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Abstract. We consider the Cauchy problem for a strictly hyperbolic, n X n system in one space
dimension: u; + A(u)u, = 0, assuming that the initial data has small total variation.

We show that the solutions of the viscous approximations u; + A(u)u, = cuy, are defined
globally in time and satisfy uniform BV estimates, independent of €. Moreover, they depend
continuously on the initial data in the L' distance, with a Lipschitz constant independent of ¢, e.
Letting € — 0, these viscous solutions converge to a unique limit, depending Lipschitz continuously
on the initial data. In the conservative case where A = Df is the Jacobian of some flux function
f:R" — IR", the vanishing viscosity limits are precisely the unique entropy weak solutions to the
system of conservation laws u; + f(u), = 0.



1 - Introduction

The Cauchy problem for a system of conservation laws in one space dimension takes the form

u + f(u)z =0, (1.1)
u(0,x) = u(x). (1.2)
Here u = (uq,...,u,) is the vector of conserved quantities, while the components of f = (f1,..., fn)

are the flures. We assume that the flux function f : IR" — IR" is smooth and that the system
is strictly hyperbolic, i. e., at each point u the Jacobian matrix A(u) = D f(u) has n real, distinct
eigenvalues

A(u) <o < Ap(u). (1.3)
One can then select bases of right and left eigenvectors r;(u), I;(v), normalized so that
_ 1 it i=j,
Iri| =1 li-rj = {O it it (1.4)

Several fundamental laws of physics take the form of a conservation equation. For the relevance
of hyperbolic conservation laws in continuum physics we refer to the recent book of Dafermos [D].

A distinguished feature of nonlinear hyperbolic systems is the possible loss of regularity. Even
with smooth initial data, it is well known that the solution can develop shocks within finite time.
Therefore, global solutions can only be constructed within a space of discontinuous functions. The
equation (1.1) must then be interpreted in distributional sense. A vector valued function u = u(t, z)
is a weak solution of (1.1) if

// [ude + f(u) ¢z ] dwdt =0 (1.5)

for every test function ¢ € C_., continuously differentiable with compact support. When disconti-
nuities are present, weak solutions may not be unique. To single out a unique “good” solution of
the Cauchy problem, additional entropy conditions must be imposed along shocks [Lx], [L1]. These
are often motivated by physical considerations [D].

Toward a rigorous mathematical analysis of solutions, the lack of regularity has always been
a considerable source of difficulties. For discontinuous solutions, most of the standard tools of
differential calculus do not apply. Moreover, for general n x n systems, the powerful techniques of
functional analysis cannot be used. In particular, solutions cannot be obtained as fixed points of a
nonlinear transformation, or in variational form as critical points of a suitable functional. Dealing
with vector valued functions, comparison arguments based on upper and lower solutions do not
apply either. Up to now, the theory of conservation laws has thus progressed largely by developing
ad hoc methods. In particular, a basic building block is the so-called Riemann problem, where the
initial data is piecewise constant with a single jump at the origin:

_ Jum it =<0,
U(O’x)_{qu if z>0.

Weak solutions to the Cauchy problem (1.1)-(1.2) were constructed in the celebrated paper of
Glimm [G]. This global existence result is valid for small BV initial data and under the additional
assumption

(H) For each i € {1,...,n}, the i-th characteristic field is either linearly degenerate, so that

DX;(u)-ri(u) =0 for all w, (1.6)



or else it is genuinely nonlinear, i. e.

DX;(u) - ri(u) >0 for all w. (1.7)

In [G], an approximate solution of the general Cauchy problem is obtained by piecing together
solutions of several Riemann problems, with a restarting procedure based on random sampling.
The key step in Glimm’s proof is an a priori estimate on the total variation of the approximate
solutions, obtained by introducing a wave interaction potential. In turn, the control of the total
variation yields the compactness of the family of approximate solutions, and hence the existence
of a strongly convergent subsequence. Alternative constructions of approximate solutions, based
on front tracking approximations, were subsequently developed in [DP1], [B2], [Ri], [BaJ].

The above existence results are all based on a compactness argument which, by itself, does not
guarantee the uniqueness of solutions. The well posedness of the Cauchy problem has now been
established in a series of papers [B3], [BC1], [BCP], [BLY], [BLF], [BG], [BLe]. The main results
can be summarized as follows:

- The solutions obtained as limits of Glimm or front tracking approximations are unique and
depend Lipschitz continuously on the initial data, in the L' norm.

- Every small BV solution of the Cauchy problem (1.1)-(1.2) which satisfies the Lax entropy
conditions coincides with the unique limit of front tracking approximations.

For comprehensive account of the recent uniqueness and stability theory we refer to [B5].

A long standing conjecture is that the entropic solutions of the hyperbolic system (1.1) actually
coincide with the limits of solutions to the parabolic system

ug + f(u)e = €Ugy , (1.8)c

letting the viscosity coefficient € — 0. In view of the recent uniqueness results, it looks indeed
very plausible that the vanishing viscosity limit should single out the unique “good” solution of
the Cauchy problem, satisfying the appropriate entropy conditions. In earlier literature, results in
this direction were based on three main techniques:

1 - Comparison principles for parabolic equations. For a scalar conservation law, the
existence, uniqueness and global stability of vanishing viscosity solutions has been established in a
famous paper by Kruzhkov [K]. The result is valid within the more general class of L solutions,
also in several space dimensions. For an alternative approach based on nonlinear semigroup theory,
see also [Cr].

2 - Singular perturbations. Let u be a piecewise smooth solution of the n x n system (1.1),
with finitely many non-interacting, entropy admissible shocks. In this special case, using a singular
perturbation technique, Goodman and Xin [GX] were able to construct a sequence of solutions u®
to (1.8)., with u® — u as € — 0. See also [Yu] for further results in this direction.

3 - Compensated compactness. If, instead of a BV bound, only a uniform bound on the L>
norm of solutions of (1.8). is available, one can still construct a weakly convergent subsequence
u® — u. In general, we cannot expect that this weak limit satisfies the nonlinear equations (1.5).
However, for a class of 2 x 2 systems, in [DP2] DiPerna showed that this limit » is indeed a



weak solution of (1.1). The proof relies on a compensated compactness argument, based on the
representation of the weak limit in terms of Young measures, which must reduce to a Dirac mass
due to the presence of a large family of entropies. We remark that the solution is here found in
the space L*°. Since the known uniqueness results apply only to BV solutions, the uniqueness of
solutions obtained by the compensated compactness method remains a difficult open problem.

