of different cases when parameters are in R¥ for k= 1,...,d or in N, we set R? := N.

We denote the first infinite ordinal number by w.

Given a set X, P(X) is the power set of X. The closure of a set A in a topological space X will be
denoted by clos A, and its interior by int A. If A C Y C X, then the relative interior of A in Y is int,q A:
in general the space Y will be clear from the context. The topological boundary of a set A will be denoted
by 0A, and the relative boundary is 0, A.

If A, A’ are subsets of a real vector space, we will write

(2.1) A+ A ={z+a':ze A’ A}
If T C R, then we will write
(2.2) TA:={tz:teTxeA}.

In particular A — A’ = A+ (—A').
If T], X; is the product space of the spaces X;, we will denote the projection on the i-component either
as p; Or pg; OT Py;: in general no ambiguity will occur.

2.1. Functions and multifunctions. A multifunction f will be considered either as a map f : X C
domf — P(Y) or as aset f C X x Y. The set domf is called the domain of f. For every « € domf we
will write

f(x)={yeY:(z,y) cf}

The inverse of f will be denoted by
(2.3) f'={(y.2) €Y x X : (z,y) € f}.

Similarly, if A C X x Y, then A~! := {(y,2) : (x,y) € A}.

In the same spirit, we will often not distinguish between a single valued function f and its graph,
denoted by graph £. We say that the function £ (or the multifunction f) is o-continuous if the set graph £
(or f C X xY) is o-compact. Note that we do not require its domain to be the entire space.

If £, g are two functions, their composition will be denoted by g o £, with domain £~!(domg). If
f:X =Y, g: X — Z, then the product map is denoted by £ x g: X — Y x Z.

The epigraph of a function £ : X — R is the set

(2.4) epif :={(z,t) € X xR: £(z) < t}.

The identity map will be written as I, the characteristic function of a set A will be denoted by

(2.5) Xal() = {(1) i; j
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and the indicator function of a set A is defined by

(2.6) Ta(z) = {ioo z; jf

2.2. Affine subspaces, convex sets and norms. For k,k',d € N, k' < k < d, define G(k,R?) to be
the set of k-dimensional subspaces of R? and let A(k, R?) be the set of k-dimensional affine subspaces of
Re. If V € A(k,R?), we define A(K', V) C A(K',R?) to be the set of k’-dimensional affine subspaces of
V. We also denote by py : R? — V the projection map.

If A C R, then define its affine span as

(2.7) aff A= (] W,

VeA(k,RD)
kEN, ACV

and its convex hull conv A as the set given by the intersection of all convex sets of R? containing A.
Given k vectors {ey,...,ex} C R? their linear span aff {ey, ..., ex,0} is denoted by (e1,...,ex), and the
orthogonal space to V € G(k,R?) is denoted by V. Notice that

aff A = conv A+ R(conv A — conv A) and aff A € U A(k,RY),
keN

unless A consists of a single point. If we set by convention A(0, R?) = R?, then the above formula holds
also when A is a singleton.

The linear dimension of an affine subspace V' is denoted by dim V', and we set accordingly dim{z} = 0
for all z € A(0,R9).

If A is convex, then its relative interior in aff A, denoted by int,e A, is nonempty and A C closint,q A.
Hence we define dim A := dim aff A.

An extremal face of a convex set A C R? is by definition any convex set A’ C A such that

inte [z,y] VA" #0 = [r,y]€ A, Vz,ye A
A convex set C C R? is a convex cone if
C ={0}uURTC.
In particular, 0 is called the vertex of the convex cone. For all k € {1,...,d}, we let C(k,R?) to be the
set of closed k-dimensional convex cones in R¢ which are nondegenerate, meaning that
CeCkRY) = C\{0}Cinte He

for some k-dimensional half-plane Ho C R?.

The extremal faces of a convex cone are still convex cones called extremal cones.

If D is a d-dimensional compact convex set in R? and 0 € int D, then one can define the (conver)
norm (or Minkowski functional) |- |p~ generated by D as

(2.8) |z|p- =min{t e R" : z € tD} = max {2’ -z : 2’ € D*},
where
D* = {x’ERd: x’-mglforallxeD}
is the convez dual to D. Equivalently, | - |p~ : R? — R is identified by the following properties:
{r eR?: |z|p- <1} = D;
[tz|p+ = tlx|px, VE>0 positively 1-homogeneous;
|z +y|p+ < |z|p* + |y|p~ subadditive.

In particular, since | - |p+ is positively 1-homogeneous, subadditivity can be equivalently replaced by
convexity.

Remark 2.1. Notice that the set epi|-|p- belongs to C(d+1;R*t1), with the identification R? x R = R4+,
Viceversa, given a convex cone C' € C(k,R%), if we fix a system of coordinates (1, ..., %k, Tpi1,...,Tq) €
R? such that Ho = {zx > 0, 2x11 = --- = xq = 0}, then C is the epigraph of a convex norm on
RE—1 E{xk:---:md:()}.
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We will call extremal cones of a convex norm | - |p« : RY — R either the extremal cones of epi| - |p- in

R or their projections on R%, being the distinctions between the two cases clear from the context.
For C € C(k,R?) we call C NS?~! the set of directions of C. For V € G(k,R%) we will also write

(2.9) C(K,V):={CeCk RY):CcV}
If C € C(k,R%), r > 0, we also define the cone
(2.10) C(r) = [0} URT ((c NS4t 4 B4(0,r)) N aff 0).
Clearly C(r) := clos C(r) € C(k,R?) for 0 < r < 1 and C = Qé(z—"). For r > 0 we also define the cone
(2.11) C(=r) := {0} U R+{x e ST naff C: Bz, r)NaffC C c},

so that {0} Uint,qC = UC(—=2""): as before C(—r) := closC(—r) € C(k,R?) for 0 < r < 1. More
generally, for C' € C(k,R?) we will use the notation

(2.12) C = {0} Uint,aC = | J C(-27").

neN

By convention we set C(0, R?) = R? and we will often denote a convex cone C as C1™ € to emphasize

its dimension.
On G(k,R%), A(k,R%) and C(k,R%) we consider the topology given by the Hausdorff distance d in
every closed ball clos B4(0,r) of R?, i.e.

(2.13) d(4,4") :=> " 27"du (AN B%(0,n), A’ N BY(0,n)).

for two generic elements A, A'.
If A c S 1, its spherical convex envelope is defined as

(2.14) convga—1 A := S9N (R*conv A).

2.3. Measures and disintegration. We will denote the Lebesgue measure on R¢ by £, and the

k-dimensional Hausdorff measure on V € A(k,R?%) as H¥_. In general, the restriction of a func-

tion/measure to a set A € R? will be denoted by the symbol L4 (or sometimes L A) following the

function/measure. The product of two locally finite Borel measures wy, wy will be denoted by wy ® w;.
The Lebesgue points Leb(A) of a set A C R? are the points z € A such that

(2.15) fim 2240 Bz, 7))

M TLABE )

If @ is a locally bounded Borel measure on R?, we will write w < £% if @ is absolutely continuous (a.c.
for brevity) w.r.t. £9.

For a generic Polish space X (i.e., a separable and complete metric space), the Borel sets and the set
of Borel probability measures will be respectively denoted by B(X) and P(X). The Souslin sets ¥} of
a Polish space X are the projections on X of the Borel sets of X x X. The o-algebra generated by the
Souslin sets will be denoted by ©.

Two Radon measures @y, wy on X are equivalent if for all B € B(X)

(2.16) WQ(B) =0 <= wl(B) =0,

and we denote this property by wy ~ w;.
If w is a measure on a measurable space X and £ : X — Y is an w-measurable map, then the
push-forward of w by £ is the measure fxw on Y defined by

(2.17) f4w(B) = w(f Y(B)), for all B in the o-algebra of Y.

Finally we briefly recall the concept of disintegration of a measure over a partition.
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Definition 2.2 (Partitions). A partition in R is a family {Z, }qea of disjoint subsets of R%. We say that
{Z4}aen is a Borel partition if 2 is a Polish space, UQ[Z,, is Borel and the quotient map h : UQlZu — A,
ac ac

h: 2z + h(z) = a such that z € Z,, is Borel-measurable. We say that {Z,}aen is o-compact if 2 C R*
for some k € N, UQ‘ Z, is o-compact and h is o-continuous.
ae

The sets in the o-algebra {h=1(F): F € B()} are also called in the literature saturated sets. Notice
that we do not require {Z,}qca to be a covering of R9.

Definition 2.3 (Disintegration). Given a Borel partition in R? into sets {Z,}aen With quotient map
h: UmZa — 2 and a probability measure w € P(RY) s.t. w( UmZa) = 1, a disintegration of w w.r.t.
ac ac

{Z4}aen is a family of probability measures {w, }aear C P(R?) such that
(2.18) 23> a+> we(B) is an hyww-measurable map ¥V B € B(R?),

(2.19) @(BNh L (F)) = /qu(B) dhyw(a), VBeBRY), FeB).

As proven in Appendix A of [6] (for a more comprehensive analysis see [21]), we have the following
theorem.

Theorem 2.4. Under the assumptions of Definition the disintegration {wq}qca @s unique and
strongly consistent, namely

if a = we, ar wo satisfy 218)-19) = @i =w>: forhyw-a.e. a €Y,
(2.20) we(Za) =1 forhypw-ae acl

The measures {w, }4eq are also called conditional probabilities.
To denote the (strongly consistent) disintegration {cw,}qea of a probability measure w € P(R%) on a
Borel partition {Zg}qea we will often use the formal notation

(2.21) w = /Qlwu dm(a), wa(Zy) =1,

with m = hxw, h being the quotient map.

Since the conditional probabilities ww, are defined m-a.e., many properties (such as wq(Z,) = 1) should
be considered as valid only for m-a.e. a € 2: for shortness, we will often consider the w, redefined on
m-negligible sets in order to have statements valid Va € 2.

We also point out the fact that, according to Definition [2.3] in order that a disintegration of w over a
partition can be defined, w has to be concentrated on the union of the sets of the partition (which do not
necessarily cover the whole R?). In general, if we remove this assumption, since the formulas (2.18)-(2.19)
make sense nonetheless for B C unga, by means of formula we “reconstruct” only WLy, Za -

Let m’ € P(A), {w) }aca € P(R?) such that
2A>a— wh(B) ism'-measurable, VB € B(R?).

Then, one can define the probability measure @’ on R¢ by
(2.22) =(B) = / =(B)dm'(a), VB e BRY).
2A

The measure defined in (2.22)) will be denoted as

w':/w;dm/.
2A

Notice that, despite the notation is the same as in (2.21]), the family {c} }aca in the above definition is not
necessarily a disintegration of @w’, both because the measure m’ is not necessarily a quotient measure of a
Borel partition and because the measures w/ are not necessarily concentrated on the sets of a partition.
In the rest of the paper, such an ambiguity will not occur, since we will always point out whether a
measurable family of probability measures is generated by a disintegration or not.
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Remark 2.5. If instead of @ € P(RY) we consider the Lebesgue measure £¢ (more generally, a Radon
measure) a disintegration {vq}qeu is to be considered in the following sense. First choose a partition
{A;}ien of R? into sets with unit Lebesgue measure, then let

L% 4= /'Ua,idni(a)7 i i=hyll% 4,
be the standard disintegration of the probability measure £ 4,, and finally
Vg 1= Z 20, M= Z2‘im.

Clearly, in this definition the “conditional probabilities” v, and the “image measure” 7 depend on the
choice of the sets {4;}ien-

2.4. Optimal transportation problems. For a generic Polish space X, measures p,v € P(X) and
Borel cost function ¢ : X x X — [0, 00], we will consider the sets of probability measures

(2.23) M, v) i= {7m € PX x X) : (p1) e = 1, (po) g = v},
(2.24) 0 (p,v) == {77 e(p,v): /XXX cdr < —|—oo},
(2.25) 2P (1, v) = {71’ e (p,v): /X><X cdr = w'einn(fu,u) /Xxx cdﬂ’}.

The elements of the set defined in ([2.23)) are called transference or transport plans between p and v, those
in (2.24) transference or transport plans with finite cost and the set defined in ([2.25) is the set of optimal
plans. The quantity

(2.26) C(u,v) := inf / cdr
XxX

m€Il(p,v)

is the transportation cost.
In the following we will always consider costs and measures s.t. C(u,v) < 400, thus ITf (11, /) # 0.
The problem of showing that ITP"(u, ) # 0 is called Monge-Kantorovich problem.
We recall (see e.g. [6 24]) that any optimal plan 7 € TIP*(u, v) is c-cyclically monotone, i.e. there
exists a o-compact carriage I' C X x X such that 7(I') = 1 and for all I € N, {(zy,y;)}]_, C T,

I I
Z c(@i,yi) < Z c(@i+1, i),
i=1 i=1
where we set x741 := x1. Any such T is called c-cyclically monotone carriage. However, in order to

deduce the optimality of a transference plan the c-cyclical monotonicity condition itself is not sufficient
and one has to impose additional conditions. Most of the conditions in the literature exploit the dual
formulation of Monge-Kantorovich problem (see [29]), namely

Clu,v) = o /qﬁ ) dp( /w ) dv(y) : ()+w(y)SC(x7y)}-

@ p-meas. and Y v-meas.

For example (see Lemma 5.3 of [6]) if there exists a pair of functions

(2.27) ¢, : X — [-00,400), ¢ p-measurable and ) v-measurable,
(2.28) o(x) +9(y) <clz,y), Va,yeX,
(2.29) d(x) +Y(y) = c(x,y), m-a.e. for some 7 € II(u,v),

then ¢, 1) are optimizers for the dual problem and 7 € I1%P*(u, v). Conditions on the cost guaranteeing
the existence of such potentials (and indeed of more regular ones) are e.g. the following ones:

(1) cis Ls.c. and satisfies c(z,y) < £(z) + g(y) for some £ € L'(u), g € L'(v) (|25]);
(2) c is real-valued and satisfies the following assumption ([4])

V({y : /c(x,y) du(z) < —1—00}) >0, ,u({x : /c(x,y) dv(y) < —l—oo}) > 0;
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(3) {c < 400} is an open set O minus a p ® v-negligible set N ([5]).

The weakest sufficient condition for optimality, which does not rely on the existence of global potentials
and implies the results recalled above, has been given in [6]. Since such condition will be needed and
of fundamental importance for the proofs of our main results (in particular, Theorem , in the next
section we give a brief explanation of the approach followed in [6] and we state it in a form which will be
more convenient for our purposes.

2.5. Linear preorders, uniqueness and optimality. Let ¢ : X x X — [0,+00] be a Borel cost
function on a Polish space X such that c(z,z) = 0 for all z € X, let u, v € P(X) be such that
I (u,v) # 0 and let I' € X x X be a c-cyclically monotone carriage of some 7 € IIf(u,v) satisfying
w.lo.g. {(z,z): 2 € X} CT. A standard formula for constructing a pair of optimal potentials is the
following: for fixed (zo,v0) € I and (z,y) € I, define

I
(2.30) ¢(x) := inf { Zc(xiJrlvyi) —c(@i,yi) : (wiy) €T T €Nywpyy = x},
i=0
P(y) == clz,y) — ¢(2).

If one of the assumptions (1)-(3) holds, then this ¢, ¢ satisfy (2.27)-(2.29)). However, for general Borel
costs ¢, the assumptions (1)-(3) are not satisfied. In particular, for any choice of (xq, yo), there may be a
set of positive u-measure on which ¢ is not well defined (namely, the infimum in (2.30) is taken over an
empty set) or takes the value —oo (see the examples in [6]).

To explain why this can happen and briefly recall the strategy adopted in [6] to overcome this problem
in a more general setting, we need the following definition.

Definition 2.6 (Axial paths and cycles). An axial path with base points {(z;,y:)}._, C T, I € N, starting
at * = r; and ending at x’ is the sequence of points

(xv yl) = (xh yl)v (1'2, y1)7 AR (‘r’h yi*l)a (xiv yl)a (xi+1; yl)v R (xla y[)a (x/a y[)
We will say that the axial path goes from x to z’: note that « € p1T'. A closed axial path or cycle is an
axial path with base points in T" such that x = a’. A (T, ¢)-azial path is an axial path with base points
in I" whose points are contained in {c¢ < oo} and a (T, ¢)-cycle is a closed (T, c)-axial path.

Notice that, in order that is well defined, for p-a.e. point x € p1I" there must be a (T, c)-axial
path going from x( to . Moreover, being I' c-cyclically monotone, ¢ is surely finite valued in the case in
which for p-a.e. point x € p1I" there exists also a (T, c)-axial path going from x to xg (and thus to a.a.
any other point in I'). In particular,  and xg are connected by a (T, c)-cycle.

The first idea in [6] is then to partition X into the equivalence classes {Z,}qea induced by the (T, c)-
cycle equivalence relation and disintegrate p, v over {Z,}aeo and 7 over {Zy X Zp}a,peu-

Since c(z,2) = 0Va € X and T’ D graphl, then (x,y) € T implies that = and y belong to the same
(T, c)-cycle (consider the path (z,v), (v,y), (y,v), (x,y)) and in particular that

(2.31) W(U Za ¥ Za> =1

acl
If the disintegration is strongly consistent (see Theorem , we get

(2.32) n= /Mu dm(a), pa(Za) =1,
(2.33) V= /l/a dm(a), vq(Zs) =1,
(2.34) = /ﬂaa dI x D)um(a), ma(Zax Zq) =1,

where m = hyp = hyv because there exists at least a plan in IT (1, ) —in this case 7— such that
is satisfied.

Notice that the fact that m is concentrated on the diagonal equivalence classes {Z, X Zq}aen, i-e.
formula , is equivalent to say that the quotient measure (h X h)ym satisfies

(hxh)pm = (I xI)um,
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i.e. it is concentrated on the diagonal of 2 x 2 (see (2.34))).

Now, as a consequence of the fact that pg-a.a. points in Z, can be connected to pg4-a.a. other points
in Z, by a (I'N Zy X Zg, c)-cycle and Imqq € I (44, vq) c-cyclically monotone which is concentrated on
I'nZ, x Z,, using we are able to construct optimal potentials ¢q, ¥4 : Z4 — [—00,+00) for the
transportation problem in II(ug,v,) and conclude that

¢
Taa € P (g, Va), for m-a.e. a.

Let us then consider another 7/ € IIf (11, ). After the disintegration w.r.t. {Zy X Zp}a pea we get

x = /Wabdm'(a, b), 7T;b(Za X Zy) =1,
with

’ f .
(2.35) m' € H(hxh)#c(m, m), where (hXxh)gc(a,b)= Z:lefzb c(z,y).

Hence one has the following theorem, which gives a sufficient condition for optimality based on behavior
of optimal transport plans w.r.t. disintegration on (T, ¢)-cycle equivalence relations.

Theorem 2.7. Let T' be a c-cyclically monotone carriage of a transference plan m € I (p,v). If the
partition {Zq}aea w.r.t. the (T, c)-cycle equivalence relation satisfies

(2.36) the disintegration on {Zq}aen is strongly consistent,
(2.37) 7’ <U Zq X Za> =1, V' eltl(yv),
a

then w is an optimal transference plan.

Indeed, if (2.36) and (2:37)) are satisfied, then 7/ = [ 7, d(I x I) zm(a) with 7%, € I (11q, v4) and one
obtains the conclusion by integrating w.r.t. m the optimality of the conditional plans 7,4, namely

/C(ﬂmy) dTaa(2,y) < /c(x,y) drga(@,y).

The second crucial point in [6] is then to find weak sufficient conditions such that the assumptions of
Theorem 2.7 are satisfied.

Before introducing them, we show how the request that the sets of a Borel partition satisfying
coincide with the equivalence classes of the (T', c)-cycle relation can be weakened, yet yielding the possi-
bility of constructing optimal potentials on each class —and then, as a corollary, to prove the optimality
of a c-cyclically monotone plan 7. First, we need the following

Definition 2.8. A set F C piI' is (T, ¢)-cyclically connected if Vx,y € E there exists a (I, c)-cycle
connecting x to y.

According to the above definition, the equivalence classes of <(r ) are maximal (T', c)-cyclically con-
nected sets, namely (T, ¢)-cyclically connected sets which are maximal w.r.t. set inclusion.
Then notice that, given a Borel partition {Z]}pes C R such that

W(Uzg X Z{,) =1, Vrellf(uv)
b

and whose sets are (T, ¢)-cyclically connected but not necessarily maximal, then it is still possible to
define on each of them a pair of optimal potentials and prove the optimality of 7 such that «(I") = 1.
Moreover, one can weaken this condition by removing a p-negligible set in the following way. Let

p= [ pydm/(b), pi,(Z) = 1.

Definition 2.9. The partition {Z}}pen is (1, I, ¢)-cyclically connected if 3F C X p-conegligible s.t.
ZyNFis (', c)-cyclically connected Vb € B. Equivalently, 3 an m/-conegligible set B’ C B s.t. Vb’ € B’
AN{ C Zj, with* i (Ng) =0, s.t. Z \ Ny, is (T, ¢)-cyclically connected.

When the (u,T, ¢)-cyclically connectedness property holds for all c-cyclically monotone carriages of
all transport plans of finite cost —hence it is possible to construct optimal potentials starting from any
c-cyclically monotone I'- we have the following
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Definition 2.10. We say that {Z}} is II{ (i, v)-cyclically connected if it is (u1, T, c)-cyclically connected
VT c-cyclically monotone s.t. w(T') = 1 for some 7 € IT{ (i1, /).

Notice that the u-conegligible set F' in the definition of (u, I', ¢)-cyclically connected partition depends
on the set I'.

In this paper, in particular for the proof of Theorems and the importance of Hf (1, v)-cyclically
connected partitions is given by the following proposition.