In our point of view, to develop a satisfactory theory of vanishing viscosity limits, the heart
of the matter is to establish a priori BV bounds on solutions u(t,-) of (1.8), uniformly valid for
all t € [0, o[ and € > 0. This is indeed what we will accomplish in the present paper. Our
results apply, more generally, to strictly hyperbolic n X n systems with viscosity, not necessarily in
conservation form:

ur + A(u)uy = €Uy - (1.9)c

As a preliminary, we observe that the rescaling of coordinates s = t/e, y = x/e transforms the
Cauchy problem (1.9)., (1.2) into

Us + A(u)uy = Uyy, u(0,y) = u°(y) = u(ey) .

Clearly, the total variation of the initial data u° does not change with . To obtain a priori BV
bounds and stability estimates for solutions of (1.9)., it thus suffices to consider the system

ur + A(u)uy = Ugy , (1.10)

and derive estimates uniformly valid for all times ¢t > 0, depending only on the total variation of
the initial data u.

The first step in our proof is a decomposition of the gradient u, = > v;7; into scalar com-
ponents. In the purely hyperbolic case without viscosity, it is natural to decompose u, along a
basis {r1,...,r,} of eigenvectors of the matrix A(u). Remarkably, this choice does not work here.
Instead, we will decompose u, as a sum of gradients of viscous travelling waves, selected by a
center manifold technique.

As a second step, we study the evolution of each component v;, which is governed by a scalar
conservation law with a source term, accounting for nonlinear wave interactions. Uniform bounds
on these source terms are achieved by means of a transversal interaction functional, controlling the
interaction between waves of different families, and suitable swept area and curve length functionals,
controlling the interaction of waves of the same family. All these can be regarded as “viscous”
counterparts of the wave interaction potential, introduced by Glimm [G] in the purely hyperbolic
case. Finally, on regions where the diffusion is dominant, the strength of the source term is
bounded by an energy functional. All together, these estimates yield the desired a priori bound on
Hugg(t, ')HLl, independent of ¢ € [0, oof.

Similar techniques can also be applied to a solution z = z(t,z) of the variational equation

2 + [DA(u) . z] Uy + A(u) 2 = 240, (1.11)

which describes the evolution of a first order perturbation to a solution u of (1.10). Assuming that
the total variation of v remains small, our main goal is to establish an estimate of the form

2t ) || < L||200,4)]| 1 forall ¢>0, (1.12)



valid for all solutions of (1.11). As soon as this estimate is proved, as in [B1] a standard homotopy
argument yields the Lipschitz continuity of the flow of (1.10) w.r.t. the initial data, uniformly in
time.

By the simple rescaling of coordinates t — et, x — ex, all of the above estimates remain
valid for solutions u® of the system (1.9).. By a compactness argument, these BV bounds imply
the existence of a strong limit u*» — u in L{ _, at least for some subsequence £,, — 0. In the
conservative case where A = D f, it is now easy to show that this limit u provides a weak solution
to the Cauchy problem (1.1)-(1.2).

At this intermediate stage of the analysis, since we are using a compactness argument, it is
not yet clear whether the vanishing viscosity limit is unique. In principle, different subsequences
u®™ — 0 may converge to different limits. Toward a uniqueness result, in [B3] the second author
introduced a definition of viscosity solution for the hyperbolic system of conservation laws (1.1),
based on local integral estimates. Roughly speaking, a function u is a viscosity solution if

e In a forward neighborhood of each point of jump, the function w is well approximated by the
self-similar solution of the corresponding Riemann problem.

e On a region where its total variation is small, u can be accurately approximated by the solution
of a linear system with constant coefficients.

For a strictly hyperbolic system of conservation laws satisfying the standard assumptions (H),
the analysis in [B3] proved that the viscosity solution of a Cauchy problem is unique, and coincides
with the limit of Glimm and front tracking approximations. The definition given in [B3] was
motivated by a natural conjecture. Namely, the viscosity solutions (characterized in terms of local
integral estimates) should coincide precisely with the limits of vanishing viscosity approximations.

In the present paper we adopt an entirely similar definition of viscosity solutions and prove
that the above conjecture is indeed true. Our results apply to the far more general case of (possibly
non-conservative) quasilinear strictly hyperbolic systems. In particular, we obtain the uniqueness
of the vanishing viscosity limit.

An important step within the proof is the characterization of the viscosity solution of a Rie-
mann problem. The construction given here extends the previous results by Lax and by Liu to
general, non-conservative hyperbolic systems. As in the cases considered in [Lx], [L1], for a given
left state ™ there exists a continuous curve of right states ™ which can be connected to u~
by i-waves. These right states are here obtained by looking at the fixed point of a suitable con-
tractive transformation. Remarkably, our center manifold plays again a key role, in defining this
transformation.

Our main results are as follows.

Theorem 1. Consider the Cauchy problem for the hyperbolic system with viscosity
u + A(u)ug = €Uy, u(0,2) = u(x). (1.13)¢

Assume that the matrices A(u) are strictly hyperbolic, smoothly depending on u in a neighborhood
of a compact set K C IR™. Then there exist constants C,L,L" and 6 > 0 such that the following
holds. If

Tot. Var{u} < ¢, lim a(z) € K, (1.14)

Tr—r — 00

then for each € > 0 the Cauchy problem (1.13). has a unique solution u®, defined for all t > 0.
Adopting a semigroup notation, this will be written as t — u®(t,-) = Siu. In addition, one has:



BV bounds : Tot. Var.{S;u} < C Tot. Var.{u} . (1.15)

L' stability : 1555 — S;v|| 0 < L|a— 0|, (1.16)
Isia - Sgally, <2/ (1t — sl + |[Vet - V&3 ) (1.17)

Convergence: As ¢ — 04, the solutions u® converge to the trajectories of a semigroup S such
that
St — Ssv|| .y < Lo — vl + L' |t — s]. (1.18)

These vanishing viscosity limits can be regarded as the unique vanishing viscosity solutions of
the hyperbolic Cauchy problem

up + A(u)u, =0, u(0,z) = u(x). (1.19)

In the conservative case A(u) = D f(u), the viscosity solutions are weak solutions of
ug + f(u), =0, u(0,z) = u(x), (1.20)
satisfying the Liu entropy conditions.

Assuming, in addition, that each field is genuinely nonlinear or linearly degenerate, the vis-
cosity solutions coincide with the unique limits of Glimm and front tracking approrimations.

Notice that in the above theorem the only key assumptions are the strict hyperbolicity of the
system and the small total variation of the initial data. It is interesting to compare this result with
previous literature.

1. Concerning the global existence of weak solutions, Glimm’s proof requires the additional as-
sumption (H) of genuine nonlinearity or linear degeneracy of each characteristic field. This as-
sumption has been greatly relaxed in subsequent works by Liu [L2] and Liu and Yang [LY], but
never entirely removed. The underlying technical reason is the following. In all papers based on
the Glimm scheme (or front tracking), the construction of approximate solutions as well as the BV
estimates rely on a careful analysis of the Riemann problem. In this connection, the hypothesis
(H) is a simplifying assumption, which guarantees that every Riemann problem can be solved in
terms of n elementary waves (shocks, centered rarefactions or contact discontinuities), one for for
each characteristic field ¢ = 1,...,n. At the price of considerable technicalities, this assumption
can be replaced by some other condition, implying that all solutions of the Riemann problem can
obtained by piecing together a finite (but possibly large) number of elementary waves [L2], [LY].

On the other hand, our present approach is based on vanishing viscosity limits and does not
make any reference to Riemann problems. Global existence is obtained for the whole class of
strictly hyperbolic systems.



2. Concerning the uniform stability of entropy weak solutions, the results previously available
for n x n hyperbolic systems [BC1], [BCP], [BLY] always required the assumption (H). For 2 x 2
systems, this condition was somewhat relaxed in [AM]. Again, we remark that the present result
makes no reference to the assumption (H).

3. For the viscous system (1.10), previous results in [L3], [SX], [SZ], [Yu] have established the
stability of special types of solutions, such as travelling viscous shocks or viscous rarefactions,
w.r.t. suitably small perturbations. Taking e = 1, our present theorem yields at once the uniform
Lipschitz stability of all viscous solutions with sufficiently small total variation, w.r.t. the L'
distance.

Remark 1.1. It remains an important open problem to establish the convergence of vanishing
viscosity approximations of the form

ug + A(u)u, = é:(B(u)um):C (1.21)¢

for more general viscosity matrices B. In the present paper we are exclusively concerned with the
case where B is the identity matrix. For systems which are not in conservative form, we expect
that the limit of solutions of (1.21)., as ¢ — 0+, will be heavily dependent on the choice of the
matrix B.

The plan of the paper is as follows. Section 2 collects those estimates which can be obtained by
standard parabolic techniques. In particular, we show that the solution of (1.10) with initial data
@ € BV is well defined on an initial time interval [0, f] where the L> norms of all derivatives decay
rapidly. Moreover, for large times, as soon as an estimate on the total variation is available, one
immediately obtains a bound on the L! norms of all higher order derivatives. Our basic strategy
for obtaining the BV estimate is outlined in Section 3. The decomposition of u, as a sum of
gradients of viscous travelling profiles is performed in Section 5. This decomposition will depend
pointwise on the second order jet (uy, Uy, ), involving 2n scalar parameters. To fit these data, we
must first select n smooth families of viscous travelling waves, each depending on 2 parameters.
This preliminary construction is achieved in Section 4, relying on the center manifold theorem. In
Section 6 we derive the evolution equation satisfied by the gradient components and analize the
form of the various source terms. As in [G], our point of view is that these source terms are the
result of interactions between viscous waves, and can thus be controlled by suitable interaction
functionals. In Sections 7 to 9 we introduce various Lyapounov functionals, which eventually allow
us to estimate the integral of all source terms. The proof of the uniform BV bounds is then
completed in Section 10.

In Section 11 we study the linearized evolution equation (1.11) for an infinitesimal perturbation
z, and derive the key estimate (1.12). In turn, this yields the Lipschitz continuity of the flow,
stated in (1.16). Some of the estimates here require lengthy calculations, which are postponed
to the Appendices. Section 12 contains an additional estimate for solutions of (1.11), showing
that, even in the parabolic case, the bulk of a perturbation propagates at a finite speed. This
estimate is crucial because, passing to the limit ¢ — 0, it implies that the values of a vanishing
viscosity solution u(Z,-) on an interval [a, b] depend only on the values of the initial data u(0, -) on
a bounded interval [a — 8t, b+ [t]. In Section 13 we study the existence and various properties of
a semigroup obtained as vanishing viscosity limit: .S = lim S°m. At this stage, we only know that
the limit exists for a suitable subsequence €, — 0+. In the case of a system of conservation laws
satisfying the standard assumptions (H), we can show that every limit solution satisfies the Lax



shock conditions and the tame oscillation property. Hence, by the uniqueness theorem in [BG]|, the
limit is unique and does not depend on the subsequence {g,,}. This already achieves a proof of
Theorem 1 valid for this special case.

Toward a proof of uniqueness in the general case, in Section 14 we construct a self-similar
solution w(t, x) = @(x/t) to the non-conservative Riemann problem, and show that it provides the
unique vanishing viscosity limit. A definition of viscosity solution in terms of local integral estimates
is introduced in Section 15. By a minor modification of the arguments in [B3], [B5] we prove that
these viscosity solutions are unique and coincide with the trajectories of any semigroup S = lim 5S¢~
obtained as limit of vanishing viscosity approximations. Since this result is independent of the
subsequence {e,,}, we obtain the convergence to a unique limit of the whole family of viscous
approximations S;u — Syu, over all real values of €. This completes the proof of Theorem 1.

Finally, in Section 16 we derive two easy estimates. One is concerned with the dependence
of the the limit semigroup S on the coefficients of the matrix A in (1.19). The other estimate
describes the asymptotic limit of solutions of the parabolic system (1.10) as ¢t — oc.

2 - Parabolic estimates

In classical textbooks, the local existence and regularity of solutions to the parabolic system
(1.10) are derived by regarding the hyperbolic term A(u)u, as a first order perturbation of the
heat equation. This leads to the definition of mild solutions, characterized by the representation

u(t) = G(t) *u(0) + /0 G(t — s) * A(u(s))ug(s) ds

in terms of convolutions with the standard heat kernel G.

In this initial section we collect all the relevant estimates which can be achieved by this
approach. In particular, we prove various decay and regularity results for solutions of (1.10) as
well as (1.11). Given a BV solution u = u(t, z) of (1.10), consider the state

ut = xll)r_noo u(t,x), (2.1)
which is clearly independent of time. We then define the matrix A* = A(u*) and let A}, 7}, I}
be the corresponding eigenvalues and right and left eigenvectors, normalized as in (1.4). It will be
convenient to use “e” to denote a directional derivative, so that z e A(u) = DA(u) - z indicates the
derivative of the matrix valued function u — A(u) in the direction of the vector z. We can now
rewrite the systems (1.10) and (1.11) respectively as

up + A Uy — Upy = (A* — A(u))uw ) (2.2)
2+ A2y — 2py = (A* — A(u))zz — (z ° A(u))uz .
In both cases, we regard the right hand side as a perturbation of the linear parabolic system with

constant coefficients
wy + AWy — wey = 0. (2.4)

We denote by G* the Green kernel for (2.4), so that

w(t,x) = /G*(t, x—y)w(0,y)dy.