Proposition 2.11. Let {Z;}oen be a I (u,v)-cyclically connected Borel partition satisfying
(2.38) w<U Z} x Z{,) =1, Vrellf(uv)
b

for a cost function of the form
(2.39) c(z,y) = 1y (2, y), M > {(z,z):x e X}.
Let cp : X x X — [0,400] be any secondary cost of the form

calz,y) = m(z,y) cfz,y) < +oo,
e 400 otherwise,

(2.40)

where m is l.s.c. and there exist £ € L'(u), g € L'(v) s.t. m(z,y) < £(x) +g(y). Then, any cy-cyclically
monotone plan T, € Hfm(u, v) is optimal for c,. More precisely, for any cy-cyclically monotone set Ty
with m(Ty) = 1, there exist Borel functions ¢™, Y™ such that the restrictions

(2.41) P ="z, Yy =Yz
are Borel optimal potentials for TIZ** (ug, vy), for all b in an m/-conegligible set B’ C B.

Proof. Notice that I (u,v) C I (u,v). Let Iy C L[_’J Zi, x Zi be a cyp-cyclically monotone carriage

for 7y € HZ (u,v). Then, there exists a conegligible set F' C X such that Z N F is (I'y, c)-cyclically
connected for all b € 9B. Hence, formula 7 together with the validity of the Point at page
yields potentials ¢, 1§ for the transport problem in H{m (1o, vp) with cost c,. In particular, the
conditional probability m e is optimal in IIZ (yp,v5), and thus by it follows as in Theorem
that m, is optimal in ITZ (u,v).

The fact that one can find Borel functions ¢™, ¥™ such that holds is an application of standard
selection principles, and it can be found in [6]. O

In order to state the main result of [6] which is at the core of their sufficient condition concerning
optimality, we need the concept of (linear) preorder.

Definition 2.12 ((Linear) Preorder). A preorder on X is a set A C X x X s.t.
(x,2) € A, VaxeX
(z,y)eA AN (y,2)€eA = (z,2)€ A

A preorder A C X x X is linear if
XxX=AuA™"

The statement (z,y) € A will also be denoted by z <4 y and A is also called the graph of the (linear)
preorder < 4. Any preorder <4 induces the equivalence relation ~4 on X

T~y “— r<ay and y =<4z
We also denote the graph of the equivalence relation ~4 by
ANA™Y or <A ﬂ(ﬁA)_l.

Going back to our problem, one can see that the (T, c¢)-axial relation gives a Borel preorder on X,
namely

(2.42) T <(r,e)y if there exists a (I', c)-axial path going from y to z.

The reason for introducing (linear) preorders in this context is given by the following theorem [6].
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FI1GURE 2. The graph of the cost c is given by the indicator function of the region inside
the blue curve. The graph of a c-compatible linear preorder < 4 is given by the union of
the pink and of the red region. The red region corresponds to the graph of the induced
equivalence relation ~4. We draw also an axial path connecting x5 to x3 with base
points (z5,ys), (z4,y4), and a (T, c)-cycle connecting (z1,y1) to (z2,y2).

Theorem 2.13. Let A C X X X be a Borel graph of a linear preorder on X with equivalence classes
{Z2}cce satisfying

(2.43) {c <+o0} C A,

(2.44) <(,e)C A, for some c-cyclically monotone set I' s.t. n(I') =1, m € I (u, v).

Then, the disintegration w.r.t. the partition {Z2}.ce is strongly consistent and
(2.45) 7 (U ZA x Z;“) =1, vV« elt!(yv).
c

For future convenience we give the following definition.
Definition 2.14. A preorder <4 on X is c-compatible if (2.43]) holds.

Remark 2.15. Let A be a c-compatible linear preorder. Whenever a carriage I satisfies (2.44) the <(p c)-
equivalence classes are contained in the equivalence classes of ~4 and then, as noticed before, since
I D graphl and c(z,z) = 0 for all «,

rclzd <z, 7r<UZj‘ fo) =1
c c
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Viceversa, if 7/ (UZ& x Z#)=1 for some 7’ € II{ (1, v) and «'(I’) = 1, then by the c-compatibility of A
c

S(rruzaxza,eC A
c

and then also its equivalence classes are contained in the equivalence classes of ~ 4. In particular, (2.44))
could also be rewritten as 7(UZ# x Z#) = 1.
c

We point out that, while a c-compatible linear preorder satisfying for some I' can always be
constructed using the axiom of choice, may not hold if the linear preorder is not Borel (see [6]):
hence, the main assumption of the theorem is the Borel regularity. Finally, notice that the partition into
equivalence classes of <(rnuzaxza,c) with I as above is (i, I", ¢)-cyclically connected in the sense of

Definition

In order to prove Theorem [I.6] in Section [7] we will look —for a particular class of cost functions of the
form called cone-Lipschitz costs associated to a directed fibration— for IT{ (11, v)-cyclically connected
partitions satisfying (2.38)). Therefore, by Theorem and Remark we will construct a Borel
c-compatible linear preorder A such that, for any carriage of finite cost IV, the equivalence classes of
S(nuzAxz4 c) coincide up to a p-negligible set with those of ~4.

For convenience we give also the following

Definition 2.16. If < 4 is c-compatible and ([2.44)) holds for every 7 € TIJ (u, ), then A is called (c, u,v)-
compatible.

Hence, Theorem [2.13| can also be restated saying that whenever A is a Borel c-compatible linear
preorder satisfying for some T of finite cost, then it is (c, u, v)-compatible.

According to the terminology used in [6], (c, i, v)-compatibility can also be restated saying that the
diagonal in the quotient space

(2.46) (IxT)ohopi(A)

f
(hXh)#C

this means that there exists a unique transference plan in IT

is a set of uniqueness for II (m, m), where h is the quotient map associated to the partition ~4:

f

(hXh)#c(m7m)7 namely (]I X H)#m

3. OPTIMAL TRANSPORTATION PROBLEMS WITH CONVEX NORM AND CONE COSTS
Let | -|p- : R? = R be a convex norm as defined in (2.8) and p,v € P(R?%). The transport plans with
finite | - | p~-cost H"f_‘D* (11, v) and the optimal plans w.r.t. |- |p« II"** (u,v) are respectively given by the

I p
transference plans with finite cost and the optimal plans w.r.t. the cost function

(3.1) (@) = Iy — 2lp--
Since the cost is a norm, we have the following well known results [2]: if Hlf~ o (s v) # 0, then

(1) there exists at least one optimal transference plan 7;
(2) if T is a |-|p=-cyclically monotone carriage of 7, then for (xg,yo) € I the function given by (2.30)),

I
B(r) = inf{z lyi —@it1|pe — |y — @i po T €N, (i, 33) €T, w141 = x},
i=0

is Lipschitz continuous on R?% and
(3.2) ¢(z) = (y) < |y —x|p-, Vr,yeR?,

(33 Lo w=alpdate) = [ ole)duto) = [ o dvta).

In particular, 7 is an optimal plan if and only if

w({@.9) )~ 6() = Iy —alp- }) =1.
In the following we will denote by ¢ the dual potential
(3.4) 1/1(13) — _¢($>7
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which will be called Kantorovich potential. Clearly
(35) v - v@ <ly-alpr, e () & m({@y) ) - b@) = ly-olb-}) = 1.

I'|
Definition 3.1. A function ¢ : dom ¢ C R? — R is | - |p--Lipschitz if it satisfies
oy) —p(z) <ly—z[p-,  Va,yedomep.
The superdifferential of ¢ is the set
0 1= {(@) : ¢v) - pl@) = Iy~ alp- },
while its subdifferential is the set
0" p = (8+g0)_1.
Hence, can be rephrased as
(3.6) 3¢ : R = R | - |p--Lipschitz s.t. 7 € IPT* (u,v) & 7(9%¢) = 1.
Let now C* € C(k;R¥).

Definition 3.2. We define the convex cone cost associated to C* as the function cox : RF x R¥ — [0, +00]
given by

0 y—x¢€CF
(3.7) cor(@,y) = {

+o00 otherwise.

Given p,v € P(RF), let H{Ck (i, v) be the set of transport plans of finite cone cost. Notice that
Hfok (u,v) = H‘C’gi (u,v) = {71' € chk (u,v) : 7 is cor-cyclically monotone}.

3.1. Transportation problems with convex norms and cone costs on Lipschitz graphs. The
optimal transport problem w.r.t. |-|p+ can be casted as a convex cone optimal transportation problem
on R ~ R4 x R w.r.t. the convex cone cost Cepi associated to

[| o=
epi| - |p~ € C(d + 1; R

(see Definition and Remark [2.1]). Define in fact the measures in P(graph1))

(3.8) o= Ux Q) 7= (X V)40,

where 1) is the Kantorovich potential of H‘O_Il’;* (11, v), formula (3.4)), and for m € II(u, v) consider the plan

in P(graph x grapht)

(3.9) fi= (% 8) x (Ix 9)) .

The fundamental observations are and the following: if ¢ is | - | p=-Lipschitz, then

(3.10) 0T = praypa (graphgo x graph ¢ N {ccpi e < +oo}).

Definition 3.3. If graph ¢ C R4+ is the graph of a |- |p--Lipschitz function, define its superdifferential
and subdifferential respectively as

(3.11) d*graph ¢ = graph ¢ x graph ¢ N {cepi||,. < +00}, &~ graphp = (8" graph @)_1.
Then (3.10) can be rewritten as

0% o = praxre (0Fgraph ).
Hence the following proposition holds true.

Proposition 3.4. The following statements are equiveridical:

(1) T eI (u,v);
(2) 7= (I x ) x (Ix w))#w € Hfapmm (1, 0), with fi, U given by (3.8);
(3) T = (dede)#fr for some 7t € Hchi\-\m (i1, 0), with fi, U given by (3.8);

(4) o= (([x ) x ([x 1)) ,m satisfies 7(0* grapht) = 1.
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Y
e

epi| - |

F1GURE 3. The equivalence of Proposition

Observe that, since (I x ) : R? — graph ) is bi-Lipschitz, then if @ € P(X) and & := (I x ¢) g™
(3.12) @w(B)=0 <= @(Ixy)(B)) =0, VBeBRY.

3.2. Optimal transportation problems on directed locally affine partitions. We first give the
definition of directed locally affine partition.

Definition 3.5. We say that a nonempty subset Z C R? is locally affine if there exist k € {0,...,d} and
V € A(k,R%) such that Z C V and Z is relatively open in V, i.e. Z = int,1Z # 0.

Notice that, in the above definition, V = aff Z. Whenever Z is a locally affine set of dimension k we
will often denote it as Z* to emphasize its dimension.

Definition 3.6. A directed locally affine partition in RY is a partition into locally affine sets {Z¥ }k 0

endowed with a family of closed nondegenerate convex cones {C¥} x=o, 4 such that

acaauk
(1) the set
d
(3.13) D .= {(k,a,z,of) ke{0,....d,aed*, 2 e ng} c |1k} x 2 x R x C(k,RY)
k=0

is o-compact;
(2) aff (z + CF) = aff(ZF) for all 2z € ZF.

For shortness we will use the notation

(3.14) z":=p.D(k)= | J 28, Z:=p.D= Uz’c U U 2k 7= | cdosZt.

acAk k=0 aeAr acAk
For the conditional probabilities of a measure u over a locally affine partition we will use the notation
{u’;}k:o ..... «, with 8 (Zk) = 1: the fact that the disintegration is strongly consistent is a consequence of
cauk

the fact that the function Z > z — (k, a) has o-compact graph p(; ;,q)D. Notice that the quotient space
of the partition is given by

(3.15) A= |2,
k
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FIGURE 4. A directed locally affine partition in R? into three 2-dimensional sets with
quotient space A2, five 1-dimensional sets with quotient space 2! and a 3-dimensional set
with quotient space 2. In each k-dimensional subpartition, for k = 1,...,3, we denote
a locally affine set as Z¥ with cone of directions C¥ (colored in blue), initial points Z(Z¥)
(colored in green), final points £(Z%) (colored in red) and quotient point a (colored in

purple), chosen as in (3.32]).

where LI denotes the disjoint union of sets.
Given a locally affine directed partition {Z¥, C¥1, , one can define the sets of initial and final points
as follows.

Definition 3.7. Define for k = 1,...,d, a € A¥ the initial points of Z* as

(ZF) = {z €ERINZ:37r>0s.t. z+int,qC" N Bz, 7) C Zf},
and the final points of Z¥ as

£(ZF) = {z €RINZ:3r > 058t 2 — intyqCF N BY(2,7) C ng}.

Finally, we call sets of initial points and sets of final points of the locally affine directed partition
{Zk, CF}. o the sets given respectively by

(3.16) z:=Jz(zk), &:=Jezh).

k,a k,a

Notice that the sets Z(Z%), Z(Z¥) do not need to be disjoint even if k # k" and a # a’, and the same
for £(Z%), £(ZF). Moreover,

(3.17) Z(Z¥yuEZy) c 02t

but the inclusion may be strict (see Figure [4| and Figure @ The measurability of the sets of
initial/final points is proven in the Lemma In the proof we use the concept of completeness of a
directed locally affine partition, whose meaning will be clear in Section [ and whose definition is given
below. Since up to that section, when it will become crucial for our analysis of the super/subdifferential
partitions, such a property will be used only in order to prove measurability issues, more precisely in the
proofs of Lemma [3.18| and of Proposition [3.15] a deeper understanding of its meaning is up to then not
necessary and can be for the moment neglected.
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Definition 3.8. A directed locally affine partition {Z¥ C*}; , is complete if
(3.18) r+Clny—Chczk,  VaxyeZh
In the proof of Proposition we will see that the set defined in (3.18)) is a convex set satisfying
RY(z+Ckny—ChH—2)=RY(y— (2 +Clny-Ck)=0Ck
Definition 3.9. We will say that a directed locally affine partition {Zb , C’ }e 0.y in R? is a directed
locally affine subpartition of {Zk, Ck} ko, if the following holds:
cak

(1) Z =7Z', where Z' is the set glven by - for {Zb , C’ Yee;

(2) V,b there exists k, a s.t. Z C Zk and C is an extremal face of C¥.
Definition 3.10. We say that a locally affine (o-compact) partition {Z{f}k o,....a is Lebesgue-regular if

caak

the conditional probabilities {v¥}s o of the disintegration of £ on the partitlon {ZF} ko (see Remark
2.5 satisfy

(3.19) vk~ HkLz§, for n-a.e. (k,a) € 2.

From the definition of disintegration of a Radon measure given in Remark[2.5] it is not difficult to check
that the validity of (3.19) is independent on the partition into unit measure sets {A4;}, hence Definition
15.10l is consistent.

To a directed locally affine partition {Z¥ Ck} .- 0,...d in RY, we associate the cost function
aeA

(3.20)

(2,y) = 0 x e Zk, cor(w,y) < +oo for some (k,a) € 2,
Y 400 otherwise.

Notice that, since D is o-compact, cp is o-continuous. Indeed,
{ep < +00} = poy ({(k, 0, 2,9), (k,a,2,y — 2) € D}).
Let us consider u, v € P(R?) satisfying
H():D (ILLV V) 7é @'
By definition of cp, one can easily see that u(Z) =1 and
I (p,v) =TI (p,v) = {ﬂ' € II]_(u,v) : 7 is cp-cyclically monotone}.
Let
o= /u’é dm(k,a),  pg(2) =

be the disintegration of y w.r.t. the partition {Z¥} ,.
We have the following characterization.

Proposition 3.11. 7 € III_(u,v) if and only if the strongly consistent disintegration {m%}; o C P(R% x
RY) of m w.r.t. the partition {ZF x R}, o satisfies the following properties:

(3.21a) e chk (1k, (p2) o) for m-a.e. (k,a),

(3.21D) [ @)t amik.a) -

where the measure on the l.h.s. of (3.21b) is defined as in (2.22).

Proof. 1f # € TI{_(u,v), then up to an m—neghglble set one has wF € IIL_(u¥, (p2)x7k), and since

cpLzk xra= Cck one deduces (3.21a)). The equality (3.21b) is a fairly easy consequence of (p2)x7m = v.
Conversely, if 7 satisfies (3.21]), then the two formulas

(pg)#W:/(pg)#W’;dm(/ﬂ, a), /chW:/</ch7r§>dm(k, a) :/(/ccgdw{:>dm(k, a)

yield 7 € TIZ_ (u, v). O
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FIGURE 5. The transport problem on the directed locally affine partition described in

Example

In other words any optimal transference plan w.r.t. the cost associated to a directed locally affine
partition can be decomposed as a family of transference plans on the k-dimensional affine hulls of the
k-dimensional sets of the partition, moving the mass along the cones of directions, and viceversa it can

be reconstructed given a family {7¥}, o satisfying (3.2Ta))-(3.211).
In general ([3.21b)) is not a disintegration (see Section [2.3| before Remark [2.5)), as the following example
shows.

Ezxample 3.12. For d = 3 let

= H'C 10,12 x ooy <o, /2 x {0} Y= 2H L{opx(0,1/2)x {1}
and consider the directed locally affine partition

Z? .= {(21722,2’3),,21 <0,21 = 23 — 1}, C? .= {(21,2’2,23) Dagl < 21,21 = 2’3},
Z3 = {(21,22,23),21 >0,21 = —23+ 1}, C2 .= {(21,22,23) Dee| < —z1,21 = 723}.

Then, for every decomposition 2v = vy + v with vy, vy € P(R?),

(g, {v1,v2}) = {W € I, (n.v) : (p2)gmi = 11, (p2)gms = Vz} #0,
and clearly II(u, {v1,v2}) C IIL_(p,v).

Example [3.12] motivates the following definition.

Definition 3.13. Given a transference plan 7 € HfD (1, v), we define the conditional second marginals
of # w.t. {Z¥,C*}y 4 as
oF = (pa) 7k, for (k,a) € 2.
We also set
(3.22) I/ (pu, {7E}) = {ﬂ' el (u,v): (p2)grk = vk for m-ace. (k, a)},

and we call (3.22) the set of optimal transport plans on the directed locally affine partition D w.r.t. u and

{7g}-
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Therefore, in the following by optimal transportation problem on a directed locally affine partition D
we mean an optimal transportation problem w.r.t. the cost cp between measures p and {7* }k.a, being
the latter admissible second marginals, namely conditional second marginals of at least one transference
plan 7 € IT{_ (p, v).

Notice that in Example the existence of more than one family of admissible second marginals for
the given optimal transportation problem would be avoided provided

(3.23) v(Z) = 1.
What (3.23) implies in general is that any family of admissible second marginals {#*} is given by a
relabeling of the disintegration of v on chf, but it may not necessarily occur that

(329 () = 1

(see Figure [5). In the next proposition we give a criterion —namely, condition ([3.25)— in order that
condition (3.24)) is satisfied and then there exists just one family of admissible second marginals. Condition

(3-25) will be indeed satisfied by directed locally affine partitions called fibrations and cg-foliations given
by single Lipschitz graphs (see Corollary and Proposition {4.26]).

Proposition 3.14. Assume that

(3.25) zeZF 2 e 28 for (k,a)# (K,d) = Zn(E+CHN(E +08)=0.

Hence,

(3.26) (p2) w7k (Zf UR®\ U Zf//) =1, forallme HZD (1,v), m-a.e. (k,a) €.
(a’,k")#(a,k)

Moreover, if v(Z) = 1, one has that

(p2)ymh = vk, being v = /I/éf dm(k,a), v¥(Z¥) =1 the disintegration of v w.r.t. D.

Hence the conditional second marginals of 7 € HZD (u,v) are equal to the conditional probabilities of
v, computed via disintegration on Z¥. Notice that part of the statement is that the quotient measure m
of v is the same as for u.

Proof. Tt is fairly easy to see that (3.25]) implies that

Z xRN {ep < +oo} < | J 2 x (28 URT\ Z),
a,k

so that each m € HZD (u,v) is concentrated on
Lzt (Z§ URd\Z>,
a,k
and this concludes the proof. g

3.3. From directed partitions to directed fibrations. In the first part of this section we show
that a directed locally affine partition is a countable union of directed locally affine partitions whose
elements are locally affine sets having the same dimension and whose direction cones are “close” to a
fixed reference cone. This kind of partitions will be called sheaf sets. Then, we will see that the optimal
transportation problem on a k-directed sheaf set —with k denoting the dimension of its locally affine sets—
can be equivalently reformulated as an optimal transportation problem on a k-directed sheaf set whose
sets are contained in distinct parallel k-dimensional planes, called k-directed fibration. The advantage of
this reformulation is that on a k-directed fibration all the supports of the second marginals are disjoint,
condition holds and then (by Corollary one can consider the quotient variables of the partition
as parameters for a family of independent convex-cone optimal transportation problems in RF.

Since 0-dimensional sets, i.e. single points in R?, are obviously not further partitionable, from now on
we will consider partitions into sets of dimension k£ > 1.
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Let {Z¥, CF} =14 be a locally affine directed partition in RY. If {e¥}%_ | are vectors in R?, define

E"l
the sets

(3.27) C({ef}): { Zt el 1 t; eRTU {0}}

and

(3.28) U({eF}): {Zt ekt e 0, 1]}
Recalling the definitions given in Sections [2.2] and [3.2] and the completeness property of Definition

[3:8] we have the following result.

Proposition 3.15. There exists a countable covering of D into disjoint directed locally affine partitions
{DE} o1, a, with the following properties: ¥n € N., set
neN
A, == paDyi,  Cf = perrnDi(0),  Zg = praDyi(a).