The matrix valued function G* is easily computed. Indeed, if w solves (2.4), then its i-th component
w; = [} - w satisfies the scalar equation

*
Wit + )\1 Wi, — Wi gz = 0.

Therefore w;(t) = G} (t) * w;(0), where

. 1 T — \it)?
G (t,x) = 2mexp{—W}.

Looking at the explicit form of its components, it is clear that the Green kernel G* = G*(¢, z)
satisfies the bounds

K

IG" @)l < #, IGz Dl < =7 IG5 O] <

g (2.5)

for some constant x and all t > 0. It is important to observe that, if v is a solution of (2.2), then
z = u, is a particular solution of the variational equation (2.3). Hence all the estimates proved
for z,, zz» are certainly valid also for the corresponding derivatives ugy, Uzze. Assuming that the
initial data u(0,-) has small total variation, we now derive some estimates on higher derivatives.
In particular, we will show that

e The solution is well defined on some initial interval [0, £], where the L> norm of all derivatives
decays rapidly.

e As long as the total variation remains small, the solution can be prolonged in time. In this
case, all higher order derivatives remain small. Indeed, waiting a long enough time, one has
Humgg(t)HL1 << Hum(t)HL1 << Hum(t)HL1 = Tot.Var.{u(t)}.

Proposition 2.1. Let u, z be solutions of the systems (2.2)-(2.3), satisfying the bounds
Huz(t)HLl S 60; Hz(t)HLl S 50) (26)

for some constant 5o < 1 and all t € [0,t], where

. 1 2
=\ oo 5 = DA| +||D%A 9.
t (400m,450> ) ra = sup ([IDA] +[ID°A) (2.7)

and k is the constant in (2.5). Then for t € [0,1] the following estimates hold:

e @)l > 122 (®)]l < 2220, (2.8
Vi
el » et < 2% 29)
t
K,S
ltane Ol s (20 ) < 20 (2.10)

tVt



Proof. The function z, can be represented as

2o(t) = G (1) % 2(0) + /Ot G(t — ) * {(A(u) — A za(s) — (2@ A(u))um(s)} ds.  (2.11)

Using (2.5) and (2.6) we obtain

/ G (t—s) (A* — A(u))zz(s) — (z @ A(u))ux(s)} ds

< [ ezl (DA o)+ 26 DA a9}

t
1

< 260x DAl - | = [ s

Consider first the case of smooth initial data. We shall argue by contradiction. Assume that there

exists a first time 7 < ¢ such that the equality in (2.8) holds. Then, observing that

ds = do=m<4

we compute

K 1 2k
HZJC(T)HLI < 750 + 2k HDAHLOO ’ \/7TS %ds
/{/60 2Kk0g

= +16Kr%k402]|DA < —
\[ A OH HLoo = \/7T 3
reaching a contradiction. Hence, (2.8) is satisfied as a strict inequality for all ¢ € [0,#]. Observing
that this estimate depends only on the L' norms of u, and z, by an approximation argument we
obtain the same bound for general initial data, not necessarily smooth. Since z = u,, is a particular
solution of (2.3), the bounds (2.8) certainly apply also to z; = Uz

A similar technique is used to establish (2.9). Indeed, we can write
t

2oz (t) = Ga(t/2) * 2, (t/2) — G (t — 8){(2: o A(u))ug(s) + (A(u) — A*)zx(s)} ds. (2.12)
t/2 x
We will prove (2.9) first in the case z;; = Uzqq, then in the general case. If (2.9) is satisfied as an
equality at a first time 7 < ¢, using (2.12) and recalling the definitions (2.7) we compute

K KO K
2ozl < - 27/024-/T/2m-{“zzOA(u)uz(s)HLl+Hzo(um0A(U))uz(8)HL1

+ HZ.A(u)U:ECE(S)HLl + Hum o A(u)za(s HLl + H A*)ZM(S)HLI}dS
< B [ Lol )]s + B Al s )]
7o L, = (PP A e (9 + 001D Al [ (s)

+ 80| DAles [|tasa () || + ol DAllLoe |22 ()| + ol DAl || 20 (5) | 0 }ds

425
< % ds,

T 1
54252D2Aw2025DA00/
+ 100 (4285 [ D* Al + 205%80|| DAl ) P
4K34, 4 5K26
K“0q < K~00

<
T/2 T

+ QOK/SKA(S(Q) .

)



reaching a contradiction.

Finally, using (2.12) and (2.8)-(2.9), the bounds in (2.10) are proved by the estimate

K 529, T K
|22 (7)]| oo < T 720 +/T/2 Noerh {sz o A(w)ua(s)|| oo + |2 @ (1 @ A())ua(s)]| o
+ Hz ° A(u)um(s)HLoo + HugC o A(u HLOQ + H Ao)Zm(S)HLw}dS
10\/5“350 453) H2 452 ! 1
15,@350 4 16K3680
ng+46f<aA60 /2<Tﬁ'
]

Corollary 2.2. In the same setting as Proposition 5.1, assume that the bounds (2.6) hold on a
larger interval [0,T). Then for all t € [t, T| there holds

e @l > [ee®llpe s 2Ol = 0Q) -6, (2.13)

ltzee Ols s [tee Ol s [zea®] = OQ)- 05, (2.14)

[tizwa ()| oo s [|222(®)|| e = O1) - &5 (2.15)

Proof. It suffices to apply Proposition 2.1 on the interval [t — £, ¢]. O

Proposition 2.3. Let u = u(t,z), z = z(t,x) be solutions of (2.2), (2.3) respectively, such that
50 50

Tot. Var.{u(0,-)} < P HZ(O)HL1 < Pl (2.16)
Then u, z are well defined on the whole interval O,ﬂ in (2.7), and satisfy
o 1)
e < 2. e < 2 c(0.1. (2.17)

Proof. We have the identity

2(t) = G*(t)2 / G*( t—s)(zoA( Yug(s) — (A(u)—Ao)zx(s)>ds. (2.18)

As before, we first establish the result for z = u,, then for a general solution z of (2.3). Assume
that there exists a first time 7 < # where the bound in (2.17) is satisfied as an equality. Estimating
the right hand side of (2.18) by means of (2.5) and (2.8), we obtain

2608
ol < 52+ [ 2R DAl ds

%
2 )

reaching a contradiction. L]

do
< 1 + 4k kAT <



To simplify the proofs, in all previous results we used the same hypotheses on the functions
u, and z. However, observing that z solves a linear homogeneous equation, similar estimates can
be immediately derived without any restriction on the initial size Hz(O)HL1 In particular, from
Proposition 2.3 it follows