Then, py1,.. k}Dk = {k} for alln € N, i.e. the elements Z¥, C* have linear dimension k, for a € A,
and there exist

e linearly independent vectors {e¥(n)}r_, C S=L, with linear span

Vf = <e]f(n)’ SRR eZ(n»v
® a given point zFevk
e constants rk )\k € R+
e a non degenemte cone C* € C(k,R%), with C({e¥}) c C*,
such that it holds:

(1) the enlargement of the cone C* by a factor 2rk is non-degenerate
Ck2rk) e C(k,V¥);
(2) the projections on V.F of the cones CF, a € A~ have a uniform opening containing C*
CH(rk) C kaéf;
(8) the projections on VX of the cones CF, a € AX are strictly contained in the given cone C*(2rk)
Py Cq C C*(2ry);
(4) the projection map on V¥ is nondegenerate
lpv 2| >1/V2  forallzeCPnst! aeAr;
(5) the projection of Z¥ on V¥ contains a given cube
4 N U({ef)}) € prg 25
Moreover, if D is complete, then the sets {D } are Borel.
Observe that from Point and Point above it follows that there exists p > 0 such that
|pwf(zfz’)|2p|zfz'|, Vz, 2 €aff ZF Va e Ak,

Proof. If V € G(k,R%), C € C(k,V) and given two real numbers 0 < 6,7 < 1 such that C(2r) € C(k, R?),
consider the subset L(k,C,r,6) of C(k,R?) defined by

L(k,Cyr,6) = {C" € C(k,RY) : (i) C(r) C pv 7,
(ii) pyC' C C(2r),
(3.29) (iii) inf {|pyz|: z€ C' NS > 1 - 5}.
If is fairly easy to see that for all 0 < § < 1 as above the family
(3.30) ek, 0) == {L(k, C,r'.8): C € Clk,RY),0 <1/ < 1s.t. C2r) € C(k,Rd)}
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generates a base of neighborhoods of C(k,R?). In particular, we can find a countable family of sets
{L(k,C¥ vk 1/7/2)}nen, covering C(k,R?) —being the latter separable. Notice that

clos L(k,C,r,0) = {C’ € C(k,RY) : C(r) CpyC’, pvC’' C C(2r), inf {|Jpyz|: 2 € C'NS 1} >1— 5}

is compact.
Then, define
DF .= {(a,z,Cf) € D(k): C¥ e clos L(k,CJ, vk, 1/v2) \ | clos L(k,C} vk, ,1/f)}

n’'<n

Clearly {Dk},en is a covering of D(k) into disjoint sets, and it is fairly straightforward to prove that
these sets are o- compact because the sets clos L(k, C,r, ) are compact.
For each k, Ck, 7% consider a family of k linearly independent unit vectors {e¥(n)}*_; in R¢ such that

C({ef(m)}) C Cy.
Being the family of sets {{z+ A intrelU({ef(n)})}}zevT{v, e+ @ base of the topology of Vi, let {{z, +
Am intrelU({ef(n)})}}meN be a countable base. Define thus

Dfl,m = {(a,z,C{f) € Dicl D Zm Tt )‘WU({ef(n)}) C pV,fZéc} \ U D{fz,m’

m’'<m

Since the directed partition is complete (see Definition [3.8) and Point @ ) holds then

2 A MUl D) CovpZE & {am 2m+ A Z n)}CpupZh.

Let £% : pyyraDE — Py (pmedD’fl) be the o-continuous map

fy(a,2) = pyx(Zy).
One has that
(3.31)

{(a,z) € paxreDF : {zm, Zm + Am Ze } CpyvrZ, }

= p1o (graphfff N {(a,z,zm) caeUz € Rd})

k
N p12 <graphf7’f N {(aazv'zm + AmZef(n)) caeze Rd}),
i=1

is a o-compact set, thus D  is Borel. Relabeling the sets thm as DF the proof is completed. ([l

n,m

Remark 3.16. In the rest of this section, without further comments, we will assume that the directed
locally affine partitions are complete, according to Definition Indeed, this will be always the case for
the partitions we analyze in the paper. Since we will be interested into directed locally affine partitions
up to sets which are w-negligible w.r.t. some fixed measure w, we will also consider the sets of the
countable partition {D¥} as o-compact, which is always the case provided we remove an w-negligible
set.

Definition 3.17. For k = 1,...,d, we call k-(dimensional) directed sheaf set a o-compact directed locally
affine partition into k-dimensional sets D* which satisfy the same properties of the sets D in Proposition
3.15k there exist

e linearly independent vectors {ef}¥ | C S?! with linear span
V= (ek ... &b,

e a given point z* € V¥,

e constants 7%, \F € Rt,

e a non degenerate cone C* € C(k,R?), with C({e¥}) () C C*,
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22 + X2U({e?,e2}))
= & o ({e.e2))(22)

V2 = <e1, e2>

FIGURE 6. The locally affine sets Z%2, Z2, Z2 with cones of directions C%, C%, C% (given
by the union of the cyan and the yellow triangles) form a 2-dimensional directed sheaf set
with reference plane V2, base vectors e?, e2, reference rectangle 22 + \2U ({e?, e3}) and
base cones of directions C({e?,e2})(r?) C V2 (colored in cyan) and C({e?,e3})(2r?) C
V2 (colored in blue). In the picture, we underline with the corresponding color the
counterimages of the reference cones on the affine spans of the locally affine sets. The
remaining locally affine set of the partition does not belong to the sheaf set since the
projection of its cone of directions (colored in yellow) on the reference plane does not
contain/is contained in the reference cone.

such that, denoting 2* := p,D¥, C¥ = pc(;, ga)D*(a), ZF = praD*(a), it holds:

(1) C*(r*) € C(k, V*);

(2) CF C pyrCy;

(3) pyxCE C C¥(r*) for all a € 2A*

(4) |pyrz| > 1/3/2 for all z € CF NS, a € AX;

(5) 2+ N U({eh}) © pye ZE.
The k-dimensional plane V¥ = (e¥, ... e¥) will be called reference plane, the cones C¥ C CF(r¥) =: C'k
base cones of directions, z* base point and 2* + A\ U({eF}) base rectangle of the sheaf set.

Moreover, we can choose
(3.32) AY = ZF (2 + (VR

In this way the quotient space 2A* is a subset of a (d — k)-dimensional affine space. This will be our
default choice for the quotient space A* of D¥.
Before going on, we prove the following lemma, announced in Section [3.2]

Lemma 3.18. If the directed locally affine partition is o-compact and complete, then the sets , £ are
Souslin.

Proof. We prove the statement only for Z, since the proof for £ is analogous. Moreover, we can consider
w.l.o.g. a directed locally affine partition given by a o-compact directed sheaf set as in Definition [3.17]
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F1GURE 7. The mapping of a 2-dimensional sheaf set into a fibration, Proposition

The pink region denotes the support of the conditional measures p2 (resp. ﬂﬁ), the

yellow one the support of the conditional measures v/ (resp. Dg), and the blue cones C2

(resp. C2(q)) are the cones of directions of the locally affine sets Z2 (in gray color). The
reference cones C2 € €2 and C? c 2 are also depicted.

Let 2l = lgN 2l; such that the sets pg, xc(k,re)D (k) are compact, and for n € N define

Tk = {(a, 2) €A xRY: 2 eclos 2, 2+ inteCE, N BY(2,27") C Z{:}.
By the completeness property of the sheaf set, there exists n’ such that
(3.33) Iy, = {(a, 2) €W xR : z €closZE, 2 +int,Cr NOBY (2,27 )N 2k £ @}.
Since the set {(a,z) : z € clos Z¥} is Borel, then by (B.33), reasoning as in the sets Iﬁ,l are

Borel too and finally
IZPW(U Iﬁ,l) \Z
l

k,n,
is Souslin. O
Now we show that the graph D* of a k-directed sheaf set in R? can be mapped injectively into a subset

of R¥=F x R* called fibration, consisting of a family of parallel k-dimensional locally affine sets. In this
section, points in R9~* x R* will be denoted as (q,w).
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Definition 3.19. A k-(dimensional) directed fibration is a o-compact set D* ¢ R * x R¥ endowed with
a o-continuous map C* : pra—» (D*) — C(k,R¥), q = CF(q), such that
f)k(q) is open in R¥,

~ oy

(3.34) 30 ¢ OF, with CF,C'F € C(k,RY), st. CFc CFq) c €F(q) c O,

for all q € pga-« (D¥).
To a directed fibration D¥ we associate the cost
0 g=d,uw —we CHy)
3.35 cpn (g, w, g, w') = ’ ’
( ) DF (a 9 ) {—i—oo otherwise.
Recalling the definition given in (3.7)), notice that

Cer(g)(w,w') ifqg=d
CH , W, /a w/ = CH ) ’ '
D* (q I ) {—l—oo otherwise.

Proposition 3.20. Let D* be a k-dimensional directed sheaf set with base cones C* ¢ C'% e C(k,R?),
reference plane V¥, base point ¥ and quotient space A*¥ = ZF N (2% + (VF)L) and define the map

(3.36) r: 2 xRYS (a,2) (id_k(a), i oPVk(z)) € RF x R,
where
(3.37) igop 284 (VR S RITF i VE S RP

are the identification maps.
Then, | is a bijection onto U {q} xR* and r|

=T
U  {a}xaffzk : : U {a}xzk | Dk
T q€iq—r (A*) aenk LI Za Pork xrd (PF)

sheaf set porra(DF) into the elements of the fibration DF := r(pgx yga (D)) endowed with the direction
map

maps the

CF i iq 1 (A¥) 3 g iy o pyr o pegrray (DF (i), (a))).

Moreover,
(3.38) (e x0) I (p, {va}) = T (i1, 9),
where
B39 i [Grepent g distm), 7= [Geoplarts o diodn().
Finally
(i o pvk)#u’;;jk(q)(ik o(r(B)NR*™  x{q})) =0 < u’;;ik(q)(B) =0, VBeBRY)NaffZk,
(ix o pw)#uf;k(q) (iko Or(B)NR“ ¥ x {q})) =0 <= uf;ik(q)(B) =0, VBeBRY)NaffZ.

Proof. The functions r and CF are o-continuous, because their graphs are projections of o-compact sets.

The facts that r is a bijection and that r(pgr xgeD¥) is a fibration are straightforward, observing that
B.34) is satisfied by the cones C* = i,(C*), C'* = i,(C"*), thanks to (2), (3) and (4) of Definition
BI17

As for the last statements, it is sufficient to observe that

cpr((a,2), (@', 2") = cpu(r(a, 2),r(a’, 2") - Lk pa—rge (£(a, 2), r(a’, 2)),

and that T is bi-Lipschitz, Va € 2A*. 0

affzk

In the following, we set
k
q

~k __ (s k ~k __ (= k ~k __ (s . k
(3-40) g = (fkoPyr)gh-s (o Vg = (L OPve)grin (s Tq = (Tk 0 Pyr X ip 0Pyk)pmia (o
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Remark 3.21. Notice that, once we fix an orthogonal basis {e;}¢; C R? and identify R4 =% x RF ~
(e1,...,eq—k) X (€d_pi1,---,eq) = R% a k-directed fibration is the image through the map ig_x X i
of a k-directed sheaf set whose reference k-plane is {0} X (€4_g1,...,eq). Therefore, we can think of
a k-directed fibration as a k-directed sheaf set whose sets are contained in disjoint parallel k-planes. In
particular, when we speak about directed locally affine subpartitions of a fibration (as e.g. in Proposition
we mean the image through the map iy j X ip of directed locally affine subpartitions of the
corresponding k-directed sheaf set.

Proposition 3.22. Let {Zﬁ b,C’g ot =0,k be a locally affine directed subpartition of the sheaf set
’ ’ acAk be®
{Zk,CFY ). Then the sets

50 ¢ A0 : ¢
Zq,b = r(a, Zu,b)v Cq,b = 15 O Py (Ca,b)
orm a directed locally affine subpartition of the fibration D* = r(pyr ra(D¥)), and viceversa.
Park x
If moreover the subpartition {Zibvcﬁ,b}i,a,b is reqular, then also the subpartition {Zﬁ,bacﬁ,b}m,b is
reqular, and viceversa.

Proof. Since Ty st 2 is an invertible projection, the first part of the statement is obvious.
The same reasoning holds for the regularity of the measures. O

Recalling Propositions and it is fairly easy to prove the following
Corollary 3.23. Let D¥ be a k-directed fibration and fi, 7 € P(R** x RF) s.t. H{ﬁk (,7) # 0. Then,

-~ Fo(n ~k f “k ~k
(3.41) Telll (i,7) & =€ Hcck(q) (fig:7q )5
being i = [ fif dim(q), v = [ 0F dim(q) and © = [ 7% din(q) be respectively the disintegrations of i, 7 w.r.1.
the partition {{q} x R¥}4es, ,(ary and the disintegration of @ w.r.t. {{a} x R* x {q} x RF} s, , o)

4. DIRECTED LOCALLY AFFINE PARTITIONS ON CONE-LIPSCHITZ FOLIATIONS

In the first part of this section we generalize the notion of graph of a |- | p«-Lipschitz function up to the

definition of a cg-Lipschitz foliation, where C is the family of cones of directions associated to a given
k-dimensional fibration D € R%* x R*. From now on we fix k and we drop the superscript £ in the
notation for a k-directed fibration or k-dimensional cone. Moreover we will replace the variable q with a,
since it is clear from Proposition [3.20 and Remark that the quotient spaces of a sheaf set and of the
corresponding fibration can be identified.
In particular, for any fixed a € 2 = pga—« (D), the intersection of a cg-Lipschitz foliation with {a} x R
will be a suitable collection of disjoint (complete) C&(a)-Lipschitz graphs —namely, graphs of |- |f)(a)*_
Lipschitz functions where D(a) is convex set s.t. C(a) = epi| - | 5(a)+ (see Definition f and at most
countably many sets with nonempty interior.

Next, we generalize the notion of super/subdifferentials given in Definition for single graphs of
| - | p-Lipschitz functions to this new class of objects: at each point w € f)(a), the superdifferential will
be the intersection of the cone w + C(a) with the €& ()~ Lipschitz graph to which w belongs.

Our main result is Theorem [£.T8} in which we prove that, up to a residual set, a cg-Lipschitz foliation
can be decomposed into a directed locally affine partition whose cone of directions at each point is given
by the super/subdifferential.

Moreover, in Theorem we characterize the residual set as the set of initial/final points of the
super /subdifferential partitions (see Definition [3.7]).

4.1. Convex cone-Lipschitz graphs. Let C be the epigraph of a convex norm |- o~ R*=1 — R: by
Remark [2.1} as a subset of RF = RF~1 x R, C' € C(k,R*). We denote variables in R¥ as w = (,y) €
R*~! x R and we let Ca R* x R¥ — [0, +00] be the related conver cone cost (see Definition )

Now we introduce a class of subsets of R¥ which includes the graphs of | - | p+-Lipschitz functions
¢ : RF=1 — R. In particular, when k = d + 1 and C = epi| - |p=, this class contains the graphs of the
Kantorovich potentials v for the transport problem with cost (see Section .
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Definition 4.1. A set G C R¥ is a ca-Lipschitz graph if

(4.1a) GxGN{cs < +oo} C {(w,w'):w —weadl}.
Moreover, a cx-Lipschitz graph G C R¥ is complete if
(4.1b) 0(w,w') = {ca(w, ) < 400} N{ca( ') < +o0} CG, Vw,w' €G.

Notice that is equivalent to
w' ¢ w =+ intC, Yw,w € G,
which can be rephrased as
(4.2) G = graphpg  for some g : dom g C RFT SR, ©G | - | p~-Lipschitz.
The second condition yields
GD0(GxG):= U 0(w,w").
w,w' €G

Remark 4.2. If G = graph g with g | - |p.-Lipschitz and dom e = R*71, then G is a complete
ca-Lipschitz graph. The analysis of this particular case will be sufficient for the proof of Theorem @ If
dom g # RF~1, we anticipate that the “completeness” property is what we need to construct sets
which preserve the properties of the | - | 5.-super/subdifferentials of Lipschitz functions on RF=1: these
properties are fundamental for our later purposes, culminating with the proof of Theorem [4.18

Recalling Definition of super/subdifferential of the graph of a | - | p«-Lipschitz function ¢ we give
the following definition.

Definition 4.3. Given a set G C RF, define the ca-superdifferential and the cg-subdifferential of G
respectively as

OtG =G xGn{cs < +oo}, 37G::G><Gﬂ({cé<+oo})71.
Notice that 9~ G = (01G)~! and since

k
(4.3) (w+C)+CCcw+C, VweR:, CelJCERY),
=1
one deduces the transitivity property
w € 0FG(w) = 9FG(w') C 9FG(w).
The property of a set of being a complete cs-Lipschitz graph can be equivalently restated in terms of
its cs-super/subdifferentials as follows.

Proposition 4.4. G C R* is a complete ca-Lipschitz graph if and only if
(4.4a) 9*G C graph (I+0C),

(4.4b) O(w,w') C 9TG(w) NI~ G(w'), Y(w,w') € G xG.

Proof. By Definition[4.3] property (£.4a)) is a rephrasing of (4.1a]), and (4.4D) is a rephrasing of (£.1b). O

Recalling (3.10]) and (3.11)), we notice that if G’ is a cs-Lipschitz graph and ¢ is the function satisfying

[2), then
0FG = dFgraph pg =1 x ¢g (8igog).

Now we state a simple geometric characterization of the set 0(w,w’) which will be fundamental in
our study of the cs-super/subdifferentials of complete cs-Lipschitz graphs. First we give the following
definition.

Definition 4.5. For w, w’ € R¥, we let C(w,w’) be the extremal cone of C satisfying

(4.5) w' —w € intye Clw, w').

Equivalently, C(w, w’) is the minimal cone w.r.t. set inclusion among the extremal cones of C containing
w' — w.



40 STEFANO BIANCHINI AND SARA DANERI

Notice that, by (f.13), if w,w’ € G and cg(w,w’) < oo then C(w,w’) C dC, i.e. C(w,w') is a proper
extremal cone of C.

Proposition 4.6. 0(w,w’) is the conver set given by
O(w,w") = w+ C(w,w") Nw" — C(w,w")
and there exists § > 0 such that
(4.6) B¥(w,8) N (w+ C(w,w")) C O(w,w’) and B*(w',8)N (v —C(w,w')) C 0(w,w’).

In particular,
R (0(w,w') —w) = RT (v — 0(w,w")) = C(w,w’).

Proof. By Definition, 0(w,w’) D w + C(w,w’) Nw’" — C(w,w’) and since w’ — w € int, C(w, w’),
follows.

Let us assume that 3z € 0(w,w’) \ w + C(w,w’) and let F be the smallest face of C' such that
z—w, w —w € F. Notice that w' —w € OF. W.lo.g. weset w =0 and z = (21,22) € R“"! x R,
w' = (w],wh) € R~ x R w.r.t. coordinates s.t. F is the epigraph of a convex norm | - g : R“~! — R.
Hence, wh = |w]|g~ and either zo > |z1|p~, or 2o = |z1|p+ and wh — 2o > |w] — z1|g~. In the first case,
wh — 2y < |wh| g+ — |21 | < |w) — 21| g+, which implies w’ — z € aff F\ F € R¥\ C, contradicting the fact
that z € 0(w,w’). In the second case, we get wh — zo > |w] — z1|g+ > |wWi|E~ — |21|E» = wh — 22, thus
leading again to a contradiction. O

Observe that, with the characterization of Proposition and by projecting on R¥~1 ([4.4b)) can be
equivalently restated in terms of the super/subdifferentials of ¢ saying that, for all z, 2" € dom ¢¢, the
set 0% pg(2) N0~ pg(a') contains the convex set Oy, , (,2) such that

OPRk—l (.7}, CL'/) =T+ Cpkk—l (‘T7 x/) Nna' —C

Prk—1 (:Ev xl)

and

(4.7) R*(Op,,_, (,2") —2) = RT (2" = Op,,_, (x,2)) = Gy, _, (2, 2"),

being Cy_, _, (z,2) the minimal extremal cone of |-| 5. containing 2’ —x (see Section 2.2 for the definition
of extremal cone).

4.2. Convex cone-Lipschitz foliations. Let C : A x R — C(k;RF), A € R¥*_ be the convex cone
direction map of a k-directed fibration satisfying (3.34) and let cg be the cost function defined in (3.35).

Recall that, by ((3.35)

(4.8) cagla,w,a | w') <+o0o = a=4d,
and
(4.9) cala,w,a,w) = C&(a) (w,w").

Moreover, set
(4.10) C(a) = epi| - [p(a)
where D(a) C R~ for some suitable orthonormal coordinates independent of a.

Definition 4.7. A cg-Lipschitz foliation is a o-compact partition in 2 x RF with quotient map 6 :
domé C A x R¥ — T such that

(4.11a) (a,w),(d,w')e{=t} = {cala,w,-,)<+oo}N{ca(,,a w)<+oo}C{0=t},
(4.11b) O(a,w) =60(a/,w') = a=d.

By , and recalling , we set
(412)  0a)(w,w) == {cgq) (w.") < o0} N {egpe(-w) < oo} = (w+ C@) N (' — C(a)).

We note moreover that from (4.11bf) one has py {0 = t} = {a} for some a € 2, thus in general T =Ax S
for some Polish space & and pg 0 6 o pil = llg. Hence, for simplicity of notation, from now onwards we

will write —when not leading to confusion— a = py {6 = t}.
The following definition is given to simplify the notation in Proposition (see Remark [4.10)).
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Definition 4.8. We call non-degeneracy set of a cg-Lipschitz foliation the set

{t €% : Jw,w’ € prr{l =t} s.t.
(4.13)
int{cc(u)(',w/) < 400} Uint{cc(a)(w, ) < +oo} C (R¥\ pge{ = t})}

We say that the partition {0~1(t)}ex is non-degenerate if the set {t : {6 = t} # 0} coincides with its
non-degeneracy set.

In other words, the set {# = t} is non-degenerate if there are two points w, w’ in prr{€ = t} such that
(w' — C(a)) N{h =t} cw' —dC(a), (w+ C(a)) N {# =t} C w+ IC(a).

Proposition 4.9. Let {07'(t)}ex be a non-degenerate cg-Lipschitz foliation. Then, there exist two
Borel functions

b, bt {(t,x) €T xR g€ ppei ({0 = t})} SR

such that

(1) bt (t,x),h™ (t,x) are |- |p(a)--Lipschitz functions for all t, where {a} = pa{0 = t} and D(a)*

is given by (4.10);

(2) clos {6 = t}(a) C {(x,y) ERFMIXR:h (ta) <y< h+(t,x)};

(3) intya{d = t}(a) = {(x,y) € xRF1 xR :h (L) <y < ht(t, :z:)}.
In particular,

int,{0 =t}(a) =0 <= b (t,x) =hT(t,x) for v € pre-1{0 = t}(a)
(4.14) < {0 =t}(a) is a complete cg,)-Lipschitz graph
— {0 =1t}(a) = graphh™ (), _, (9=t} (a) -
Proof. By (4.11a)), {6 = t}(a) satisfies (4.1b)). In particular, for all x € pre-1({6 = t}(a)) the set
{yeR:(z,y) {0 =t}(a)}

is a segment. Thus define for x € prr-1 ({0 = t}(a))

(4.15a) h™(t,z) := inf {y L eaa) (@Y, 2,y) < 400 for some (2',y') € {0 = t}(a)},

(4.15Db) h*(t, z) := sup {y L (o (@Y, 2 y") < +oo for some (2',y) € {0 = t}(a)}.
Since {67 1(t) }¢ex is non degenerate, then for all z € pre—1 ({0 = t}(a)) it follows that
(,h™(t,z)) N int{cc(a)(-,w/) < 400} = (z,h(t, 2)) ﬂint{cé(a)(w, ) < 4oo} =0,
where w, w' are the points of non-degeneracy (4.13)), so that h™, h™ are real valued functions.
Using again property (4.1b)), one has also

b7 (ta) = inf {y/ + [z @'y : (¢',9') € {0 = (a)} ],

B () = sup {y/ — 2/~ @lpa- 5 (¢',y)) € {0 = (@)},
which show that h™, h™ are | - | D(a)+-Lipschitz, proving Point . Points and of the statement

are an immediate corollary of the definitions (4.15)) and property (4.1b]).
Finally (4.14) is a straightforward consequence of the first part of the statement. O

Remark 4.10. From the proof of Proposition [£.9]it is clear that out of the non-degeneracy set there are
three possibilities: either the function defined in is identically —oo or the function in
is identically +o0o or both things happen. Hence, for all a € 2 there exist at most countably many
{ta"}’neN C T s.t.

intye {0 = tq, }(a) # 0.
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In the following proposition we give the two examples of cg-Lipschitz foliations we will deal with in
the rest of the paper.

Proposition 4.11. (1) Let G = graph¢ C R* be a complete cs-Lipschitz graph. Then, the trivial
equivalence relation on {ag} x G given by the constant quotient map O,({ag} X G) = ay determines a
cg-Lipschitz foliation in {ag} x G C {ag} x R¥, being C the constant cone direction map C: {ag} x G >

(ag,w) — C € C(k,R¥), which satisfies ([A.14).
(2) Let {071 (t)}ex be the equivalence classes of a cg-compatible linear preorder < on A x RF with
o-compact graph (see Definition . Then they form a cg-Lipschitz foliation.

Proof. To prove the first part of the proposition, it is sufficient to notice that property (4.11a)) corresponds

to (4.1b) and (4.14) is a consequence of (4.1al).
As for the second example, by (2.43)) observe that if w,w’ € {§ = t}(a) then

{carm(w:) < 400} N{cgq (') < +oo} C {w” 1w g w” and w” < w'} C {0 = t}(a).

In view of (4.14]), we extend Definition 4.3/ to cg-Lipschitz foliations.

Definition 4.12. We define the superdifferential of a c&-Lipschitz foliation {67! (t) }¢cx as the set 976 C
A x R* x A x R¥ defined by

0%0(a,a) = {(w,w’) 20(a,w) =0(a',w') and cgla,w,a’,w’) < +oo}.
Analogously, we define its subdifferential as the set 9~0 C A x R* x 2 x R¥ given by

9 0(a,a) = {(w,w') 0(a,w) = 0(a’,w') and cq(d,w,a,w) < +oo}.

Clearly
070 =(0%0)!
and since by
(4.16) 050(a,d) £ = a=d,

then for simplicity we will use the notation
9%0(a) = 0%6(a, a).
Remark 4.13. Recalling Definition [£:3] notice that

aig(a) = U PkaRkai({e = t}(a)),

te®
o {0=t}=a

and, in particular, as for cx-Lipschitz graphs, we have the transitivity property
(4.17) w € d0(a,w) = 9%0(a,w’) C 9F0(a,w).

4.3. Regular transport sets and residual set. In this section we consider only the elements of a
cg-foliation whose {a}-sections are partitions into complete Ce( u)—Lipschitz graphs, namely level sets of
0 which satisfy .

We go through a careful analysis of the geometric properties of the super/subdifferentials of cg-
Lipschitz foliations, which finally leads to partition them into forward/backward regular sets and a residual
set.

By , in the following definitions the variable {a} simply plays the role of a parameter. Then, to
understand the geometric structure of the problem one can also think from now onwards that 2 = {ag}.
The dependence on a is kept in order to show that all the sets and functions constructed below depend
measurably (resp. Borel or o-continuously) on the parameter a. We will define the following sets through
their {a}-sections.
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Forward /backward transport set: the forward/backward transport sets are respectively defined

by
(4.18a) TH0(a) :={w:0%0(a,w) # {w}} =p1(876(a) \ I),
(4.18b) T 0(a) :={w: 0 0(a,w) # {w}} =p1(80(a) \ I).
Set of fixed points: the set of fized points is given by
(4.19) Fo(a) =R\ (T 0(a) UT0(a)).

Forward/backward direction multifunction: The forward/backward direction multifunction are
respectively given by

(4.20a) DH9(a) == {(w H) cw e THo(a),w' € 970(a,w) \ {w}},
(4.20b) D™ 6(a) := {(w, H) cw e T 0(a),w €97 0(a,w)\ {w}}

The following proposition collects the fundamental properties of the super/subdifferentials of cg-
Lipschitz foliations. The most striking feature is that, due to the completeness property of its
C& () Lipschitz graphs, the forward/backward direction multifunctions at a point of {6 = t}(a) contain
all the information about the super/subdifferential at that point and also in a “neighborhood” of it (see
Remark [4.16). Whenever w,w’ € {6 = t}(a), we will define C(a)(w,w’) and 0(a)(w,w’) as in Definitions
and for the convex cone C' = C(a).

Proposition 4.14. Let F ¢ C(a) be an extremal cone, w € T10(a). The following conditions are
equivalent:

(1) FNS*1 c DT O(a,w);

(2) there exists w' € 010(a,w) such that F = C(a)(w,w’);

(3) 0(a)(w,w') C dT0(a,w) for some w' such that F = C(a)(w,w’);
(4) there exists 6 = 6(w, F) > 0 such that

B*(w,20) Nw + F C 070(a, w).
In particular, if F satisfies one of the above conditions, then for all w' as in @-@
(4.21) FNsFt c DM (a,w) Vo € int,e0(a)(w,w’).
Finally, if F' is mazimal w.r.t. set inclusion among the extremal cones of é(a) satisfying , then
(4.22) FNst=! =D g(a,w) = convgs—1 DT 0(a, w) YV € intye0(a)(w, w'),
where w' is chosen as in @-@
Proof. = (). It is sufficient to take w’ € 97 60(a,w) \ {w} s.t.

!
YW cint,gF NSk
[w" —wl
and recall Definition [£.5]

= (). If w’ satisfies (2)), then (3] follows from the completeness assumption in the definition
of cg-Lipschitz foliation.

(3) = (4). It follows immediately from .

(4) = (1). Tt is a direct consequence of the definition of DT 6(a).

Proof of (4.21)). Let @ € inty10(a)(w,w’). Then, by the geometric properties of 0(a)(w,w’) given in
Proposition is fairly easy to see that w’ € 976(a,w), and C(a)(w,w’) NSF~1 € D*0(a,w). Since
W € intye0(a)(w,w’), C(a)(w,w') = F.

Proof of , Let now F be maximal and @ € int,0(a)(w,w’). By we already know that
F NSk c Df(a,w). Let us assume that there exists w € 9F6(a,w) such that @ —w € RF \ F:
being F' an extremal cone, then one has also @ — w € R* \ aff F. By the transitivity property 7
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W € 010(a,w) \ (w+ F) and, by simple geometrical considerations similar to those made in the proof of
Proposition [.6]
F ¢ R¥(0(a) (1, 0) — w)
with strict inclusion. Hence, by the completeness assumption , this contradicts the maximality of
F. O
A completely similar proposition can be proved for 0~ 6: we state it without proof.

Proposition 4.15. Let F C C(a) be an extremal cone, w € T~ 60(a). The following conditions are
equivalent:

(1) FNSF1 c D= 0(a,w);

(2) there exists w" € 0~ 0(a,w) such that F = C(a)(w”,w);

(8) 0(a)(w”,w) C 0~ 0(a,w) for some w” such that F = C(a)(w”,w);

(4) there exists 6 = 6(w, F') > 0 such that

Bf(w,20) nw — F C 9~ 6(a,w).
In particular, if F satisfies one of the above conditions, then for all w" as in @-@
FNst~t c D f(a,w) Vb € intye10(a)(w”, w).
Finally, if F' be mazimal w.r.t. set inclusion among the extremal cones of é(a) satisfying , then

(4.23) FNSt! =D 0(a,w) = convgr—1 D~ 0(a, @) V@ € intye0(a)(w”, w),
where w'” is chosen as in (@@
Remark 4.16. The radii of the balls § = §(F, w) satisfying Point in Propositions |4.14 for a fixed

w € T*0(a) might actually change as F varies in the set of extremal cones satisfying Point (1) and even
tend to zero for some sequence of distinct {F), }nen-

Finally, we define the (¢-dimensional) forward/backward transport sets and the residual sets: they
are defined in terms of properties of the forward/backward direction multifunctions, i.e. of “local” (see
Remark [4.16)) properties of their super/subdifferentials.

{-dimensional forward/backward regular transport set: for{ =1,...,k—1, the {-dimensional
forward/backward regular transport sets are defined respectively as

RT0(a) := {w € T0(a) : (i) DT O(a,w) = convgr 1DV O(a, w)

(i) dim (convgi-1 DT 0(a,w)) =£—1

4.24
(4.242) (i) Ju” € T0(a) N (w — intty) (R ™ convge 1 DF(a, w)))
such that 0(a,w”) = 6(a,w) and (i), (1) hold for w”},
R™0(a) = {w €T 6(a): (4) D 0(a,w) = convgr-1 D~ 0(a, w)
(i4) dim (convgi-1D~6(a,w)) =€ —1
(4.24b)

(i73) Jw” € T-0(a) N (w + intye (R convge-1D~6(a, w)))

such that 6(a,w”) = 6(a,w) and (i), (i) hold for w”}.

Forward /backward regular transport sets: the forward/backward regular transport sets are
defined respectively by

k-1 k—1
(4.25) RT0(a) := U RT40(a), R 0(a) := U R™40(a).
=1 =1

Regular transport set: the reqular transport set is defined by
(4.26) RO(a) := R 0(a) N RT0(a).
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R*+20(a) N R~20(a)

Z0(a) \ T 0(a)

FIGURE 8. A possible decomposition of a level set of 6 (or equivalently of a complete
ey a)—Lipschitz graph), with the various sets introduced in Section More precisely,

given the 3-dimensional cone of directions C(a), the yellow region represents the set
of regular points R*?(a) N R~%(a) with 2-dimensional forward/backward cones of di-
rections DT 0(a) = D~0(a), the black line the set of regular points R*!(a) N R~ (a)
with 1-dimensional forward/backward cones of directions, the blue line the set R16(a)
of points with 1-dimensional backward cone D~6(a) and 2-dimensional forward cone
D*0(a) and the purple line the set R™6(a) of points with 1-dimensional forward cone
D*6(a) and 2-dimensional backward cone D~6(a). The brown region represents a set
0(a)(w',w") as in ([{.12). As we will see in Section [4.5] the red curve represents the set
of final points £6(a)\ 7 +6(a), the green curve the set of initial points Z6(a)\ 7~ (a), and
also the blue line is contained in Z6(a) and the purple line in £6(a).

Residual set: the residual set is defined by
(4.27) Nb(a) := (T60(a) U ’7‘70((1)) \ RO(a).

Property (iii) (({4.24b)) (ii7)) will be crucial in Theorem in order to prove that the sets
of points in R*“0(a) (R™*(a)) which belong to the same level set of § and whose superdifferentials
(subdifferentials) have the same affine span are (-dimensional locally affine sets (see Definition [3.F)).

We now prove that all the above sets, except F0 and N6, are o-compact.

Proposition 4.17. The sets 0T0, T+6, D0, R0, R*0, RO are o-compact.
The sets FO, N0 are Borel.

Proof. For every set in the first statement of the proposition, we will construct o-compact subsets of a
Polish space whose projection corresponds to that particular set.
Subdifferential: consider the following sets:
(1) {(a,w,d’,w’) : cg(a,w,a’,w’) < oo}: since the function cg is o-continuous, it follows that this
set is o-compact;
(2) {(a,w,a’,w") : 0(a,w) = 6(a’,w’)}: the same reasoning of the previous point applies here, being
0 a o-continuous function in Definition @ of cg-Lipschitz foliation.
It follows that the set

9760 = {(a,w,a',w') EAXRY x A x RF : cq (o, 0, a,w) < +00,0(a,w) = 6(a, w’)}
= {(a,w,d",w") : cg(a’, v, a,w) < oo} N {(a,w,a’,w): O(a,w) =6(a’,w')}

is o-compact.
Backward transport set: the set T~ 0 is the projection of the o-compact set

Yo on{(awd w):|w-w|>2"},
neN
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and thus it is o-compact.
Backward directions: since

c Sk*l

{w#w'} > (w,w')

_—
w —w'|

is continuous, it follows that D@ is o-compact, being the image of a o-compact set by a continuous
function.

Backward regular transport sets: first notice that the map A +— convA is continuous w.r.t. the
Hausdorff topology and that the sets

(4.28) Cp (0, RF) := {C’ € C(LRY) : C(=1/m) D (B*(wpm, 1/(2m))N aff C), dist(wy,,aff C) < 1/(4m)}

are closed w.r.t. the Hausdorff topology, for all £ = 1,....k — 1, w,, € Q*, m € N. Since the function
C(¢,R*) 5 €'~ dim C is constant on these sets, then it is o-continuous.
Let us now prove that the set

{(w,w’,C’) eRF xR* x C(4,R¥) : ' € w — intrelC}
is o-compact. This follows by considering the closed sets C(—r) \ B¥(0,r), observing that
Cn—C = Cu(—r)\B*0,r) = C(-r)\ B¥0,r),
and writing the previous set as the union of countably many o-compact sets in the following way:
U {(w,w’,C) ERF xR x C(4,RF) s w' € w— (C(—27") \ Bk(0,2_"))}.
neN
From Proposition [£:15] we have moreover that
D~ 6(a,w) = convge-1 D7 0(a,w) < D~ 0(a,w)Nintyeconvegs—1 D™ O(a, w) # (.

Hence the set

{(u,w,a’,w’,(]) 2 (4) (a,w), (a/,w') € T 0
(i1) 0(a,w) = 6(d, w)
(iii) C' = R*convge—1D6(a, w)
) /
)

(iv) w' € w — intye C

(v) dim (convgr-1 D~ 6(a,w)) = dim (convgr—1 D~ f(a’, ")) = £ — 1
(vi) D~ 0(a,w) = convgr—1 D~ 0(a,w), D~ 0(a,w’) = convge-1 D~ H(a, w’)}

is o-compact, being the finite intersection of o-compact sets, and thus R~ is o-compact too.

The proof for 016, TT0, D6 and R0 is analogous, and hence the o-compactness of R0, R~6 and
RE follows.

Being the difference of two o-compact sets a Borel set, the Borel measurability of F6 and N® is
proved. O

4.4. Super/subdifferential directed partitions of regular sets. In this section we construct di-
rected locally affine partitions of the forward regular sets and backward regular sets of a cg-Lipschitz
foliation, which will be respectively called superdifferential directed partitions and subdifferential directed
partitions. As we will see, these partitions coincide on the regular set, thus giving a directed locally affine
partition which will be called cg-differential directed partition.

Define the maps

k—
+ . + k
(4.290) vt RTO o Tx U A(GRY)

(a,w) — vi(a,w):= (0(a,w),aff 970(a,w))
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v RGO SXIZL__JIA(K,R’“)
(a,w) — v (a,w):= (0(a,w),aff 0~6(a,w))

In the following, when clear from the context, we identify sets E, C {a} x R* with pgx E,.

(4.29b)

Theorem 4.18. The map v induces a (complete) directed locally affine partition on R0 into sets
{ZZ:+} =1, k=1 Zﬁ;z_ C {a} x RF
ae2,beBy 4 (a)
with direction cones

{Cﬁ’:} =1, k=1 Cﬁ’: C {Cl} X C(f, Rk)
’ acW,beB, 4 (a) ’

such that the following holds:
(4.30) Cﬁj{f is the extremal face of C(a) s.t. DV 6(a)(w) = Cﬁ:: Ns*! v € Zﬁ::.
Analogously, the map v~ induces a (complete) directed locally affine partition of R~0 into sets
{ZZ _} 2=1,...,k—1 5 ZZ b C {Cl} X Rk
& acA,beB, _(a)

with direction cones

oy ke, ChCc{a}xC(L,RY
{ & }aEQl beméljzf(a) a,b {} ( )

such that the following holds:
(4.31) C’Z ‘s 18 the extremal face of C(a) s.t. D™ 6(a)(w) = C’u s NS v e Zﬁg

As a corollary one obtains the following decomposition of RE.

Corollary 4.19. The two maps v, v~ coincide on R0, i.e.
(4.32) vi=vl =v_

B |6’

k-1
and the map v : R — T x U .A(€ R*¥) defined above induces on RO a (complete) directed locally affine
partition {Zib, o, C o} e=1,..k1 , where, for allb € By(a) and £ =1,...,k — 1,

a€A,beBy(a)

0 o+ £,— e _ At ol
Zap =2Zgy NZy Cap=Cop =Cfly-

a,b>
In particular, both (4.30) and (4.31)) are satisfied.
In the following we will use the following definitions.

Definition 4.20. Given a cg-Lipschitz foliation 6, the directed locally affine partition induced on R*6
by v is called the superdifferential directed partition, while the directed locally affine partition induced
on R~ by v~ is called the subdifferential directed partition.

The partition induced by v on the regular points R is called cg-differential directed partition.

We prove the part of Theorem which regards R0 and vT, being the one about R~6 and v~
completely symmetric. Notice that in the proof is also shown that the map a — B, 1 (a) is o-continuous.

Proof of Theorem[].18 Being a single-valued map, v* clearly induces a partition of RT6. Moreover, v

is o-continuous by Proposition [£:17] and the fact that the affine envelope of compact sets is o-continuous
w.r.t. Hausdorff topology. Since, by (4.11b)

vi(a,w)=vT(d,v') & a=d,

let

B4 (a) :=v({a} x RT0(a)) NT x A((,R¥)
and Vb € B, 4 (a) let
70t = {wewe( ) vt (a ,w):b}.

a,b

By (i), for all w € 2,y
RTDH0(a, w) = aff 9+0(a, w) — wN C(a) = pab — w N C(a) € C(¢,RF).
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Thus, by ([@{24a) (iii), Z,'§ € R0 and
Cﬁ:;‘ = pgb —wnN Cla)

satisfies (4.30)).
Let us now show that Zﬁ:g is relatively open in RT6 N pyb. More precisely, we prove the following

Claim 4.21. For all w € Zﬁ’{f, there exist

w' € 01 0(a,w) Nw + intrelCﬁ:: and w” € 97 0(a,w) Nw — intrelC'f’,z'
such that

int,e10(a)(w”, w') C Zﬁ’; )

By (4.244) (i) and ([4.22)) there exists w’ € 97 0(a,w) Nw + intrelC’ﬁ:: st. w' € Zﬁ:;‘ and by (4.24a))
(i4i) there exists w” € 97 0(a,w) Nw — intrelC’ﬁ:b+ st w' € Zﬁ;r By Proposition intye10(a)(w”, w')
is a relatively open neighborhood of w in psb.

Let now @ € int,e0(a)(w”, w’). By the completeness of the superdifferential (4.11al),

w € dt0(a,w”) and w' € 070(a,w).

Hence,

Cyy =R™D0(a,w') CRTD0(a,w) C RTD0(a,w") = Cyy
thus implying that w € Zf;: O

The proof of Corollary follows easily from the proof of Theorem
Proof of Corollary[{.19 If w € R6(a), then
we Zbinzly < RT9(a) n R 6(a).
By the transitivity property one has that
=1, Do(a,w) = D 0(a,w).
Hence, as in the proof of Claim [£.21]
w € intr0(a) (w”, w') C Zy i NZyy, Cof =Cuy,

yielding the conclusion. O

In the following we will use the notation ]5*, D~ and D to denote the o-compact graphs of the
directed locally affine partitions induced respectively by v, v~ and v, namely

(4.33a) DT .= {(E,a7 b,w,0) : v (a,w) = b,C =p2b —wN C(a),w € ij},
(4.33b) D = {(Z, a,b,w,C) : v (a,w) = b,C =psb —wNCla),w € Zﬁ;},
(4.33c) D= {(E, a,b,w,C) : v(a,w) =b,C =psb—wnN C(a),w e fo,b}.

We will also use the notations ¢ = (a,b), Zf’+, Cf’Jr. Recalling that 2 C R?* and observing that,
after the partition into sheaf sets as in Proposition and the injection into a fibration, we can take as

in (32

Bey = |J Bei(a) RV,
acA

welet ce €y CRIC (=1,... k-1
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FI1GURE 9. The yellow region is made of points in the regular set Rf. The points z and
2" in the figure belong to ZT0\ (ZOUEH). The points on the red segments belong instead
to £60 and the points on the green segments to Z6.

4.5. Analysis of the residual set. Now we give a characterization of the residual set as the union
of initial and final points respectively for the superdifferential partition and the subdifferential parti-
tion. Moreover, we fully characterize the super/subdifferentials at each point of the super/subdifferential
partitions in terms of the regular and initial/final points.

Recalling Definition [3.7] of initial and final points of a directed locally affine partition, let

(4.34) 0= | J 7(Z:7)

£,a,b
be the sets of initial points of the superdifferential partition {Zﬁ:g, Cﬁ:: }o.a,6 and let
(4.35) £0:=|]J&(2)

£,a,b

be the set of final points of the subdifferential partition {Zﬁb_7 Cﬁi;}g’a,h.
Theorem 4.22. The following holds:

(4.36) NO=TT0uE 0,

and moreover

(4.37a) 0t 0(a,w) = (w+Cyd) N (Zyg UEB(),  Ywe Z.,
(4.37b) 0 0(a,w) = (w—Cyy) N (Zyy, UIT0(a)),  VweZy,.