Corollary 2.4. Let u = u(t,z), z = z(t,z) be solutions of (2.2), (2.3) respectively, such that
Hur(())HL1 < 80/4k. Then u,z are well defined on the whole interval [0,%] in (2.7), and satisfy

el < 26l 2Ol <262@l.  teld (219)
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A summary of the main estimates is illustrated in fig. 1. On the initial interval ¢ € [0, #], with
t ~ 1/62 we have
[ (8) || 1 < Do, (2.20)

while the norms of the higher derivatives decay:
[tas[[ 0 = O1) - 8o/ V1, [taza ||y = O(1) - S/t
On the other hand, for ¢ > £, as long as (2.20) remains valid we also have
[tz = OQ) - 65 . ez |2 = O(1) - 83

These bounds (the solid lines in fig. 1) were obtained in the present section by standard parabolic-
type estimates. The most difficult part of the proof is to obtain the estimate (2.20) for large times
t € [t, oo[ (the broken line in fig. 1). This will require hyperbolic-type estimates, based on the
local decomposition of the gradient u, as a sum of travelling waves, and on a careful analysis of
all interaction terms.

3 - Outline of the BV estimates

It is our aim to derive global a priori bounds on the total variation of solutions of
up + A(u)uy = Ugy (3.1)

for small initial data. We always assume that the system is strictly hyperbolic, so that each matrix
A(u) has real distinct eigenvalues A;(u) as in (1.3), and and dual bases of right and left eigenvectors
ri(u), l;(u) normalized as in (1.4). The directional derivative of a function ¢ = ¢(u) in the direction
of the vector v is written

veo(u) = D¢-v = lim dlutev) = o). (3.2)

€




while
[rj,rk] iT’j ®TL —T’kOT’j

denotes a Lie bracket. In order to obtain uniform bounds on Tot.Var.{u(t, )} for all ¢ > 0, our basic
strategy is as follows. We choose dp > 0 sufficiently small and consider an initial data u(0,-) = u
satisfying the first inequality in (2.16). By Propositions 2.3 and 2.1, the corresponding solution is
well defined on the initial time interval [0,]. Its higher derivatives satisfy the decay estimates in
(2.8)-(2.10). The main task is to establish BV estimates on the remaining interval [t, co[. For
this purpose, we decompose the gradient u, along a suitable basis of unit vectors 71, ..., 7,, say

we =Y . (33)
=1

Differentiating (3.1), we obtain a system of n evolution equations for these scalar components

(7 + ()\ﬂ)z)m — U gx = ¢z 7= 1, e, (34)

Since the left hand side is in conservation form, (3.4) implies

Jvi(t, )| 0 < JoiE )| +/£ /‘qﬁi(t,x)‘dxdt (3.5)
for all ¢ > 0. By (3.3) it follows

Tot.Var.{u(t, )} = |[ua(t, )|, < Z vit, )| r - (3.6)

In order to obtain a uniform bound on the total variation, the key step is thus to construct the
basis of unit vectors {71,...,7,} in (3.3) in a clever way, so that the functions ¢; on the right hand
side of (3.4) become integrable on the half plane {t > {, = € IR}.

As a preliminary, we observe that the choice 7; = r;(u), the i-th eigenvector of the matrix
A(u), seems quite natural. This choice was indeed adopted in [BiB1], where the authors proved
Theorem 1 restricted to the special class of systems where all Rankine-Hugoniot curves are straight
lines. Unfortunately, for general n x n hyperbolic systems it does not work. To understand why,

let us write '
uy, = li(u) - uy (3.7)

for the i-th component of u, in this basis of eigenvectors. As shown in [BiB1], these components
satisfy the system of evolution equations
(u;)t“‘()‘zu?c)m - (Ugs):m
SR DIPVERATITEE) S ERTSIEARIES 3 A S St
j#k jok 3:ke
= i
Assume that the i-th characteristic field is genuinely nonlinear, with shock and rarefaction curves
not coinciding, and consider a travelling wave solution u(t,z) = U(x — At), representing a viscous

i-shock. It is then easy to see that the right hand side of (3.8) is not identically zero. Since it
corresponds to a travelling wave, the integral

/}(bi(t,x)}dx # 0



is constant in time. Hence ¢; is certainly not integrable over the half plane {t > ¢, x € IR}.

The previous example clearly points out a basic requirement for our decomposition (3.3).
Namely, in connection with a viscous travelling wave, the source terms ¢; in (3.4) should vanish
identically. To achieve this goal, we shall seek a decomposition of u, not along eigenvectors of the
matrix A(u), but as a sum of gradients of viscous travelling waves. More precisely, consider
a smooth function u : IR — IR". At each point z, depending on the second order jet (u, gy, uzs),
we shall uniquely determine n travelling waves Uy, ..., U, passing through u(x) (fig. 2). We then
write u, in the form (3.3), as the sum of the gradients of these waves. As a guideline, we shall try
to achieve the following relations:

Ui(z) = u(zx) i=1,...,n, (3.9)

Z Ul(x) = ug(x), > UM (@) = tga() . (3.10)

7

Details of this construction will be worked out in the next two sections.
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Remark 3.1. Foreachi € {1,...,n}, one can find an (n+1)-parameter family of viscous travelling
waves U; passing through a given state u € IR". Indeed, one can assign the speed o; ~ A! and the
first derivative U/ € IR" arbitrarily, and then solve the second order O.D.E.

Ui/, = (A(Uz) - UZ)UZ,

In all, this would give us n(n + 1) scalar parameters to determine. Far too many, since (3.10) is a
system of only 2n equations. In an attempt to fix this problem, we could restrict ourselves only to
globally bounded travelling wave profiles. Assuming that the i-th field is genuinely nonlinear, the
analysis in [F] or [Se| shows that there exists a 2-parameter family of viscous i-shock profiles trough
any given point u. Indeed, one can arbitrarily assign v, @4 < 0 and find unique asymptotic states
ut,u~ € IR"™ which are connected by a viscous shock profile U;(-) passing through u (fig. 3), and
such that the following inner products take the prescribed values:
<7“;‘,u—u_>:oz,, <r;‘, u+—u>:a+,

and such that the asymptotic states v~ = U;(—o0), ut = U;(400) are connected by a viscous shock
profile U;(+) passing through w (fig. 3). In this case, summing over n families, we would end up with
the right number of parameters to fit the data, namely 2n. Unfortunately, viscous shock profiles
yield only negative values of gradient components: <7“;" , Ul > < 0. At a point x where <r;‘ ) uw> >0,
to achieve the decomposition (3.10) we have to consider also viscous rarefaction profiles (which are
not globally bounded). In the next section, a suitable family of viscous travelling waves will be
selected by the center manifold theorem.
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4 - A center manifold of viscous travelling waves

To carry out our program, we must first select certain families of travelling waves, depending
on the correct number of parameters to fit the data. Given a state u € IR", a second order jet
(Uy, Uy, ) determines 2n scalar parameters. In order to uniquely satisfy the equations (3.13), we
thus need to construct n families of travelling wave profiles through w, each depending on two
scalar parameters. This will be achieved by an application of the center manifold theorem.