Remark 4.23. Notice that in general the points of the set A9, i.e. the complement of the set of regular
points R, may not belong to the set ZOUED, i.e. the set of initial and final points for the directed locally
affine partition {Zf , C% ;}¢.q,6 induced by v on RO (see Figure @)
The main observation in the proof of Theorem [4:22]is contained in the following
Remark 4.24. We observe the following properties of 710, T6:
weT () = 3Ir>0, Zﬁ: such that B*(w,r) N (w + intrelC'f:[f) C Zﬁ;f,

weT 0(a) = 3Ir>0,Zy, suchthat B*(w,r) N (w—int,aCyy) C Zy -

The statements follow respectively from (4.22)) and (4.23]), taking Cff equal to any maximal extremal
cone of R*D*f(a, w).



50 STEFANO BIANCHINI AND SARA DANERI

Proof of Theorem[}.22 Let w € N6(a): then from definition (4.27),

w e T 0(a)\RO(a) or we T Oa)\RI(a)
If we TH0(a)\ RT(a), then by Remark and Definition it follows that w € Zt6(a). If
w € (TT0(a) N RT(a)) \ R76(a), w € T 6(a) by ({.24a) (iii) and then again by Remark we
conclude that w € £60(a).
Analogously, 7~ 0(a) \R™6(a) C £ 6(a) and (7~ 6(a) "R~ 6(a)) \ RT6(a) C ZT6(a). This concludes the
proof of (4.36).
We prove (4.37a)), being the proof of (4.37b)) analogous. We already know by (4.30]) that

0T 0(a,w) Cw+ Cﬁ:;r for all w € Zﬁb+
Let now w € Zﬁi: and w” € 97 0(a,w) Nw — intrelCﬁz;r as in (4.25) (iii). Then, as in Claim for all
w' € 0T 6(a,w) one has

intye0(a)(w”, w') C Zﬁ’;.

Notice that now we do not need to specify that w' —w € intrele:Z because we already know Zﬁ:: to be

open in aff(w + C’ﬁ’:). Then there are two possibilities: either

(4.38) DHo(a,w') = Cyf NSk,
or by transitivity
(4.39) D 0(a,w') C Oy NS,

In case (4.38)) holds, it follows that w’ € Zﬁb+ Otherwise, one has
(4.40) w' € T70(a) \ R™6(a),
and then as seen before w’ € £70(a).
To prove ([4.40)), it is sufficient to take a maximal backward extremal cone F for w’ as in (4.23)) containing
Cot: by @39),
ot0(a,w’) N (W' + intye F) = 0,
and then w’ cannot be a backward regular point. O

4.6. Optimal transportation on cg-Lipschitz foliations. Let {67! (t)}ics be a cg-Lipschitz foliation
on A x R¥ ¢ R¥* x R* and consider two probability measures in (2 x R¥) which can be disintegrated
as

i= / fiadin(a), 7= / Gadi(@), = (paes )t = (Pres )P,

and satisfying

(4.41a) EOTN(T) =0(071(T) =1,
(4.41Db) 0 AT (1,0) =<mell! (p,o):x( | J{=t}x{0=10)=1}.
o= e ent o Yoo-90-0) -1

Notice that, by Definition of superdifferential of 6,
(4.42) T _ (i, 7) = T3, ) N {m : w(970) = 1}.
By Theorem |4.22
o=t =1t0ue 0uRroU Fo,
te¥T

hence 7 € Hfé (1, 7) if and only if it has fi and 7 as first and second marginal respectively and it is
concentrated on the set

(4.43) 90N [(TH0UEOURILFO) x (TH9UE OURIUFI)).
First notice that
(4.44a) aTON (FO x (AxRF)) =910 N ((Ax R¥) x F) = graph I 5o,
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(4.44b) TN (A x RF) x (TT0\ T6)) = graph I (7+o\7-0),

(4.44¢) ot ((T-0\TT0) x (Ax R¥)) = graph [ L (7—p\7+),

and thus the restrictions of all the transport plans in (4.42)) to the sets (4.44) are concentrated on the
diagonal {(a,w,a,w) : (a,w) € A x R¥}. Hence, we will assume w.l.o.g. that

(4.45) A(FO) =(FO) =0, AT O\TT0)=0, o(TTO\T 0)=0.

This is true e.g. if i L .

Now we give, in the same spirit of Theorem a more accurate description of the set (4.43) (we
will neglect the subsets (4.44)) by the above observation), independently of the measures fi, 7. As a
consequence (see Proposition below) we will get that if (ZT6) = 0, then the class of transport plans
(4.42)) coincides with the class of transport plans of finite cost on the directed locally affine partition of
Rt with quotient map vt defined in Theorem and, if 7(£760) = 0, they are moreover of finite cost
on the directed partition on R induced by the map v.

In Table |1 we put on the horizontal and vertical line the sets of a partition of Z*UROUE . If A is
a set belonging to the horizontal line and B belongs to the vertical, in the square (A, B) we write Y in
case possibly 970N (A x B) # 0, and N in case always 070N (A x B) = (). Recall that R§ = RTONR 6,
RTONEO=RTO\R O, R ONITO=R O\RTO, Z-0\T 0=T 0\T7"0,

IT0=(ZTO\T O U oNE OHUMR ONTTH),
EO=(EO\TTOUITTONE HU(RTOINE D),

are disjoint unions.

TABLE 1. The possible intersection of 76 with a partition of 76

RO|RYONEO| R ONLITO | ZTO\NT 0 | EO\NT 0 |ZTONE O
RO Y Y N N Y Y
RYONE=O| N Y N N Y Y
R-ONITO| Y Y Y N Y Y
ITO\T 6| Y Y Y Y (graphT) Y Y
EO\NTTO | N N N N Y (graphT) N
ItONEO | Y Y Y N Y Y

Proof of Table[]. First of all, (4.44D)) and (4.44d) yield immediately the row of £~6\ 716 and the column
of Zt6\ T~6, that we write just for symmetry. Moreover, by Remark also the row of ZT0\ 76
and the column of £70\ T+ easily follow.

In order to prove the other squares we will use the following facts, which have already been proven

and used in Sections and and are a consequence of (4.17) and definitions (4.24al) and (4.24b)):

(4.46) weRA@) = DO(a,w) =D b(a,w);
(4.47) weR Oa)NITH(a) = D (a,w) 2 D H(a,w);
(4.48) weRM(@)NE Oa) = D Oa,w) DD 0(a,w).

Let us first prove the relations given by the squares containing the letter N. Let w € R*6(a) and

w' € &7 0(a,w). Then,
() (446),[@48) (Z9%)
D O(a,w') T DT(a,w) C D H(a,w) < D O(a,w).

By (4.46) and ([4.47) we then conclude that 970 N (RO x RO NITTH) = @ and by (4.46)-([4.48) that
OTON(RTOINEOXRO) =0, 070N (RTOINE O xR ONITH) =0.

Let us now deal with the relations given by the squares containing the letter Y. We refer to Figure

First we claim that

(4.49) OTON(RYONE OXxTTOINE H) #0.
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+9(a,w) ' D*@(a, U})

(4.49) #.50)

D*f(a,w)

D 0(a, z) '

(4.51) .52

F1GUrE 10. The relations given by the letter Y.

Indeed, let e.g. w € R*0(a) N E~H(a) such that
dim(RTD0(a, w)) = 2,
D 0(a,w) € D™ H(a,w) S convgr—1 D~ (a,w),
dim(R* convgr- 1D~ 0(a, w)) =
and v’ € 910(a,w) s.t.
D 0(a,w’) = convgr- 1D O(a,w) but DTO(a,w’) C convgr1DTO(a,w') = D O(a,w).
Next we claim that
(4.50) 970N (RO x RYONE0) 0.
Indeed, it is sufficient to take e.g. w € Rf(a) with dim(RTDT0(a,w)) =2 and w’ € 970(a, w) s.t.
D 0(a,w') =D 0(a,w) but Do(a,w’) = convge1D0(a,w’) C D O(a,w).
Now let us prove that
(4.51) TN (R™ONTTO x RO) # 0.

Take for example w € R™0(a) NZ70(a) and w € d10(a,w) Nw + int,e F as in (4.22) with F' maximal
face in R™D%0(a,w) containing R*D~60(a, w).
Finally we claim that

(4.52) OTON(ZTONE O xR ONTTO) # 0.

Hence, by the transitivity property ([#.17), (4.49)-(4.52) immediately give all the remaining Y squares in
the table.
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In order to show (4.52)), let w € Z+6(a) N E~0(a) with
DYh(a,w) = convgr-1 DT O(a, w),
dimRTDT0(a,w) =3 and
D 0(a,w) C convgr-1D~0(a,w) € DT O(a,w).
Then, let w’ € 0T0(a,w) N w + intye (R convgr-1D~6(a, w)) s.t.
DT 0(a,w') = DT(a,w) and D f(a,w') = convgr 1D~ f(a,w).

Neglecting ([4.44), we conclude that
(4.53) 070N [(TOURIUE 0) x (THOURILETO)| = [9701 (RO x (ROUE0))]
uloton (RTNE0) x£76)]
U [aw N (Z70 x T—e)}.
Using (£.53), Theorem [I.18) and Corollary [1.19 we have the following.

Pr0p051t10n 4.25. Let {07 () hiex CP(A x R¥) be a cg-Lipschitz foliation and fi, 7 € P(A x R*) such

that ( and - hold.

If,u I*Q) =0, then
Fell (o) < #Fell  (ip),
where D is the locally affine partition induced by v on R0 and cpy, the related cost, as defined in
(13.20)).
Moreover, if f(Z10) =0 and p(RTONE0) =0 then
Fell (1,9 < 7ell (a,p),

where D is the locally affine partition induced by v = v‘tw on RO and cp the related cost.

We end this section with the following special case.

Proposition 4.26. Let t € T, a = py({0 = t}). Then (3.25)) holds for the differential directed locally
affine partition of the regular set of {0 = t}

{Zuba ab}é 1,..., k—1-
be %g(a)

Proof. For (£,b) # (¢/,b"), let
€ (Zﬁ,b + Cf,b) (Z a, b’ + Oa o) NPrrD(Y),
where {Z£ ,,C% Yoo is the directed locally affine partition of D(4). Hence, z € w + C p Nw' + Cu P (

some w € Za b W E Zf:b, and, since by assumption 6 is constant (namely, equal to t) on kaD( ), then
by definition of superdifferential

a,b’

z €07 0(a,w) NIt O(a,w’).
By the transitivity property and the fact that z is regular

which implies that Ca b= Ca pr» thus £ = ¢ and aﬂZe b= aﬂ“Zu p-- Hence, by definition of v, Z(1 b= Zﬁlb,
contradicting our initial assumption. 0

Remark 4.27. By Proposition [£.26] the differential partition of a single complete cs-Lipschitz graph

satisfies (3.25]).
From Proposition and Proposition one obtains immediately the following



54 STEFANO BIANCHINI AND SARA DANERI
Corollary 4.28. If ji, i are as in Proposition[{.25 and i(Z+0) = 0, #(E~0) = 0, then
Felll (o) & 7= /frfdm(c), 7L eTtl (it vl),

where {7}, {it} and {D¢} are respectively the disintegrations of 7, ji, U w.r.t. the partition induced by
V.

5. DIMENSIONAL REDUCTION ON DIRECTED PARTITIONS VIA CONE APPROXIMATION PROPERTY

In this section we recall, in an abstract and more general setting, the main steps of the disintegration
technique first introduced in [8] for partitions into segments and then extended to locally affine partitions
of any dimension in [I4]. This technique allows to prove the absolute continuity of the conditional
probabilities of the Lebesgue measure and to deduce that the initial and final points of a directed
locally affine partition are Lebesgue negligible, provided the direction map satisfies a suitable regularity
assumption that we call (initial/final) forward/backward cone approzimation property. For more details
on the proofs of the results contained in this section, we refer to [14], Section 4.

5.1. Model sets of directed segments. We first deal with model sets of directed segments, namely
1-dimensional sheaf sets whose projection on their reference line is a given segment. At the end of the
paragraph, the forward/backward cone approximation property for these model sets will be introduced
as a sufficient condition in order to have absolutely continuous disintegrations.

Definition 5.1. A model set of directed segments or 1-dimensional model set is a 1-dimensional directed
sheaf set {Z}, Cl},con with o-continuous direction vector field

(5.1) d: |J zi =8, a:ZyszeCinstT
aeA!
and reference line (e) for which there exist h~,ht € R, h~ < h™, such that

Pey(Za)=(h",ht)e  VaeA.

We will also call model set the set Z' = Léll Z!, and we say that the triple (e,h=, h™") is a reference
ac

configuration. Moreover we assume that
LUZY) < +oo.
For shortness we will sometimes use the notation Z!(d, A, e, h=, h").

We also set Z' = Z1 as in (13-14)

(5.2) Z = U clos Z}.
acAl
Notice that
=1
Z Np
1
a

@ (A7 hF)e) =271

Given a 1-dimensional model set {Zl,Cl},cqn with reference configuration (e,h~,h"), define the

perpendicular sections
(5.3) P =7 Npllte),  te[n,h*].
Clearly from Definition [3.7] one has

Py =1(Z'),  Ppr =E(ZY),

where Z(Z'), £(Z') are the initial/final points of {Z}, C1} con.
For all t € [h~, h], denote also

(5.4) d':=d.p,,
where d" : P,- — S%1, a"" : P+ — S?1 are the multivalued extensions of d defined by
(5.5) d" (z) = {Cins* 'z e1(Z))}, dh+(z) ={Ccinst:ze&(Z))}.

Lemma 5.2. The sets graphd” , graph ar" are o-compact, and hence there exist Borel sections

I(ZY) 32 d" (2)ed (2), EZY)32-d" (2)ed (2)
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Proof. W.l.o.g., we prove the result only for graphd” .
Since d is o-compact, let Z' = LlJle such that Z] are compact and diz: is continuous. Then it is fairly

easy to see that the multivalued maps

p@(h‘e) N (z+Rd(z)) = d(z), z€Z,

are compact, and thus the regularity of graphd”  follows.
The existence of sections aff, d"" with Borel regularity is standard for compact multifunctions (see
for example Theorem 5.2.1, page 189 of [26]) and an easy argument yields the conclusion. 0

We will define the vector fields
(5.6a) di(2) =d" (¢) if ze(Z+Rd: ()N p(ei([h_, ht]), 2 € domd”} ,

(5.6b) d(z):=a""() it ze(d+RA () Npl(h . 7)), € domd”’

In particular,
diip, =dt,  dp,=d
+LP, = 4y —-LP = )

and
iyt (hi)e) = Fdom s npl (b Aib)e)”
Define for s € (h=,h™), t € [h~, h*] the map
d(z)
d(z)-e’
which sends each point of the section Ps in the unique point of P, which belongs to the same segment of
the model set. It is a bijection for ¢ € (h™, h"), with inverse o®*.

Given Borel measurable selections di, as in (5.6a) and (5.6b), one defines for s € [h=,ht) (s €
(h=,h*]), t € [h~,h*] the map

(5.7) ot Py — P, 2z z+ (t—9)

(5.8) 53" P,ndomdy — P, z»—>z+(t—s)a7

ds(2)
+(2)-e

Notice that 55" coincides with UitLdomaiﬂp—l((h, h+yey for s # h¥.
(e) ’
5.1.1. Cone approximation property and absolute continuity. We recall that our problem is the following:
if
Cd\_zlz /’Ua dn(a)
is the disintegration of £% 21 w.r.t. the partition {Z1} aeaur, then we ask whether
Vg K ’Hleg and/or vy ~ ’Hleé.

By the next lemma, the absolute continuity problem along the segments {Z1}, can be reduced to an
absolute continuity problem for the push-forward of H¢~! on the sections through the maps .

Lemma 5.3. Let us fiz a section P, of Z', t € (h=,h"). Then, the following two statements are
equivalent:

(5.9) a;’t (R p) < HEMp,  for L'-ace. s € (b7, hT);
5.10 n<HT I p and vy < H'Lp, forn-a.e. a.
t a
Moreover, also the following two statements are equivalent:
(5.11) a;’f (Hd_let) < H¥ ' p and formula (5.9) hold for L'-a.e. s € (h™,hT);
(5.12) ne~HT U p  and v~ Hleg, for n-a.e. a.

The proof of Lemma [5.3[is an application of Fubini-Tonelli theorem w.r.t. the projection on (e) and
the change of variables formula for the maps o®f. We give a short proof for completeness.

In particular, whenever ([5.12)) holds, Z' is a regular partition according to Definition
o3



56 STEFANO BIANCHINI AND SARA DANERI

oo h*

e

FIGURE 11. A model set of directed segments and a union of two cone vector fields.

Proof. By (5.9)

J;’t (Hd_leS) = f(s,t, -)Hd_let
for some Borel non-negative function £, for a.e. s € (h™,h™) and thus by Fubini-Tonelli theorem we can
write for a compactly supported function ¢ : R4 — R

/ 6L = /h [ /P S (b(z)d’l-[d_l(z)}ds: / h+{ A (b(at’s(z))d(a;t’l-td_les)(z)}ds

KT
Rt ht
= / [ ¢(at’s(z))f(s7t,z)d?—ld_l(z)} ds :/ [ qﬁ(ot’s(z))f(s,t,z)ds} dH1(2).
- P, P, L/~
By the uniqueness of the disintegration (see Theorem , this shows that (5.10)) is true. Repeating the
argument starting from the end, one can prove the equivalence of (5.9) and (5.10)).
By using the additional assumption (5.11)), f(s,t,-) is H¢ '-a.e. strictly positive on P;, for a.e. s €
(h=,h*) and the equivalence of (5.11)) with (5.12) follows immediately. O

Now we are ready to introduce the forward /backward cone approximation properties, which will imply
the assumptions of Lemma [5.3] For notational convenience, we will state the definition of cone vector
field.

Definition 5.4. The cone vector field with base in E; C R¢, and vertex z € E, C R? \ B is defined as

d : EF; Ddomd — Sd-1
z — o d(z) = £=2

R EE
We say that d is a finite union of cone vector fields with base in E; and vertices in FEs if there exist
finitely many cone vector fields {d;}/_, with bases in E; and vertices {%;}/_, in By C R%\ E; such that
the sets
Eq, :={(1-t)z;+tz,t€[0,1],z €domd;}, i=1,...,1,
satisfy Eq, N Eq; = 0, for all i # j.
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Definition 5.5. We say that the model set of directed segments Z!(d,A',e,h=,h") has the forward
cone approximation property if there exists e > 0 such that for all t € (h~, h™) there exists {d§ }jen finite

e

union of cone vector fields with base in P<_e]§ (te) and vertices in P, ;((h"‘ + €)e) such that
HH(P,\ domd!) =0

and df — d* H4 ' p-ace.

Analogously, we say that the model set of directed segments Z!(d, !, e, h~, h) has the backward cone
approzimation property if there exists € > 0 such that for all t € (h™, h™) there exists {d; }jen finite union
of cone vector fields with base in p(e;(te) and vertices in p(e%((h_ — ¢)e) such that

HYH (P, \ domd!) =0
and d — —d' H" ! p-ace..

Lemma 5.6. If Z'(d,2',e,h™,h") has the forward cone approzimation property, then for h~ < s <t <
ht

ht4+e—s\"
S,tq d— _
(513) O';_ Hd 1LPS§ (hJF—i-e—t) Hd 1|_Pt.
Analogously, if Z*(d, A, e,h=,h*) has the backward cone approzimation property, then for h~ <t <
s<h™

s,tqd—1 s—h™+e\"7 i
(514) O'# H I_PSS <t—h—i—€) H Lp,-
Proof. We prove only the first estimate, since the proof of the second is completely similar.

It is fairly easy to see that the estimates hold for the map o%! associated to a cone vector field with
bases in P; and vertices in P+, . as in Definition by similitude criteria for triangles or equivalently
by the polar change of coordinates in R?. Hence, the same estimate holds also for the finite unions of
cone vector fields approximating d° as in Definition [5.5

Restricting by Egorov’s Theorem to continuous and uniformly convergent sequences {d]S }jen on com-
pact subsets of Pj, by the us.c. of %! on the hyperplanes perpendicular to (h~,h*)e w.r.t. the
Hausdorff convergence of compact sets, the inequality immediately passes to the limit. O

It is straightforward to observe that (5.13)) implies (5.9) and (5.14]) implies the first part of (5.11).

Hence we have the following

Corollary 5.7. IfZ'(d,2',e,h™,h") has either the forward cone approximation property or the backward
cone approximation property, then

n <K HT gn and vg < Hleé for n-a.e. a €A

If both the forward cone approzimation and the backward cone approzimation properties hold, then Z'
is a reqular partition, i.e.

neHT g and  vg 7—[1\_3% for n-a.e. a €A

We can extend the forward/backward cone approximation properties to Borel sections of initial/final
points. This will be useful later (see Theorem|5.21)), when we will give conditions ensuring that £4(Z(Z)) =
0/L4(E(Z)) = 0 for a directed locally affine partition Z.

Definition 5.8. We say that Z!(d, 4!, e, h—, hT) satisfies the initial forward cone approzimation property
if there exists a Borel section d; which satisfies the assumptions of the forward cone approximation
property of Definition |5.5 for all ¢ € [h~, hT).

Similarly, Z'(d, A, e, h~, h*) satisfies the final backward cone approvimation property if there exists
a Borel section d_ which satisfies the assumptions of the backward cone approximation property of

Definition for all t € (b=, hT].
The next lemma is the analogue of Lemma for the Borel sections d.

Lemma 5.9. If Z'(d,2',e,h™,h") satisfies the initial (final) forward (backward) cone approximation
property, then (5.13) (resp. (5.14)) holds for 65" (6°°), for allh™ < s <t <h* (resp. h~ <t <s <h?*).
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5.2. k-dimensional model sets. In this section we extend the results for 1-dimensional model sets to
the k-dimensional model sets defined below.

Definition 5.10. A k-dimensional model set is a k-dimensional directed sheaf set {Z¥ Ck} o with
reference plane V* = (ef,... ek), for which there exist h™ = (hy,...,h;), ht = (hf,... b)) € R¥,
with 2} < hj' forall j =1,.. .,k, such that

(5.15) pyrZF = intyqU ({ef},h™,h") {zjtjeéc € (h; ,hj)}

We will also call k-dimensional model set the set Z¥ = U ka Setting
ac®l

D:ZF = C(k,RHNST, D:ZF3:2- D(z):=0CFnsi!

for the direction map, sometimes we will use the more precise notation Zk(D Ak el, ,ek %, h7,ht) and
we say that the 3k-tuple (ef,.. ek, h™,h™) is a reference configuration for the model set

The absolute continuity problem for the disintegration of the Lebesgue measure on a k-dimensional
model set Z* can be reduced to the absolute continuity problem for 1-dimensional model sets obtained
cutting Z* with suitable (d — k 4 1)-dimensional planes, called slices.

Indeed, for all e € C'({e¥}) NS?! and w € int,qU({eF},h=,ht), set

h™(w,e) := inf {t eER:w+tee U({ef},h_,h+>}’

ht(w,e) := sup {t ceR:w+tee U({ef}7h*,h+)}.

Definition 5.11. Given a k-dimensional model set Z*(D, 2 e}, ... eF h™ hT) we define 1-dimensional
slice of Z* in the direction e € C({eF}) NS4t any set of the form
(5.17) z* Npy+ (w + (A~ (w, e), h+(w,e))e), w e U({ef},h™,h").

The important observation is the following;:

Remark 5.12. By (5.15)) and Point (3) of Definition [3.17 the 1-dimensional slice is a model set of
directed segments in the (d + 1 — k)-dimensional space py;;. L(w + (e)) with dlrectlon Vector field

(5.18) de ::Dﬂpvk«e)),

quotient space 2* and reference configuration (e, h~(w,e), h*(w,e)).

As a consequence we obtain the following k-dimensional version of Lemma [5.6]

Lemma 5.13. If the forward (or backward) cone approximation property holds for all the 1-dimensional

slices of a k-dimensional model set Z* in the directions e’f, ... e’,j, then

L zn= /vf dn(k,a), with v¥ <« H}CI_ZEIf and (k) < HF g

If both the forward and the backward properties hold for all the above slices, then Z* is regular, namely
(5.19) n(k) ~ HEF g and v ~ HF Lzk for n-a.e. (k,a).

Proof. W.l.o.g. we assume e to be the ﬁrst k unit vectors of a standard orthonormal base in RY,
h;<0<h;'Vj=1, kand?lk ZNp, (0)

For z € U({ef},h™, h*) N p<_ei>(0)7 consider the 1-dimensional slice
1

Zy = Z" npyi(z+ (b, hDel) = | Za npyi (z + (b7, h)ed).
acAk

By Fubini-Tonelli theorem

ﬁd\_zk: / £d7k+1Lzl ﬁkil(dfﬂ)
Zhp g, () ’
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and applying Lemma in the case of forward (or backward) approximation property, we obtain the
disintegration

d - d—
L zk= /Ucll,xdm(%ﬂ% with vg , < Hle{;np;i(ﬁ(h;,hj)eI;)v m<H lekan;>(o)-
°1

Now one repeats the procedure starting with the measure £9~! restricted to the (k — 1)-dimensional
model set in R4~ given by
21 = 78 np L (0)
1

and considering directions along e}, which allows to write

. 1 d—2
Maydnz(y,a),  with i, <H SZknpy (y+(hy kg eb): 2 <H LZ"'I"‘lp;]lc , (0)
°10%2

Hence by composing the two disintegrations one obtains

d _ 2 : 2 2
Lo zr= /Ua,ydTIQ(yva)a with vy, <H “250p ]k (v (b BT el +(h h)eh)

Iterating the process k-times, one obtains the result.
In case both approximation properties holds, the same analysis shows ([5.19)). O

5.3. k-dimensional sheaf sets and D-cylinders. Now we apply the cone approximation property
technique also to general k-directed sheaf sets.

Let {ZF,C*} conr be a k-directed sheaf set with reference plane V¥ = (ef ... ek} base rectangle
U({e¥},h7,h") and direction map
(5.20) Dk(a) := Chnsit,
For k" c ¥ o-compact, set
k. k
(5.21) b= ] Zk
agAk’

Definition 5.14. Any k-dimensional model set Z*(D, DILA e¥,...,ef h= ht) of the form
Z" (D, A% b, . el b ht) = ZF npy ) (intyaU({ef}, h ™, hT))
for which there exists € > 0 such that
Zk<D,Qlk’,,elf,...,e],§,h_ —(&,...,€),hT + (e,...,e))

=7 n Pyk (intrelU({eth_ —(&...,€),hT + (¢, ..., e)))

is also a k-dimensional model set, will be called k-dimensional D-cylinder.

In particular, by the above definition and Definition [5.10)

kaZf D intrelU<{ef},h_ —(&...€),ht +(e,... e)) Vaedb
Remark 5.15. Notice that, since any Z¥ is a relatively open set, then the sheaf set can be covered by a
countable disjoint collection of k-dimensional D-cylinders
(5.22) ZH = 78D, AR ek, .. ek by b)),  neN,
up to the points which belong to the perpendicular sections
Zyy O pyr (OU({ef} oy 1)),

In particular, the k-dimensional D-cylinders as in (5.22)) define a partition of the sheaf set yA up to an
L%negligible set.
Definition 5.16. Define 1-dimensional slices of a directed locally affine partition {ng7 Cf}kzlw,d the

acak

1-dimensional slices of any of the k-dimensional D-cylinders given by (5.22)), for any of the countably
many k-directed sheaf sets Z* given by Proposition (3.15)).
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Remark 5.17. Notice that, for any 1-dimensional slice of a D-cylinder
Zﬁ’/ N p;i (wn + (h*(wn, en), hT (wy, en))en), wy, € intmlU({ef}, h;,hfl), e, € C({ef})7
as in , there exists € = €, > 0 such that the set
Zfl"/ N p‘_/i (wn + (h_(wn, en) — €n, h (wn, en) + en)en)
is still a 1-dimensional model set. This assures that the extreme points of the segments of the slice do

not contain relative boundary points of the sets of the partition, and in particular the vector field d.,, is
single-valued up to the boundary of Z,lfju.

The main result of this section is then the following theorem.

Theorem 5.18. If either the forward cone approximation property or the backward cone approximation
property holds for the 1-dimensional slices of a directed locally affine partition {Z¥, C{f}k’aemk, then

LA gn= /vfdn(/{, a)  with n(k) < H " Lgr and oF < "HkLZ{: for n(k)-a.e. a € A*.

If both properties hold, then Z* is reqular, i.e.
n(k) ~ HF L yr and vf ~ HkI_Z‘I]c for n(k)-a.e. a € A*.

Proof. By Proposition and Remark using a simple covering argument and c-additivity of
measures one can reduce to study the absolute continuity of the disintegrations on D-cylinders. Then,
by Definition [5.16] one concludes using Lemma [5.13]. g

5.4. Negligibility of initial/final points. Now we deal with the other measure-theoretic problem
connected to directed locally affine partitions, namely to establish whether

LYT)=0 and/or L4YE)=0.

It turns out that these properties are implied by the validity of the initial/final cone approximation
properties for initial/final 1-dimensional slices.
Definition 5.19. An initial 1-dimensional slice of a directed locally affine partition {ng7 C’f}k:17,,,,d is

acuk
a 1-dimensional model set of the form

ZF N p‘_,i (w + (h™, h+)e)
for a k-directed sheaf set Z* with reference plane V¥ = (ey,...,er), e € C({eF}) NS?~1, for which there
exists € > 0 such that the set
ZFNpyi(w+ (B, AT +e)e)
is still a 1-dimensional model set.
Similarly, a final 1-dimensional slice of a directed locally affine partition {ZF CF},_; 4 is a 1-
acuk
dimensional model set of the form
yAde p‘_/i (w + (h™, h+)e)
for which there exists e > 0 such that the set
ZF N p‘_,i (w + (h™ —¢ h+)e)
is still a 1-dimensional model set.

By Remark the vector field de of an initial slice can be multivalued only at the points of the
section Pj,-, while for a final slice it can be multivalued only on P} +.

Remark 5.20. Notice that a 1-dimensional slice of a directed locally affine partition according to Definition
is both an initial/final 1-dimensional slice. In particular, since the direction vector field of a 1-
dimensional slice is single-valued, its Borel-measurable sections coincide trivially with itself and then the
initial /final forward /backward cone approximation properties (see Definition are simply an extension
of the forward/backward cone approximation property (see Definition to the initial/final points of
the slice. Hence, saying that the initial/final 1-dimensional slices of a directed locally affine partition
satisfy the initial forward/final backward cone approximation property implies that the 1-dimensional
slices of that directed locally affine partition satisfy the forward/backward cone approximation property.
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The following theorem follows from Corollary as in the density Lemma 4.19 proved in [I4] for the
relative boundary points of the locally affine partition into the faces of a convex function.

Theorem 5.21. If the initial 1-dimensional slices of a directed locally affine partition satisfy the initial
forward cone approximation property, then
L4T) = 0.
Similarly, if the final 1-dimensional slices of a directed locally affine partition satisfy the final backward
cone approximation property, then

L£Y&) =o.

We give only a sketch of the proof, since the details have already been given in Lemma 4.19 of [14].
Proof. W.l.o.g. we can restrict to a k-directed sheaf set Z¥ with reference k-plane V¥ = (e¥, ... ek). Let
us then consider the map
(5.23) I3z 1(z):=sup {r t 2 + (intres C¥ N B40,7)) C ZE, for some a € Qlk}.

By Definition 1(z) > 0 for all z € Z, and then by a countable covering argument we need only to
prove the negligibility of the set
(5.24) 7 :=Tn1 (%),
with 7 > 0 fixed. B
Assume that £4(Z") > 0 and that z € Z* is a Lebesgue point of Z". Then if e € C({eF}) NS?~1, at
least one of the sets )
Pyite =72 N p;i (w+te), we (e)tnVFk,

has H9 *-positive measure, and we can assume that Z is also a Lebesgue point for H?*_p_ For

. . =k, N - .
definiteness, we will assume that Py yte = Pypih—(me)e = & pvi (w+ h™(w,e)e) for some w in the

+te”®

relative interior of the base rectangle of Z ko zk , and let
Pasn- ey 3 2= d" (2) = {cgf Np,i(e):ze I(ng)}
be the multivalued maps defined in (5.5)) for the 1-dimensional slice ij{:e defined by

k' o ok~ 1 . ko~ —1 +._ .-, T
Zyo = {ZCl Npyr(w+ (™, ht)e),Ck mpvk<e>}a€%,, ht:=h +35

where 2% is the sets of a such that Z¥ has an initial point z on Py ih(w,e)e and
2 + int, CF N B40,7/2) C ZF.
If 4 is a Borel section of d"  chosen accordingly to Definition then consider the 1-dimensional

"

slice Z&', © Z%, defined by

b

Zh = {Z§ Npyt(@+ (A, ht)e),CEN p;i(<e>)} Rt i=h +

agauk"’

>~ 3

where A" < A" is the set of a satisfying
2€ Pyin-(wee = df (2)=CgNppr(e)nsi™

In other words, fo,,; is the l-dimensional slice whose initial points belong to Pgip-(@,e)e and whose
segments are given by domd, N p‘ji (w+ (h(w,e),h~(w,e) + &))e, where d; was defined in (5.6al).
Clearly, by restricting to a o-compact H%~*-conegligible subset of Pg1h~(w,e)e S0 that aif is o-continuous,
this procedure defines an initial 1-dimensional slice.

By the initial forward cone approximation property, Lemma implies that if z € I(Z,’%”e) is a

Lebesgue point of dekprHr(a e then

lim | lim 4 *(Z5" A Py, 0 Bz —1.
lim | lim (2 N Pav (z.7))

Since Z*" NZ™ = (), this clearly contradicts the fact that z is a Lebesgue point of Z7.
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O

In view of Theorems and and recalling Remark for future convenience we give the
following

Definition 5.22. A directed locally affine partition satisfies the (initial/final) forward/backward cone ap-
proximation property if its (initial/final) 1-dimensional slices satisfy the (initial/final) forward /backward
cone approximation property.

6. PROOF OF THEOREM [I.1]

This section is devoted to the proof of Theorem [I.1] which we recall below.

Theorem Let p,v € P(RY) with u < L and let | - |p- be a convex norm in R?. Then there exists
a locally affine directed partition {ZF,Ck}—o. . 4 in RY with the following properties:
acAk

(1) for all a € A* the cone CF is a k-dimensional extremal face of | - |p+;
(2) (B U 25) =0;
a
(3) {ZF}.a is reqular, mnamely the disintegration of the measure £ w.r.t. the partition {Z%}y q,

L gu= vs dn(k,a), satisfies
k,a a
o ~ 7—[’125? for n(k)-a.e. a € A,

(4) for all m € Hﬁ’;(,u,u), the disintegration m = /775 dm(k,a) w.r.t. the partition {ZF x R}y o
satisfies

e € L, (1, (p2)3me),

where p = /,u’; dm(k,a) is the disintegration w.r.t. the partition {Z¥}1 , and moreover

SEHEM S U, )zgf:)) 1

(K,a’)#
If also v < L%, then for all m € I (u,v)

|| p*
(p2)ums = vk

where v = /VilC dm(k,a) is the disintegration w.r.t. the partition {Z¥} o, and the converse of Point
holds:

Wl (vt = mel (un)
We start the proof by recalling that, by Proposition |3.4
(6.1) s Hﬁ‘l);* (n,v) <= 7ell(i,p), #(0Tgraphy) =1,

where 1 : R? — R is the | - | p--Lipschitz function given by a Kantorovich potential and /i, 7, 7 are the
push-forwards of y, v, 7 on R! through the map (I x ).

By Remark grapht C R is a complete Cepil-| p= ~Lipschitz graph, according to Definition
Then, by Proposition call 0y the trivial c-Lipschitz foliation on R+ associated to graph .

We now show that Theorem follows from , thanks to the results of Sections 4| and |5[ and the
following theorem.

Theorem 6.1. Let graph¢ C R4 be a complete Cepil-| p« ~Lipschitz graph. Then, the superdifferential
partition satisfies the initial forward cone approximation property and the subdifferential partition satisfies
the final backward approximation property.
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Indeed, recalling Definition first notice that if Theorem holds, then by Theorem [5.21
(6.2) HUTY0,) = HUEO,) = 0.

Moreover, by Remark and the fact that D = Dt N D~ (see (4.33)), Theorem implies that the

disintegration of the d-dimensional Hausdorfl measure on the differential partition D of 0, is regular,
namely has conditional probabilities equivalent to the Hausdorff measures on the locally affine sets on
which they are concentrated. Therefore, denoting the locally affine partition D as

d
{ZAl’f’éf}k‘=l,.,.d C P(Rd'H X U C(k,Rd+1)>7
acat k=1

and setting {ZS }aeao for the O-dimensional partition of the fixed points A° = F6,, by (3.12) the sets
d
{Z(];’ = deZ§, Cl]f == deé(]f}k=0,,.,d C P<Rd X U C(kde>>’
aeAk E—0

define a locally affine directed partition of R? satisfying (1), (2) and (3).
Let us now use the fact that ¢ = 1 is a Kantorovich potential for II”™" (y,v) and that p < £%. By

|l
(3-12) and (6.2),
(6.3) p< L = p<H gaphy = UTT0y) = G(E704) =0,

Then, by Remark [4.27, Proposition |4.25| applies to the locally affine partition {Z§7O§}k:1,_.d7 giving
acAk

that any transport plan 7 as in (6.1]) satisfies 7 € H{ﬁ (i1, 7). In particular, by Proposition the

disintegration # = /frﬁ dm(k,a) w.r.t. the partition {Z¥ x R}, . satisfies
~ ko K Ak
Ta € Hfék (Mm (pQ)#Tra)a

where i = /[/; dm(k,a) is the disintegration w.r.t. the partition {Zf}ka Moreover, by Proposition

the partition {Z¥}, ., satisfies condition (3.25)), which gives

(p2) e <fo u (graphw\ U Zf)) =1

(K,a")#(k,a)
Then it is not difficult to see that the directed locally affine partition of R% given by {Zf,Céf}k:O,,,kd
satisfies also Point (4) of Theorem u Finally, if v < £4, by and we have also "
(6.4) v< LY = < H o gaphy = P(E0y) =0.

Then o (pga+1 (D)) = 1 and Corollary gives, when projected on R, the last part of Theorem

Remark 6.2. Observe that the characterization given by Proposition [I.25] of the optimal transport plans
for the cep).|,.-Lipschitz set graph seems more natural than the one given by Theorem for their
projections on R?, namely the optimal transport plans for the original convex norm problem. Indeed,
in the first case we have a complete (namely, if and only if) geometric characterization of the transport
plans by disintegrations into transport plans of finite cone cost w.r.t. their conditional marginals, even
in the case in which v is not absolutely continuous. This is due to the geometric condition , which
is satisfied by the partition {Z¥, C’f}k,a and not by its projection on R%.

In particular, there might be decompositions {l/{j} of v which are not obtained by projections of second
marginals of disintegrations of #t € II(j1,7), #(0Tgrapht) =1 and such that pr dﬁ(u, {vFY) # 0.

R

Proof of Theorem[6.1 The proof will be given in two steps. We prove the initial forward cone approxi-
mation property for the superdifferential partition of the forward regular set, being the proof of the final
backward cone approximation property for the subdifferential partition analogous.
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By Definition let us consider an initial 1-dimensional slice
Z8* npy (k7 hh)e) = 25 npyi (B, h')e)
k,a
where
(1) VF = (ef,...,e}) € G(k,R?H1) reference plane of the sheaf set Z*,
(2) eeS'NC({ef}),
(3) there exists € > 0 for which
ZF T Np i (B AT +e)e)
is still a 1-dimensional model set. Let d. be the direction vector field.
Step 1. Assume d" s injective.
Then, it is sufficient to prove the forward cone approximation property for the vector field d. on a

fixed perpendicular section, say e.g. P,—.
First recall that, by the general properties of sheaf sets, i.e. Point (3) of Definition

{0} URYe € C({ek)) C pye(CHF), Vaeor,

By definition of 1-dimensional slice, for all w, - = (24 -, @(2qn-)) € Py~ one has
if,}ﬁ—&-e( _
g Wa h—) — Wah-
65 d.(w ) = a, ) ;
(0:) (00 = T 1) ~ o]
being

-+
ol +6(wu,h*) = Wq ht+e = (ya,h++s730(ya,h++s))

the unique point s.t.
Pyt ie N (Wa -+ C8F) = {wa p+ 4 -
Sil?ie now we are dealing with the superdifferential partition, (see Theorems and for all w, €
Zy
Cot =R"DT0,(a,ws) and 910,(a,ws) VR0, = (wa + CHT) N ZET.
Then we conclude that
Ya,h+t+e = PRrd (wa,h++e)
is the unique point of pra(Py+1.) s.t.

(P(ya7h++s) - (P(‘ra,h—) = ‘ya,h‘*ﬂra — Tqh- |D*7
namely yq +4¢ is the unique maximizer of

(6.6) e@an-) = max o)~y - zan-lp- |-
YEPga(Py+,.)

Hence one can construct the finite cone approximations of prad. as in [I3], namely discretizing the
set pra(Pr+4e) and taking the cones given by the differential partition of an optimal potential w.r.t.
a strictly convex cost obtained by perturbating the norm cost | - |p+ and whose second marginals are
Dirac deltas centered at the points of the discretization (see [I3, Lemma 3.16]). The convergence of the
approximations to pgad. at a.e. point x, ;- as the cost perturbation goes to 0 and the points of the
discretization become dense is given by the uniqueness of the yq p+4. € pra(Pp+4.) satisfying .

Lifting the approximating cones with the map I x ¢, one gets finite cones approximations of d. as
required.

Step 2. Let now d? be possibly multivalued. In order to prove the initial forward cone approximation
property, we build as in Step 1 finite cone approximations given by the differential partition of optimal
potentials w.r.t. strictly convex approximating costs and second marginals given by Dirac deltas in
Pra(Pp+1e). These will converge to a Borel section d% . of the direction vector field d}  which by
construction satisfies the cone approximation property. O

Remark 6.3. The above theorem can also be proved as a particular case of the analysis done in Section 8}
in this case we have a single cone-Lipschitz graph, and the uniqueness role of the linear order is trivial.
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7. FRoM CF-FIBRATIONS TO LINEARLY ORDERED CF-LIPSCHITZ FOLIATIONS

This section is devoted to the proof of Theorem stated below, that will be the building block for
proving of Theorem [T.6}

Let CF : R9™F x RF 5 A x RF — C(k,R*) be the g-compact direction map of a k-dimensional fibration
D* and caw be the associated cost function . Let

i= [ fdite), 7= [ sdin(a)

be probability measures on R? such that

(7.1) ml_, (7i,7) # 0
and
(7.2) fia < HFL 5 for meae. a €2l

Recall Definition of (¢, p, v)-compatible preorder, Definition of TI (p1, v)-cyclically connected
partition and let {0, 1}" be the Polish space of sequences in {0,1} endowed with the product topology.
Our main result is the following theorem. Recall that w is the first countable ordinal.

Theorem 7.1. If (7.1) and (7.2) hold, then there exists a (cgu, fi, V)-compatible linear preorder < with
Borel graph on A x RF

(7.3) <=(0x0)71(<,), 6:2A x RF = A x {0,13, <, linear order,

and equivalence classes {07 1(a,t)} aca  such that the subcollection of sets {Zk .} aca  defined by
77 texk(a)

te{o,1}N
(7.4) ZF =intr 0 (a,t) and fia(0"(a,t)) >0
is chk (i, 0)-cyclically connected.