Travelling waves for the viscous hyperbolic system (3.1) correspond to (possibly unbounded)

solutions of
(A(U) —o)U' =U". (4.1)

We write (4.1) as a first order system on the space IR" x IR" x IR:

U=,
b= (A(u) —o)v, (4.2)
c=0.

Let a state u* be given and fix an index i € {1,...,n}. Linearizing (4.2) at the equilibrium point

P* = (u*, 0, \;(u*)) we obtain the linear system

=,

b= (Au*) = \i(u))v, (4.3)

&=
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Let {r{,....r:} and {l7,...,l} be dual bases of right and left eigenvectors of A(u*) normalized
as in (1.4). We call (Vi,...,V,,) the coordinates of a vector v € IR" w.r.t. this basis, so that
il =1, v=2 Virj, V=1,
J

The null space N for (4.3) consists of all vectors (u,v,0) € IR" x IR" x IR such that
Vi=0 for all j # 1, (4.4)

and therefore has dimension n + 2. By the center manifold theorem [V], there exists a smooth
manifold M C IR"*" %!, tangent to NV at the stationary point P* (fig. 4), which is locally invariant
under the flow of (4.2). This manifold has dimension n + 2 and can be locally defined by the n —1
equations

V = o5, Vi,0) j#i. (4.5)

We can assume that the n — 1 smooth scalar functions ¢; are defined on the domain

D= {|u—u*| <6 WVil<e  o—n) < 6}.



Moreover, the tangency condition implies

03 (u Vi, 0) = 0(1) - (Ju— '+ Vil + o = As(u) ). (4.6)

We now take a closer look at the flow on this center manifold. By construction, every trajectory
t (1) = (u(t), o(t), o())

of (4.2), which remains within a small neighborhood of the point P* = (u*, 0, Az(u*)) for all t € IR,
must lie entirely on the manifold M. In particular, M contains all viscous i-shock profiles joining
a pair of states u~,u"t sufficiently close to u*. Moreover, all equilibrium points (u,0,0) with
lu —u*| < e and |o — A;(u*)| < € must lie on M. Hence

j(u,0,0) =0 for all j # 1. (4.7)
By (4.7) and the smoothness of the functions ¢;, we can “factor out” the component V; and write
@j(u,Vi,o) = ;(u, Vi, o) - Vi,
for suitable smooth funtions ;. From (4.6) it follows
Y; =0 as  (u,V;,0) = (u*,0,X(u")). (4.8)
On the manifold M we thus have
U:ZVWZ:V}- rj+2¢j(u,w,o—)r; = V;ri(u, Vi, 0). (4.9)
k j#i
By (4.8), the function 7% defined by the last equality in (4.9) satisfies

rH(u, Vi, o) = 7 as (u, Vi,o) = (u*,0,X\;(u")). (4.10)

Remark 4.1. Trajectories on the center manifold correspond to the profiles of viscous travelling
i-waves. We thus expect that the derivative @ = v should be a vector “almost parallel” to the
eigenvector rf = r;(u*). This is indeed confirmed by (4.10).

We can now define the new variable

v; = vi(u, Vo) =V; - ‘rf(u,Vi,a)‘. (4.11)

As (u,V;,0) range in a small neighborhood of (u*,0,\;(u*)), by (4.10) the vector 7“? remains
close to the eigenvector r;. In particular, its norm remains uniformly positive. Therefore, the
transformation V; «— v; is invertible and smooth. We can thus reparametrize the center manifold

M in terms of the variables (u,v;,0) € IR"™ x IR x IR. Moreover, we define the unit vector

Fi(u, ’Ul',J) = 1 (412)




Observe that 7; is also a smooth function of its arguments. With the above definitions, instead of
(4.5) we can write the manifold M in terms of the equation

The above construction of a center manifold can be repeated for every ¢ = 1,...,n. We thus
obtain n center manifolds M; C IR*"*! and vector functions 7; = 7;(u, v;, 0;) such that

7] = 1, (4.14)

M; = {(u,v,ai) ;v = T(u, vi,ai)} , (4.15)

as (u,v;,0;) € R" x IR x IR ranges in a neighborhood of (u*, 0, A;(u*)).

We derive here some useful identities, for later use. The partial derivatives of 7; = 7;(u, v;, ;)
w.r.t. its arguments will be written as

- 0 _ .0 .0

Ti,ui%fm Ti,vziav"ri, Ti,azagfi-
(] K3

Clearly, 7 ,, is an n x n matrix, while 7; ,,, 7; » are n-vectors. Higher order derivatives are denoted
as Tiuo, Ti,oo --- We claim that

7i(u,0,0;) = ri(u) for all wu,o;. (4.16)
Indeed, consider again the equations for a viscous travelling i-wave:
Uzs = (A(u) — 07)ug. (4.17)
For a solution contained in the center manifold, taking the derivative w.r.t. = of
Uy = v = ;T (U, v, 0;) (4.18)

and using (4.17) we obtain
'Uz"mfi + Uﬂziym = (A(u) — 0'1)'1)@‘7:1‘. (419)

Since |7;| = 1, the vector 7; is perpendicular to all of its derivatives. Taking the inner product of
(4.19) with 7; we thus obtain )
Vig = (Ni — 03)v;, (4.20)

where we defined the speed \; = 5\Z(u, v;, 0;) as the inner product
N = (7, A(u)Fy) . (4.21)
Using (4.20) in (4.19) and dividing by v; we finally obtain
(N — 0)vifs + v, (FiuTivi + Fiw(Ni — oi)vi) = (A(uw) — ;) v (4.22)

i (Fiufi + Tio(Ni — 03)) = (A(u) — N7 (4.23)



By (4.23), as v; — 0, the unit vector 7;(u,v;,0;) approaches an eigenvector of the matrix A(u),
while \; approaches the corresponding eigenvalue. By continuity, this establishes (4.16).
In turn, by the smoothness of the vector field 7; we also have

7i(u, v4,05) — ri(u) = O(1) - vy, Ti,o = O(1) - v;,

4.24
Fino = O(1) - 15, Fioo = O(1) - ;. (4.24)

Observing that the vectors 7; ,, and 7; , are both perpendicular to 7;, from (4.24) we deduce