As noticed in Proposition the equivalence classes of a cgi-compatible linear preorder on 2 x
RF with o-compact graph form a cew-Lipschitz foliation. Then, by definition of (cgw, fi, 7)-compatible
linear preorder and by disintegration of measures, Theorem claims that we can reduce the optimal
transportation problem on a C*-fibration to a family of optimal transportation problems on the level sets
of a cgi-Lipschitz foliation, whose k-dimensional classes of positive fi, measure (see the characterization
of cgr-Lipschitz foliations given in Proposition [4.9) satisfy the cyclically connectedness property w.r.t.
I (@, o).

C

As noticed in the Proposition since

car(a,w ', w') <400 = a=d,

the equivalence classes of the preorder < constructed in Theoremwill be contained in sections {a} x R¥.
At a first reading, the geometry which lies behind the construction of < will be clear to the reader even
assuming that 2 = {ag} for some point ap, and thus cge is equal to a single convex cone cost. The
variable a € 2 plays in fact the role of a parameter on which the maps used to define the preorder have
to depend in a suitably measurable way.

As a preliminary, let us define the sets of o-compact carriages as follows: for 7 € H{ck (1, V) set

(7.5) Iz := {f‘ C(AXRY) x (AxRF): T C {cgr < o0}, T' g-compact, 7(T) = 1},
and define
(7.6) r= J r@.

well_, (7.7)

The section of a carriage I'(a, a) will be also denoted as f‘(a) C R* x RF.



66 STEFANO BIANCHINI AND SARA DANERI

7.1. Construction of a (cgw, fi, 7)-compatible linear preorder. The main result of this section,
which is the first step of the proof of Theorem is the following theorem.

Theorem 7.2. For any T € I there exists a (can, fi, U)-compatible linear preorder < v with Borel graph

-1

(7.7 <Spyr= (9f7wf X af\,wf‘) (dw), Op o = 2 X RYF — 2 x {0,1}Y, <, linear order,

whose equivalence classes {02 (a,8)} acx  satisfy
L te{0,13N

(7.8) Leb (pl(f‘(a)) N {0z yr (0, ) = (a, t)}) is (T(a), Ck(ay)-cyclically connected.

By the characterization of cg.-Lipschitz foliations given in Proposition (7.8) must refer to k-
dimensi(inal equivalence classes. Moreover, bgf Remark <PAUO-1(a,0)x 0~ (a,0) TS T and thenVz,y €
Leb(p1(I'(a)) N {07 yr(a,) = (a, t)}) the (I'(a), c@r (q))-cycle connecting x to y must be contained in
0= 1(a,t) x 07 1(a,t).

The first step to prove Theorem is to select an m-conegligible set A’ C A and a o-compact subset
of

plf n é[/ X Rk
with a-sections countable and dense in p;I(a).

Lemma 7.3. There exist an m-conegligible o-compact set A A C R* and a countable family Wk of
o-continuous functions wl, : A — R¥ n € N, such that for all a € A’

(7.9) {wh(@)}, .y € pil(a) C clos {w] (@) }nen.
Proof. For shortness we use the notation
A:=pl = {(a,w) :3d v st (a,w,d W) € f} C R¥F x R*,

Step 1. Let Q := pa(A) C R and fix ¢ > 0. By standard selection theorems (for example, Theorem
5.2.1 of [26] is sufficient in this setting), there exists w§ : Q + R Borel such that graphw§ C A. By Lusin
Theorem (134Yd of [22]) we obtain an 7m-conegligible set 9 such that w§Lqz is o-continuous.

Define

AG = AN (pa) 71 (QF), (M) = A§\ {(a,w) : [w—w5(a)] < e}
These are clearly Borel sets.

Let (Q5) := pa((A5)"), and define (QF)" C QF \ (Q5)’ as a o-compact set with the same m-measure
of 9§\ (Q7)".

Step 2. If the Borel set (A%) € R¥* x R* and Souslin set (Q%) := pa((A%)") C A are given, let
w1 (Q%)" — R* be a ©-measurable selection s.t. graphwé, C (A%)’, where © is the o-algebra generated
by Souslin sets: its existence is guaranteed by Theorem 5.5.2 of [26]. As in Step 1, find an /m-conegligible
set QF, C (9Q;,) such that w},Lg- is o-continuous.

Define the Borel sets

Afr = (ML) N (pa) TR, (ML) = AL\ {(a,w) « Jw —wi(a)] <e}.

If (Q5,1) = pa((A541)), let (Q5)" C Q5 \ (Q5,41) be a o-compact set with the same measure of
95\ (Q714)"
Extend also the o-compact function w; to an m-conegligible set by

() i {w;,(a) 0 e,

" wo,(a) a€(9Q5), m=0,....,n—1.

Step 3. By repeating the above procedure countably many times, we obtain a countable family of

(o)
o-continuous functions w¢ : UO(an)” — R¥ n € Ny, such that
m=

o0

AN (Pa)_1< U (Q;)”) C {(a,w) : dist (w, {w, (a) nen, }) < 5}.

m=0
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FIGURE 12. The construction of the set Hr .

Taking a countable sequence ¢; N\, 0 as i — oo, the functions {w5 }; nen, satisfy clearly the statement

when restricted to an 7-conegligible o-compact subset 2’ of v (Qs)". 0
1eN neNg

Now we associate to each (a, w,f; (a)) the subset of {a} x R* of all the points (a,w) s.t. 3 an axial path
of finite cgy-cost in I' going from (a,w, (a)) to (a,w) (see Definition .
Define

(7.10) Hg,, = {(a, w) : 3 (w, @) €T s.t. () (W, w') < 00 and (a,w) S (Fregn) (@ WS(CL))},

where < (Fregn) 18 the (T, cgy )-axial preorder relation defined in (2.42). Notice that

(7.11) e i = {(0.0) 5 (0.0) <y (055D .
Observe that, despite the notation, Hy , does not depend only on T but also on the sections {wE}neN
selected in Lemma

Proposition 7.4. The set Hy.,, is o-compact in A x R* and the set A := {a e A Hg , (a) # 0} is
Borel. Moreover

(7.12) w € Hp ,(a) = {Cék(a)(‘,w/) < 4o} C Hg ,(a).

Proof. We prove the o-compactness of H. ,,, since (7.12) is clear from the definition (7.10). Observing
that

Hp, = {(chw) 31 eN, {(wuwD}I

i— CT'(a) s.t.
wy = vl (a) and € (o) (Wit1, W), Car(q) (W0, wh) < oo},

write
Hy, = |J H} where  H!
I'n T'n I'n
IeN

= P(ar+1,wr41) (gé,n)
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and ]~{1~{ ., C (R9=F x R¥)2I+1 is given by

I

A, = {wr =w,(@)} {ﬂ{ a;,wi, 0, w;) € f}] n [ﬂ {cen(@ivr, wirr, af,wi) < oof|.

i=1
Since a — C¥(a) is o-continuous, it follows that the set {car < oo} is o-compact in (R¥™* x RF) x
(R4=F x RF). Hence, being w. o-continuous and r o-compact, the set fff{ ,, 1s o-compact, thus also Hf{ o
and finally Hf , too. O

We are now ready to define the Borel linear preorder of Theorem If wl = {wg}n € N is the
countable family of sections constructed in Lemma define the function
Opur @ A XRF - A x {0, 1}N
(a,w) = Op wr( w) = (a, {XR’C\HI;,”(CL)(M)}TLEN)
Since each component p; o 0f7wf of ef‘,wf is Borel, also 0f7wf is Borel in the product topology.
On the space R4% x {0,1}*, « ordinal number, let us consider the natural linear order given by the

lexicographic order. Namely, for a = (ai,...,aq_x) € R47F set
(7.13) 0 <lexiyg_p, 0 <= Fie{l,...,d—k}st Vj<i,a;=da}and a; <aj,
and define

(a,{s8}s<a) <o (¢, {85} p<a) <= either a <jexi , , o' or

(7.14) —dandIF<a:sy=ssVB<B, s5=0ands,=1
a=a an O[.Sﬁ—Sﬁ N 85— an Sﬁ_'

Let then <, be the lexicographic linear order on R4~* x {0, 1} and define the linear preorder on A x R¥
as
-1

(7.15) <Spoyt = (efwa ® 9f7wf) ()
The induced equivalence relation on A x RF is given by
It n=< “pwr_ {err } (a,t)eA’ x {0,1}N"

Proof of Theorem[7.3 The proof is given in two steps.

Step 1. In this step we prove that the relation <Eur defined in is a (caw, fi, 7)-compatible linear
preorder with Borel graph. By Remark - this amounts to prove that <pur is Borel, cgi-compatible
and - holds for the carriage r.

First of all, <, is Borel because it is the preimage under 60y .z, which is a Borel map, of the
lexicographic order <.

Moreover
712) .
2w err \ Hi ,(a), then w' € RF \ Hy. . (a)
- gfwa (a,w) <, Gf’wf (a, w’),

Le. <pyr is cgr-compatible. Formula (2.44)) follows directly from (7.11)).
Step 2. Now we prove ([7.8). Let
w,w' € Leb(pl(f(a)) N {054 (a,) = (a, t)}).

Since <f ¢ is cgr-compatible, by Proposition its equivalence classes form a cg,-Lipschitz foliation
and then, from Point of Proposition there exists » > 0 such that

Bk(wvr)aBk(w/7T) - {ef‘,wf”(aa ) = (Cl, t)}

Can (o (W, w') < +o0

Hence, by the density of {wE(a)}neN stated in Lemma there exist wg, wg, such that

(7.16) 07 e (a, wF( )) = 0z yr(a,w Ij (a)) = (a,t) and CEk (a) (w,wg(a)), &k (a) (wgl(a),w') < o0.
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X

FIGURE 13. The function 6f .+ and the cyclical connectedness of the Lebesgue points
of p1(I'(a)).

The first condition in (7.16) implies that

(a) S (e (a) Wiy (@)

S

wg(a) € Hg ,,/(a), ie. W

The second condition implies that

31

WS (o) we(a)  and  wh(a) S (Feaniey) w'

Hence, composing the three axial paths, w < w, and exchanging their roles we obtain a (f, CEn ct))—cycle,

thus concluding the proof.

Notice that actually the subset of a k-dimensional class {;. ;r(a,-) = (a,t)} which is contained in the
(T, cék(a))-cycle above is

{w epil'(a)N {0 e (a,)) = (0,9} ¢ (w— int,e1 C*(a)) Np1L(a) N {05 yi(a,) = (a,)} # 0
and (w + intya €*(a)) N pi(a) N {67 yr (a,) = (0,0} # 0},
In fact, by (7.9) every couple of points w, w’ in the above set satisfy (7.16]) for some wg, Wg,.

7.2. Minimal (cgu, i, 7)-compatible linear preorder. Now we apply Theorem to the class of
linear preorders {gf\’wf* }f\’wf* constructed in Theorem in order to find a Borel (cgu, fi, 7)-compatible
linear preorder as in Theorem [7.1]

Recall the definition of lexicographic order <, on R4~* x {0,1}*, o ordinal number, given in ,
and recall also the definition of closure under countable intersection of a family of equivalence relations,
Definition and Remark [A-3]
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Proposition 7.5. The class of equivalence relations
(7.17) { <pur N slz,;f: <pyr asin Theoremfor some I € F}
is closed under countable intersections.

Proof. Let {Ty}nen C I' and { =g, wtn= Op, yrn X O e, )" <« )} be a countable family of

(c@ws fi, 7)-compatible Borel linear preorders as in Theorem n Fix I; ¢ I'(#;) for some i € N. By
Definition of (caw, i, 7)-compatibility,

and by Remark
(7.18) <t N <-

Let then W' be a countable family of o-compact sections of p; (f‘l N <, uln N(=p wfn)’l) as in
neN v "
Lemma Then, by (7.18), it follows immediately that the (ceu, fi, 7)-compatible Borel linear preorder

<..

R constructed as in the proof of Theorem .2 satisfies
YmeN “Tpuln AT, wln ’
R R il A B
nEN neN

We now have all the tools to prove Theorem

Proof of Theorem[7d, Let NI~ ' = Uqy {67 (a,t')} x {#7*(a,t')} be the minimal equivalence relation

in the class (7.17)) w.r.t. the measure fi, whose existence is guaranteed by Theorem
We claim that it satisfies the conclusions of Theorem Thanks to Theorem we only have to
i

prove (7.4). Recalling Definitions and let 7 € Hfék (i, ), T € I'(%). By Remark [2.15, we can
consider the carriage

(7.19) D=Tn {0 (a,t)} x {0 (a,t)} T

a,t/

and prove that the subcollection {Za t} oem of the equivalence classes of < defined by
k(a)

(7.20) ZY, =intr 0 '(a,t) and  fia(6 ' (a,t) >0

is (1, , g )-cyclically connected.

Let W' be a countable family of o- compact sections of p;I' as in Lemma [7 Hence, by -,
reasoning as in the proof of Proposition |7 e equivalence classes of <pyr are contalned in those of <.
By minimality of {§~1(a, t)} and Corollary there exists a ji-conegligible o-compact set B € R4~* xRF
and a Borel function

s:RTF < {0, 13N — RTF x {0, 1}N
such that

Op yr =sof on B.
The set B depends on Op yr-

In particular, using this result for the equivalence classes of positive fiq-measure of 8, we deduce that
there exists a set

w  {a:3tst (07 (0,0) >0}

m<{a L Ttst. fia (0 (a,t) > 0} \2{”) =0
and for all a € A", for all t such that fia(f~!(a,t)) > 0, the function Op yr IS fig-a.e. constant on

{07 (a,t)}.

such that
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Hence, using the assumption and condition for <p yr, the sets {671 (a,t)} with a € 2" and
of positive [lq measure are open (see Proposition and their set of Lebesgue points is of full fi,-measure
and (T cé(u))—cyclically connected.

By Definition we thus conclude that these sets are (f, L, cg)-cyclically connected, and then ap-
plying the same reasoning to any transference plan 7, we get that the subcollection of sets {Zit} acx

teTk (a)
defined by
ZF, =intZ;, with fia(6"(a,t)) >0,
is Hfék (i, 7)-cyclically connected, thus concluding the proof. O

Remark 7.6. We observe here that, being the equivalence relation < N (<)~! constructed in Theorem

minimal in the family , by Theorem the equivalence classes cannot be further decomposed
by equivalence relations of the form . However, the information on cyclical connectedness of the
equivalence classes can be deduced only for the equivalence classes with positive fi,-measure, because of
the particular choice of the family satisfying Theorem

8. CONE APPROXIMATION PROPERTY FOR LINEARLY ORDERED Cg-LIPSCHITZ FOLIATIONS
In this section we prove the following result.

Theorem 8.1. Let {6~ (a,t)}a C P(A x RF), A C RI¥*, be a cg-Lipschitz foliation given by the
equivalence classes of a Borel cg-compatible linear preorder < on Rk x R* as in . Then for all
a € A, the subdifferential partition of R 0(a) satisfies the initial forward cone approzimation property
and the subdifferential partition of R~ 0(a) satisfies the final backward cone approzimation property.

In particular, we conclude from Theorem that the initial and final points Z70(a), £~ 6(a) are
HF-negligible and, by integration w.r.t. H?=* on 2, the sets Z+6, £~6 are also L£%-negligible. Moreover,
by Theorem the disintegration of £? w.r.t. the differential partition of the regular set R is regular,
i.e. it satisfies of Definition m

Since the disintegration of H* on equivalence classes of # with positive H*-measure is clearly regular,
we thus have the following corollary.

Corollary 8.2. If {Zﬁ)b}g:h_,k is the partition of a cg-Lipschitz foliation given by the equivalence

acA,beB
classes of a Borel cg-compatible linear preorder obtained as the union of the differential partition and of

the classes of positive H*-measure, then the disintegration of the Lebesgue measure L restricted on the
cg-Lipschitz foliation

L4 z= /’Uﬁ)bdn(& a,b), z=\J z,,
£,a,b
satisfies
vﬁ’b ~ Hé\_Zﬁ’h, forn-a.e. (£,a,b).

Remark 8.3. If the quotient set {1,...,k} x 2 x B is chosen to be a countable union of sets as in (3.32]),
then the quotient measure

k
n=3"0' ({0 x A xB) =1
=1

satisfies

né ~ deél_ U et
ieEN "

for some €¢ C V47t € A(d — £,R%).

Proof. In the following we identify {a} x R¥ with R* and omit the variable a when clear from the context.
Unless explicitly stated, for the notions and notations used in the proof we refer to Section [5

Since the proof of the initial forward cone approximation property is the same as the forward cone
approximation property up to the Borel selection given by Lemmal5.2] for simplicity we prove the forward
cone approximation property.
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The proof will be given in three steps, and we will restrict to the case of ¢ < k, due to the structure
of equivalence classes of positive H*-measure given in Proposition and the existence of at most two
degenerate equivalence classes (see Definition |4.8]), which are clearly of positive measure, as observed in

Remark .10
Step 1. By Definitions and we have to prove the forward cone approximation property
for the 1-dimensional slices D-cylinder (see Definition [5.14)) of the superdifferential partition of R*6(a)
(Le{l,...,k—1}) given by
04 b+ 0+ _ 0+ k
2750 w277 = U 207 RS
beB, 4 (a)
with reference plane V¢ = (ef,... ef) € G(¢,R¥) and base rectangle U({ef},h=,hT). By (3.32), the set
By 1 (a) is a subset of (z + (VH)L) € A(k — I, RF) for some z € int,qU({ef},h=,hT).
Let us fix a 1-dimensional slice of Z%* with reference configuration (e, w 4+ h~(w,e)e, w + ht(w, e)e),
w € int,U({e},h™,h*), e € C({e’}) (see Definition [5.11)), i.e.
(8.1) Zit =2 n p‘_/} (w + (b~ (w,e),h* (w, e))e)
with € > 0 such that the set
Z°  npy. (w + (h™ (w,e) —e,h" (w,e) + e)e)
is still a 1-dimensional model set. Let
(8.2) df =DnNpyile)

e ve
be its direction vector field as in (5.18)).
As in (6.5)), by definition of 1-dimensional slice and since the cones of directions are given by the
directions of the superdifferential, for all

Zp,h- € Perh*(w,e)e = Z[l;’Jr N P\_/% (w +h” (U), e)e>’ be %f,-‘r(a)
we have

-t
oh h +’S(Zb,h—) — Zb,h-

+ _
& Ga) = o™ e (2 =) = 2o, |

where
-t
ol " T (20,n-) = 2ot 4e
is the unique point of Py, 4+ (w,e)4<)e Satisfying
l l, -
{zontsc} = (2o +Cy7) N 2" Npyi (w+ (R (w, e) +e)e)

(8.3) a
a+9(

Zp,p-) N P‘_//} (w4 (h*(w,e) +¢e)e).
Step 2. Let
ﬂ =~ 7-lk)_ZLPw#»h7 (u),e)e7 ﬂ(Pw+h_ (w7e)e) = 17
and set 7 = UZ;’H%/}. Then clearly
_ -t _ _
7= (Ixo" " +5)#,u el (7).
In this step we prove that (8.3) and the fact that {6~ (a,t)}cs is induced by a Borel cg-compatible
linear preorder < imply that

7 1s the unique transport plan in Hfé( )(ﬂ, D).

First of all observe that, by transversality of p;}<e> w.r.t. C(a),

(8.4) ml (i) =1 (7.7).

€S(a) E(@)npy (=)

Then, consider the Borel linear preorder

< =< NZ x 75+, Zit =175 n p‘_,} (w + [if(w7 e),h" (w, e)]e).
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Its equivalence classes are given by the (closed) segments
Zﬁ’; = Zﬁ’Jr N p;} (w + [h_ (w,e), ht(w, e)]e)7

from the transversality of p,,; (w+ [h ™ (w, ), kT (w, e)]e) w.r.t. Zg’Jr. Moreover, it is clearly cgq)qp-1e)-
\4

compatible and, since a carriage of T is given by

I' = graph oh ey graphlL e+,

7—T<Uz§3: ‘ zg;:) 1.

b

By Remark and Theorem 2.13} we conclude that < is a Borel (Cé(u)npj((ew fi, 7)-compatible linear
\%4

preorder. In particular, by (8.4)), any transport plan 7 € H{e( )(,a, 7) must satisfy

w(UZf:: X Zﬁ::) =1,
b

and then since i and 7 are supported only on the sections Py p—(w,e)e a0 Py (h+ (w.e)+e)e> implies
that m = 7.

Step 3. In this step we prove the cone approximation property for the 1-dimensional slice Z*. The
sequence of approximating finite union of cone vector fields (see Definition will be given by the
transport rays of transport plans which are optimal w.r.t. the secondary cost

then

w—w| if cggy(w,w') < +oo

8.5 ch o (w,w') = | Cla) ™ ’

(8:5) C(a) ( ) { 400 otherwise,

and whose first marginal is i and second marginal is given by finite sums of Dirac deltas which are weakly

converging to 7, as given by the next lemma.
Lemma 8.4. There exists a sequence

{70} nery € P(Putnt w ey +e)e)
such that
(1) vy is locally finitely atomic, U, = Y cun, 621,

€N
(2) T, () # 0,
(8) Uy weakly converges to v in P(RF).

Once the lemma is assumed to be valid, the proof of the theorem is concluded as follows.