‘S\i(u,vi,ai) — )\Z(u)| = 0(1) * V4, )\,’71} = O(l) * V4, )‘LO' = O(l) . 1}12. (425)
A further identity will be of use. Differentiating (4.19) one finds
vi,:cacfi + 21)1‘7357:1@ + Uifi,xac = (A(u)vﬁl)w — aivivwﬁ- — aivifi,x . (426)

From the identities
<fi7 fz,z:> = 0, <’F’L? fz,a:ac> = *<7:i,1:7 fi,m>’

taking the inner product of (4.19) with 7; , we obtain
(Fi, Tigww )i = —(Fiz, A(U)Fi)v; . (4.27)
Taking now the inner product of (4.26) with 7; we find
Viza + (i, Fiza )i = (Tiy (A(W)F0;)0) — 0305 -

Since v; ¢+ + 0;v; » = 0, using the identity (4.27) we conclude

Vit + (Aivi)e — Vigz = 0, (4.28)
where \; is the speed at (4.21).

Remark 4.2. It is important to appreciate the difference between the identities

(A(u) — )\i)ri =0, (A(u)fi — Ai) = v; (fi,ufi + 'Fi,v(j\i - O’i))7 (4.29)

satisfied respectively by an eigenvector r; and by a unit vector 7; parallel to the gradient of a
travelling wave. Decomposing u, along the eigenvectors r; one obtains the evolution equations
(3.8), with non-integrable source terms on the right hand side. When a similar computation is
performed in connection with the vectors 7;, thanks to the presence of the additional terms on
the right hand side in (4.29) a crucial cancellation is achieved. In this case, we will show that the
source terms ¢; in (3.4) are integrable over the half plane = € IR, t > .



5 - Gradient decomposition

Let w : IR — IR" be a smooth function with small total variation. At each point z, we
seek a decomposition of the gradient u, in the form (3.3), where 7; = 7;(u, v;, 0;) are the vectors
defining the center manifold in (4.15). To uniquely determine the 7;, we should first define the
wave strengths v; and speeds o; in terms of u, g, Uy,.

Consider first the special case where u is precisely the profile of a viscous travelling wave of
the j-th family (contained in the center manifold M;). In this case, our decomposition should
clearly contain one single component:

Ug :Ujfj(uvvjvo-j)' (51)
It is easy to guess what vj,o; in (5.1) should be. Indeed, since by construction |7;| = 1, the
quantity
v = £|ug|

is the signed strength of the wave. Notice also that for a travelling wave the vectors u, and u; are

always parallel, since uy = —oju, where o; is the speed of the wave. We can thus write
Up = Upg — A(U)ug = w;Tj(u,v;,05) (5.2)
for some scalar w;. The speed of the wave is now obtained as 0; = —w; /v;.

Motivated by the previous analysis, as a first attempt we define
Up = Ugy — A(U)uy (5.3)

and try to find scalar quantities v;, w; such that

Uy = Zvi fi(uﬂ}iao—i)v
! O, — ——. (54)

Uy :Zwiﬁ(u,vi,oi), Ui
i

The trouble with (5.4) is that the vectors 7; are defined only for speeds o; close to the i-th
characteristic speed Af = X\;(u*). However, when u, =~ 0 one has v; ~ 0 and the ratio w;/v; may
become arbitrarily large.
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To overcome this problem, we introduce a cutoff function (fig. 5). Fix d; > 0 sufficiently small.
Define a smooth odd function 6 : IR — [—207, 261] such that

s if ls| < 01 ' 1"



We now rewrite (5.4) in terms of the new variable w;, related to w; by w; = w; — Afv;. We require
that o; coincides with —w;/v; only when this ratio is sufficiently close to Af = X;(u*). Our basic
equations thus take the form

ue = > vi Fi(u,v5,00),
' ~ (5.6)
up = Z(wl — ANv;) 7i(u, vi, 04),
i
where

Up = Uz — A(u)uy , o, =\ —0 (w) ) (5.7)

(%

Notice that o; is not well defined when v; = w; = 0. However, recalling (4.16), in this case we have
7; = r;(u), regardless of o;. Hence the two equations in (5.6) are still meaningful.

Remark 5.1. The decomposition (5.6) corresponds to viscous travelling waves U; such that
Ui(z) = u(x), Ul(z) = vy U/ = (A(u) — 0y)U; .

From the first equation in (5.6) it follows
ug(x) = Uj(x).

If o, = A —w;/v; for all i =1,...,n, i.e. if none of the cutoff functions is active, then

Upe () = up + A(u)uy

= Z(wi — XNu)7s + A(u) Zm
= Z (A(U) — O'i)'l)i?:i
= Z U/ (x).

In this case, both of the equalities in (3.10) hold. Notice however that the second equality in (3.10)
may fail if |w;/v;| > 01 for some i.

Lemma 5.2. For |u—u*|, |ug| and |ug| sufficiently small, the system of 2n equations (5.6) has a
unique solution (v,w) = (V1,...,Vn, Wi,...,Wy). The map (u, Uy, Uyzy) — (v, W) is sSMmooth outside
the n manifolds N; = {v; = w; = 0}; moreover it is C*1, i.e. continuously differentiable with
Lipschitz continuous derivatives on a whole neighborhood of the point (u*,0,0).

Proof. Given (v, w) in a neighborhood of (0,0) € IR*", the vectors u,, u; are uniquely determined.

Hence the solution of (5.6)-(5.7) is certainly unique. To prove its existence, consider the mapping
A IR" x R™ x R" — IR®" defined by

Alu,v,w) = ZAi(u,vi,wi), (5.8)



. v; 7 (u, vy, AF —0(w;/v;))

AZ i i) = K3 Z( I (2] 7 2 3 .
(U7U ,’LU) <(wl—>\:‘vz) fl(u, Vi, )\;k —Q(wi/vi))
This map is well defined and continuous also when v; = 0, because in this case (5.16) implies
7; = r;(u). Computing the Jacobian matrix of partial derivatives w.r.t. (v;, w;) we find

o, < T4 0
+ ( Uifiﬂ) + (wi/vi)Hﬁivg —ggfiﬁ )
’LUZ"F@"U — )\:Uz’ﬂﬂ) — )\;k (wi/vi)é?gfiyg + (’wi/’l)i>201,-’lzi7o- Aj&ﬁw - (wi/vi)ﬁgﬁva
Here and throughout the following, by 6;, 0, we denote the function # and its derivative, evaluated
at the point s = w;/v;. By (5.10) we can write
oA
(v, w)
Because of (4.24), the matrix functions By, By are well defined and continuous also when v; = 0.
Moreover, for (v, w) small, By has a uniformly bounded inverse and B; — 0 as (v,w) — 0. Since
A(u,0,0) = 0 € IR*™, we conclude that the map (v,w) — A(u; v,w) is C' and invertible in a
neighborhood of the origin. Therefore, given (u, u,,u,,), there exist unique values of (v, w) such
that

(5.9)
(5.10)

= Bo(u,v,w) + Bi(u,v,w), (5.11)

Au, v,w) = (Ug, Uge — A(u)ug). (5.12)

The inverse of the map A w.r.t. the variables v, w will be denoted by A~!(u; p,q). In other
words,

AN u; pog) = (v,w) iff Alu; v,w) = (p,q).-
Since 7;(u, 0, 0;) = r;(u), we have

Au,0,w) = ( 0, Zwiri(u)).
Therefore,
A" (u,0,q) = (0,w) where w; = l;(u) - q.