Let 7, € Hfé(u)(ﬂ,ﬂn) be optimal for c¢g . and let [’ be a ¢ qcvelically monotone carriage. A

standard argument based on |- |-cyclical monotonicity (see e.g. [12]) implies the interiors of the segments
[z, 2], with [z, 2] € T/, do not intersect. Since I'// can be decomposed as

(8.6) [ = U B; x {z, }, B;i C Py (we)e Borel and disjoint,
ieN
up to a p-negligible set, then the approximating sequence of finite unions of cone vector fields (see
Definition is given by
Eq, ={(1—-t)z+tz], :t€[0,1],z € B;}.
Let

h™,ht+e . h™ ,ht+e o
On . Pw+h*(w,e)e — Pw+h+(w,e)ea On (Bl) = Zn;>

be the Borel function such that 7, = (I x 02_’h++5)# fi, as it follows from (8.6). The uniqueness result
proved in Step 2 implies that the measure 7,, converges weakly to the measure 7, which equivalently
means that

Jﬁf’mﬁ Sl e
Then, the last condition for the forward cone approximation property required in Definition [5.5|is satisfied

and the theorem is proved. ]
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We are left with the proof of Lemma
Proof of Lemma[84 W.lo.g. assume that 3C’ € C(k — ¢,RF~%) such that, for all 2z, ;- € Pyin-(w,e)es

{ce@ (zon—>) < +oo} Npyi(w+ (W (w,e) +e)e) D 2 pt 4o + C'

and
k—¢
Cc'> ﬂ {w:w-e’izO}
i=1
for some fixed system of coordinates {e},...,e} ,} C RF~*
Let

B k—¢ 11 B B
Q:H |:_272:|e_/jv Q(Z/,T) = Z/+TQ'
i=1

For n € N, choose r,, > 0 sufficiently small such that
k—¢

~ 1
Q(z’ + - Z;e;, 27’n) cZ+C,
for all 2’ € pys (w+ (A (w, e) + €)e) (clearly any r, < L suffices). Let

{Q_(Z;’Li’r")}ieN
be a locally finite covering of p;,} (w+ (h™(w,e) 4+ ¢)e). Then, define the map
Th: p;} (w+ (ht(w,e) +€)e) — p;} (w+ (h*(w,e) +e)e)
by

k—¢

~ 1
8.7 T, (2) =2 here i =min<j: 2. € (i L2 ) .
(8.7) (2') = 2z, where 4 mm{j Zn, Q(z —i—nZeZ T )}

i=1
The measures

Up = Toul,  ni= (X Tyo00" ") 0
satisfy
T € erm (i, 7,)  and 7, — v e PRF),
proving the lemma. O

Remark 8.5. Since the level sets of the function 6 form a ey a)—Lipschitz foliation, then from Proposition

4.9/ the equivalence classes of negligible H*-measure are complete CE( a)—Lipschitz graph. One could then
suspect that the proof of Theorem can be deduced from the proof of Theorem

This would be the case if the disintegration of the H*-measure on the level sets of negligible #*-
measure of the generating # were absolutely continuous w.r.t. #¥~!. Here we show that in general this
is not the case. In fact, we will construct a Borel function © : [0,1]? — [0, 1] whose level sets are subsets
of C*°-functions on [0,1] such that there exists a Cantor set C' of positive £2-measure on which © is
injective. This clearly implies that the disintegration of £2_c w.r.t. © has conditional probabilities made
of a single Dirac é-mass.

Let ¢:[0,1] — [0,1] be a strictly increasing C*° function such that

"o
dz*

dk
00)=0, o1) =1,  ox) =1—o(1 —2), (0)=27(1)=0 VkeN.
Consider the sequence of numbers

ak—1 — Ck — 3 . 2727]6 4 27272]6

by = 272+,
2 ) k

cp =272k, apg =1, ap =
Step 1. 1f

Q' =10,a1] X [0,b4] = [0, 176] % [07 ﬂ
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X

F1GURE 14. The first steps of the construction done in Remark

and having fixed the points

9 by 1 by 2
=0 = = = =0 =) = = =9 L
Zo , L1 = a1 T C1 16’ Yo y Y1 1 3 3’ Y2 (bl 3) 3’

consider the squares
1 .
Q(1)7j= <x07yj+ﬁ> +Q15 Q%,j=($layj)+Q17 .7=07]-a2

We define the level sets of © outside the squares Q}’ ; as follows. First, in the strips

[0,1] x [%é], [0,1] x [g,g], [0,1] x [%,1]

75

the level sets are horizontal segments y = constant. In the remaining strips, the construction is completely

similar so that we show only the case [0, 1] x [0, 7/24].

In the strip [9/16,1] x [1/4,7/24] the level lines are again y = constant. In the remaining strip
[7/16,9/16] x [0,7/24] we show how to use the function p to connect the points of the vertical segment
{7/16} x [0,1/24] to the points of the vertical segment {9/16} x [0,1/4]: the construction in the remaining

part is symmetrical. In this case, define the level set of © as the curves

{y +5y0(8(z — 7/16)),z € [7/16, 9/16]}, y € [0,1/24].

Due to the regularity of g, these curves are C'*° in the set of definition.

Step 2. In this step we show how to repeat the above construction in a square of the form [0, ag] x [0, bg],

in order to define the level sets of © outside finitely many squares of size [0, ag+1] X [0, bxy1]-
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Define the points

3 _ 3 . b . b
9 =0, 21 :ak+1+ck+1:§'2 k+176.2 *oyi=g <bk+1+bkk+1>a J :Ov"'vbik_2‘
b1 k+1
The new squares which will be used in the next step are given by
1 b1
Qb= (-Tanj ts5 bk+1) + 10, aps1] ¥ [0,beq1],  QF 5 = (w1,95) + [0, ars1] x [0, b1,
b1
c by,
with j —0,...,bkil -2
As before, in the strips
1 bk+1 :| . bk
0,ar] X |y; — = ————, ¥y |, =1,...,— —2,
0. {y] 2 ¥ br11

brt1

the level sets of © are straight lines y = constant, and the same for the strips

1 bk’-‘rl . b
[Ovak+1]x|:yj7yj+' b ) ]:07"'5 — 4
2 bik -1 bk:+1
k+1
br+1 1 (bgt1)? ) bi
[ak+1+ck+1aak]x|:yj_bk+ 7yj—*'7(bk+) , j=1,...,— —1.
T 2 G b1
k41 k+1

Similarly as done in Step 1, we just show how to define the level sets connecting the segments

1 b
{ags1} x {07 5 bkktl] and  {agy1 + crp1) X [0, bgya]-

bry1

One just defines the level sets of © to be

b T—a 1 b
{y+ (Qbk - 3>yQ(k+1>a$ € [ak+1, ak 41 +Ck+1]}7 ye {072 : bkk+11]

k+1 Ck+1 et

Step 3. We show that the level sets are C°°. In fact, by the estimate

d by »
W(bw(x/ck)) = (’)(1)% = O(1)27 K +2k¢

it follows that the curves have a uniform bound in C*, for every fixed £, and thus they belongs to C'°.
Moreover, it is fairly easy to see that the intersection of each level set with the line {1/2} x [0,1]
determines completely the curve, so that the function © can be defined as the y-coordinate of this
intersection. With a slight variation of this construction one can obtain © to be regular.
Step 4. Let C be the compact Cantor set obtained by intersecting all the squares Qﬁ jt

C= ﬂ UQf,f

keN 4,5

It is standard to see that the function © is single valued on C. Moreover, a simple area estimate yields

k
£Q(UQ§J) = 2Fqy, - (1 - Zbk) >
i,j =1

and this concludes the example.

1

)

2_
- =

B eo

9. PROOF OF THEOREMS [1.2H1. 8l

In this final section we collect the proofs of the remaining main theorems stated in Section 1.1
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9.1. Proof of Theorems [1.6] and In this section we prove Theorem that we recall below.
Theorem Let {ZF, CF} k=0, ..« be a Lebesgue-regular directed locally affine partition in R¢ and let y,

acak

v be probability measures in P(R?) such that p < L and IT{_ (u,v) # 0. Then, for all fived % € II_ (1, v),
there exists a directed locally affine subpartition {Zf,éf}z:o,...éd of {ZF,CEYi.a, up to a p-negligible set
beB
Ny, such that o ©
{Zf, Cf}g p s Lebesgue-regular,
and setting v := (p2)x7y, where 7§ is the conditional probability on the partition {Zﬁ x R}y, then the
sets

(9.1 {Zﬁ: zt < Z¢ for someaeﬂe,ﬁzl,...,d}
Jorm a T (p, {&})-cyclically connected partition.

Proof. Let {ZF, CFY} \- 0. be a Lebesgue-regular directed locally affine partition in R? and let pu < £,

v be probability measures such that HCD (u,v) # 0.

Step 1. By Proposition we can restrict the proof of the theorem to a fixed ¢-directed sheaf set,
which we will denote again by {Z%, C%} cae-

Moreover, by Proposition [3.22] it is enough to prove the existence of subpartitions as in Theorem
for the fibration {Z%, C%}eeqe, Cl(a) = C%, given by Proposition It is indeed clear that
(1, T, cp)-cyclically connected sets, where 7 (I') = 1 are mapped into (j,T, cc) cyclically connected sets
and viceversa, being i obtained through - Since the map r defined in is not a bijection of
R? into A* x RZ then the transport problem on the fibration {Z ct Facar depends on the conditional
second margmals {vt} of # w.r.t. the partition {Z},q. Let 7= fdm(é a).

Step 2. Let 6 be the equivalence relation given by Theorem for the transport problem H{é (&, D).
In particular, gives the sets that, when mapped back through the map r on the sheaf set, satisfy
and are ITIJ_ (u, {7 })-cyclically connected.

By Propositions and the remaining sets form a cg-foliation into graphs of cone-Lipschitz
functions. Let {va’b}g/d be the cg-differential partition given by Corollary By Theorems and
5.21] its complementary Ni is p-negligible, and by Corollary the partition is Lebesgue-regular.

9.2. Proof of Theorem [1.5} The only missing point is to prove that the conditional second marginals
{vt}06 are independent of the partlcular transference plan 7 € Hﬁ’;* (u,v) chosen.
From Corollary [8.2] and Theorem [5.21] it follows that

v= /Df dm(?,b)

is a disintegration, and Corollary implies that (pg)#wb(Z ) = 1. Hence, from the uniqueness of
strongly consistent disintegrations, 1t follows that

vt = (p2)ufh m-a.e. £, b,
yielding the improved version of Conditions (4’)-(5’) in Theorem
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APPENDIX A. MINIMALITY OF EQUIVALENCE RELATIONS

Consider a family of Borel equivalence relations on X,

(A1) E={E.C X x X,e€ ¢},
and let p € P(X). By Theorem [2.4] we can construct the family of disintegrations
(A.2) n= / fe.a dMme(a), e€ €,

where ., fte.a, m. are respectively the quotient space, the conditional probabilities and image measure
w.r.t. B, € E.

Definition A.1. A family of equivalence relations E is closed under countable intersections if

{E..}ienCE = 3Jec€st. B.C[)E,€E.
ieN
In [6], a family of equivalence relations is said to be closed under countable intersections if {E,,} C
E = nNE,, C E. However, by direct inspection, also with Deﬁnitionthe following Theorem holds

(see Theorem A.11 in [6]):

Theorem A.2. IfE is closed under countable intersections, there exists F; € E such that for all E, € E,
the following holds:

(1) if A,, As are the o-subalgebras of the Borel sets of X made of the saturated sets for E., E
respectively, then for all A € A, there is A’ € Az s.t. u(A A A') =0;

(2) if me, mg are the restrictions of p to A., A; respectively, then A, can be embedded (as measure
algebra) in Az by Point (T)): let

(A.3) me = /mg,adme(a)

be the disintegration of mg consistent with the equivalence classes of A, in Ag.

(3) If
= /Ne,adme(a)a M:/NE,bde(b)

are the disintegrations consistent with E., Es respectively, then

He,a :/Né,bdm&a(b)'

for me-a.e. a.

Remark A.3. From the proof of the above theorem one can observe that it is enough to require that for
all {e;}ieny C € there exists e € € such that E, CNE,,.
K3

Definition A.4. The equivalence relation E; satisfying the assumptions of Theorem [A22] is called the
minimal equivalence relation in E w.r.t. p.

In particular, assume that each F, is given by

Eo= |J {fe=2'} x {6 =2'},  6.:X — X', X’ Polish, 6, Borel.

r’eX’

Corollary A.5. Ve € &, there exists a p-conegligible set F C X such that 0, is constant on F N6 (z'),
for all 2’ € X'.

Proof. Consider the function ¢ := (6., 6¢): by the minimality of 6z, it follows that
mg = /ma(w,,m,/)dmg(x’,x”), my = Vg fi.

Since (p2)xmg = mg, then also

my = /mg@udmg(x”),
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and thus
msg :/ l:/m%(x/,xu)dmlg,tu(x/,x”) dmz(t”).

This implies that for mg-a.e. t”
/mzy(zlvzu)dm&tu (.’17/7.’17”) = 51&”’

or equivalently that

Mgz = Oxr (w7 x7 (x> M, (x (a7 " (7)) = Orrr-
Hence my is concentrated on a graph: by choosing =" = z’”, there exists s = s(z’") Borel such that
my = (I, s)xme. This is equivalent to say that there exists a p-conegligible set F' such that 6, = s o 0;
on F. O
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N, Np, Q, R
Qt, R
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clos A, int A, int,q A
8A7 arelA
A+ A

TA

[1X;

pEAa pI;A» pX;A
D

e

f~1 AL
domf, dom f
graph £
gof

epif

I

xa(z)

1a

(X.d)
G(k,R%)
Ak, V)

pPv

aff A
conv A

VL

dim A
C(k,R%)

D

|- [+

C(k'\ V)
é’(:l:'r)
C(xr)
convga-1 A
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APPENDIX B. NOTATION

natural numbers, natural numbers with 0, rational numbers, real numbers

positive rational and real numbers

d-dimensional real vector space and (d — 1)-dimensional unit sphere
norm, scalar product in R?

open unit ball in R? centered in x with radius r
power set of X

first countable ordinal number

closure, interior, relative interior of a set A
topological boundary, relative boundary of a set A
vector sum of two sets A, A’ ([2.1)

scalar product of T C R with

product space of the spaces X;

projection of A C [] X; on the i-coordinate

7
class of Souslin sets
o-algebra generated by Souslin sets
inverse of the multifunction f or the set A C X x Y
domain of the multifunction f or the function f
graph of the function f
composition of the functions f and g
epigraph of the function £
identity map or its graph
characteristic function of A
indicator function
Polish space
family of linear subspaces of R¢ of dimension k
family of affine subspaces of V' € A(k,R?) of dimension &’ < k
orthogonal projection on the affine space V € A(k, RY)
affine space generated by A
convex envelope of A C R¢
orthogonal space to V
linear dimension of aff A
family of closed non degenerate cones in R? of dimension k
compact convex neighborhood of 0

convex norm with unit ball D (2.8])
cones in the affine space V' (2.9))
cones defined in (2.10), (2.11])

closure of the cone C(£r)

spherical convex envelope of A C S4~1

Lebesgue measure on R?

k-dimensional Hausdorff measure

product of the two measures wy and w;

restriction of the measure w to the set A

restriction of the function f to the set A

Lebesgue points of a set A

Borel o-algebra on the topological space X

space of Borel probability measures over X Polish
equivalence of measures

push-forward of the measure w by the function f
disintegration of a measure p on a partition {Z,}qc2, Definition

integration formula (2.22))
disintegration of £¢ on a partition {Z,}aca, Remark



c: X x X —[0,00]
(p, v)

I (p,v)

1 (1, )
F'c X xX
sS4

>4

'\<(F,c)

0, 07y
Ccok

f, v

T

OTgraph ¢, 0~ graph ¢
Zg

Ca

D, {Z§7 Cg}k,a
7. 7+

A

L, 2t

(75, £(28)
Z €&

cp

[ 7Edm(k, a)
T (e (7))
c(fek)
U({e5})

i
oo i, 7
{Zg:Ca}
G

1ae

otG, -G
C(w,w")
cg-Lipschitz foliation
D(a), |- |p=(a)
f:domf — %
0(a)(w, w’)
ht(t,z), h~(t, z)
ote, 070

T+, 70

Fo

D9, D0
R0, R0
RTO, R0

RO

N6

vE, v

9
{24 C% b
{Z£7b7 Cﬁvb}f,a,b
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Borel cost function

transference plans with marginals p, v
transference plans with finite ¢ cost ([2.24))
c-optimal transference plans (|2.25))
o-compact c-cyclically monotone carriage of 7
preorder on X whose graph is A
equivalence relation whose graph is £ =<4 N (g4)~
preorder induced by (T, c)-axial paths
superdifferential, subdifferential of the function ¢, Definition

convex cone cost

push forward of u, v on the graph of ¥

push forward of 7 on the set graph x graphi ¢ R4 x R4+1
super/subdifferential of graph ¢

directed locally affine partition of R?, Definition

cone of directions for the partition Z¥, Definition

graph of a directed locally affine partition

base of the partition Z%

quotient space of the directed locally affine partition

disjoint union of the sets A*

initial, final points of the set Z¥, Definition

initial, final points of a directed locally affine partition

cost function associated to a directed locally affine partition

disintegration of the transference plan 7 on {Z* C*}, ., Proposition
optimal transport plans with finite cp-cost w.r.t. the marginals p and {#%}, Definition
cone generated by {ef}

unit cube generated by the family of vectors {ef}

countable decomposition of D into sheaf sets, Proposition

sheaf set, Definition

quotient space of the sheaf set D¥ (3.32)

o-compact fibration, Definition

bi-Lipschitz map of a sheaf set into a fibration

identification map

push forward of u, v, uf, v¥ by r (3.39)-(3.40)

subpartition of a directed fibration, Proposition |3.22

complete c-Lipschitz graph, Definition

| - | p~-Lipschitz function whose graph is G (4.2)

super/subdifferential of G, Definition

extremal cone of C' satisfying

Definition

convex set and its corresponding norm whose epigraph is C(a), Section
quotient map of a cg-Lipschitz foliation, Definition

convex set defined in

| - | D= (a)-Lipschitz functions, Proposition

super/subdifferential of the cg-Lipschitz foliation {6~'(t)}e<, Definition m
forward, backward transport sets (4.18))

set of fixed points

forward /backward direction multifunction

{-dimensional forward/backward regular transport set

forward /backward regular transport set

regular transport set

residual set

quotient maps defined in and

super/subdifferential directed partition defined in Theorem

cg-differential locally affine partition defined in Corollary [4.19

1
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D%, D o-compact graphs of the partitions {Zﬁ:bi, Cf:bi}, {Zib, Cf,b}

o initial points of the superdifferential partition {Zf’,;7 C’ﬁi:}

0 final points of the subdifferential partition {Zﬁ;, C’ﬁ;}

Hf@e(ﬂ, ) set of transference plans concentrated on the superdifferential of 6
d directional vector field for a 1-dimensional model set
Z'(d,A,e,h™,hT) short notation for 1-dimensional model set {Z}, Cl},, Definition

VA union of the closure of the segments of Z!

P, d section of Z', d (5.3),

ah, art multivalued extensions of d to the initial, final points (5.5))

ah ar’ Borel section of d"~, d"", Lcmma

dy,d_ extension of d% ", d"" to the set Z!

ot &5 maps from P to P defined by d, dy (5.7),

d, B, Z € Fy cone vector field with base E; and vertex z € E; C R \ E1, Definition
{& Y, Es,, % finite union of cone vector fields with bases Ejy,, vertices Z;, Definition
U({eF},h—,ht) reference set defined in

ZF(D,A* {eF},h~,ht) k-dimensional model set Z* with direction map D,
reference set U({e¥},h™, hT), Definition
(e,h~(w,e),ht(w,e))  reference configuration for a 1-dimensional slice of Z¥, Definition

de direction map of a 1-dimensional slice

Dk direction map of a sheaf set Z*

v/ subset of a k-dimensional sheaf set ([5.21)

ZF(D, A% {eF}, h~ ht) k-dimensional D-cylinder, Definition

Zf{l countable family of k-dimensional D-cylinders covering a sheaf set
< linear preorder with minimality properties, Theorem
0 Borel function generating < ((7.3)

I'(7) family of o-compact carriages of 7

r family of o-compact carriages of transference plans ([7.6])
{0, 1} Polish space of sequences with product topology

<Fut linear preorder constructed for 7, Theorem |7.2

9i7wf i Borel function generating < ¢

wh = {wl}, countable family of sections, Lemma

Hy , sets defined in

lexi lexicographic ordering on R4=F ([7.13))

<, lexicographic ordering on {0,1}% (7.14)

Ztt 1-dimensional slice of a D-cylinder Z%+

dar vector direction map for the 1-dimensional slice Z5+ (8.2)
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Definition
Definition
Definition
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Definition

Definition

Definition

Definition

Definition
Definition
Definition
Definition
Definition
Definition
Definition
Definition

Definition [3.13

page

Definition page

Definition [3.19
Definition 4.1
Definition 4.3
Definition 4.5
Definition 4.7
Definition 4.8

Definition [4.12

Definition [4.20

Definition
Definition
Definition
Definition

Definition |5.10

p.10 page

Definition [5.11

Definition [5.14

Definition [5.16

Definition [5.19
Definition |5.22

page
page
page
page
page
page
page
page

page
page
page

| page

page
page
page
page
page

APPENDIX C. INDEX OF DEFINITIONS

partition, Borel partition, o-compact partition, quotient map
disintegration w.r.t. a Borel partition

axial path, closed axial path, cycle

(T, c)-cyclically connected set

(u, T, c)-cyclically connected set

I1f (1, v)-cyclically connected set

preorder, linear preorder

c-compatible preorder

(¢, p, v)-compatible preorder

| - | p=-Lipschitz functions, superdifferential, subdifferential

convex cone cost associated to the cone C*

superdifferential, subdifferential of the graph of a | - | p«-Lipschitz function
locally affine set

directed locally affine partition

initial, final points of a set and of a locally affine partition

complete directed locally affine partition

directed locally affine subpartition

conditional second marginals, optimal transport plans on the directed locally
affine partition D w.r.t. pu and {#%}

k-(dimensional) directed sheaf set, reference plane, base cones of directions,
base point, base rectangle

k-(dimensional) directed fibration

ca-Lipschitz graph, complete c-Lipschitz graph

ca-superdifferential, cx-subdifferential

definition of the cone C(w,w’)

c&-Lipschitz foliation

non-degeneracy set of a cg-Lipschitz foliation, non degenerate partition
superdifferential, subdifferential of a cg-Lipschitz foliation
superdifferential directed partition, subdifferential directed partition,
cg-differential directed partition

model set of directed segments, 1-dimensional model set

cone vector field, finite union of cone vector fields

forward cone approximation property, backward cone approximation property
initial forward cone approximation property,

final backward cone approximation property

k-dimensional model set

1-dimensional slice of a k-dimensional model set

k-dimensional D-cylinder

1-dimensional slices of a directed locally affine partition

initial 1-dimensional slice, final 1-dimensional slice

(initial/final) forward/backward cone approximation property
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