In particular, ¥(u,0,0) = (0,0) € IR*". Concerning first derivatives (which we regard here as
linear operators), we have

Alu:
W (0, W) = Bo(w; 0,w) - (0,0) = (; oiri(u) ; (w; — /\i(u)@i)n(u)) . (5.13)
A~ (u;
A(p, q)
We shall not compute the second derivatives explicitly. However, one easily checks that
2A 2A 2A
: ’ TE _o i it (5.15)

a’l)ia’Uj - 8vi8wj - 8wz8wj
Moreover, recalling (4.24) and (5.5), we have the estimate
9’N 92N 9%A 1
- 001) —.
o2’ 0w, Ow? o) o1

1

(5.16)

Since the cutoff function 6 vanishes for |s| > 301, it is clear that each A; is smooth outside the
manifold N; = {(v,w); v, = w; = O}7 having codimension 2. Since all second derivatives are
uniformly bounded outside the n manifolds N;, we conclude that A is continuously differentiable
with Lipschitz continuous first derivatives on a whole neighborhood of the point (u*,0,0). Hence
the same holds for A~1. O



Remark 5.3. By possibly performing a linear transformation of variables, we can assume that
the matrix A(u*) is diagonal, hence its eigenvectors r7,...r" form an orthonormal basis:

<7“;<, 7’;> = 5ij . (517)
Observing that
7w, v3,00) — 7| = O1) - (Ju — w*| + |vi), (5.18)

from (4.16) and the above assumption we deduce
(7i(u,vi,00), 7(u,05,05)) = 855 + O1) - (Ju —u*| +[vi] +[v)])
=0;; + O(1) - 9,
(73, A(w)7j) = O(1) - &g jFi. (5.20)

Another useful consequence of (5.17)-(5.18) is the following. Choosing dp > 0 small enough, the
decomposition (5.6) will satisfy

(5.19)

] <Y ol < 2v/nfug - (5.21)

We conclude this section by deriving estimates corresponding to (2.13)-(2.15), valid for the
components v;, w;. In the following, given a solution u = u(t, z) of (3.1) with small total variation,
we consider the decomposition (5.6) of u, in terms of gradients of travelling waves. It is understood
that the vectors 7; are constructed as in Section 4, taking P = (u*,O, )\Z(u*)) as basic points in
the construction of the center manifolds M,. Here u* = u(t, —o0) is the constant state in (2.1).

Lemma 5.4. In the same setting as Proposition 2.1, assume that the bounds (2.6) hold on a larger
interval [0,T]. Then for all t € [t, T|, the decomposition (5.6) is well defined. The components
v, w; satisfy the estimates

”Ui(t)HLM Hwi(t)HL1 = O(1) -0, (5.22)
[0:(®)]| oo+ Jwi@®) || vie @l s [[wia®)| = OQ) 65, (5.23)
Vi () || oo 5 [|wia(t)||poe = O1) - 65 (5.24)

Proof. By Lemma 5.2, in a neighborhood of the origin the map (v, w) — A(u,v,w) in (5.8) is
well defined, locally invertible, and continuously differentiable with Lipschitz continuous deriva-
tives. Hence, for d9 > 0 suitably small, the L>° bounds in (2.13) and (2.14) guarantee that the
decomposition (5.6) is well defined. From the identity (5.12) it now follows

v, w; = O(1) - (|ux] + |Um|)

By (2.6) and (2.13)-(2.14) this yields the L' bounds in (5.22) and the L* bounds in (5.23).
Differentiating (5.12) w.r.t. z we obtain

oA oA
S U + W(vx, wy) = <um, Upzz — AW Ugy — (uy @ A(u))um) (5.25)
Using the estimate
O — 0@ (1o + fu)
ou vl

since the derivative OA/0(v, w) has bounded inverse, from (5.25) we deduce
(v, wy) = O(1) - <|um| + |Ugee| + |uz|* + |ux\(|v] + |w])>

This yields the remaining estimates in (5.23) and (5.24). U



6 - Bounds on the source terms

We now consider a smooth solution u = u(t,z) of (3.1) and let v;, w;, be the corresponding
components in the decomposition (5.6), which are well defined in view of Lemma 5.2. The equations
governing the evolution of these 2n components can be written in the form

{ Vie + (Nivi)z — Viga = i
N (6.1)
Wit + (Niw;) e — Wi gx = Vi -

Asin (4.21), we define here the speed N = <ﬁ , A(u)fi> . The source terms ¢;, 1; can be computed
by differentiating (3.1) and using the implicit relations (5.6). However, it is not necessary to carry
out in detail all these computations. Indeed, we are interested not in the exact form of these terms,
but only in an upper bound for the norms ||¢;||r: and |[1;||L: -

Before giving these estimates, we provide an intuitive explanation of how the source terms
arise. Consider first the special case where u is precisely one of the travelling wave profiles on the
center manifold (fig. 6a), say u(t,z) = Uj(z — o;t). We then have

_ . e o
Uy = VTG, ut:(wj—)\jvj)rj, vi=w; =0 fori#j,

and therefore

Vit + S\iviw_viwwzov
(s .

wi ¢ + (Aiwi)s — Wi pe = 0.

Indeed, this is obvious when i # j. The identity ¢; = 0 follows from (4.28), while the relation

wj = (A] — o;)v; implies ¢; = 0.

-bb-error = =
figure 6a
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figure 6b

Next, consider the case of a general solution v = u(t,x). The sources on the right hand sides
of (6.1) arise for three different reasons (fig. 6b).

1. The ratio |w;/v;| is large and hence the cutoff function 6 in (5.7) is active. Typically, this will
happen near a point xg where u, = 0 but u; = u,, # 0. In this case the identity (4.28) fails
because of a “wrong” choice of the speed: o; # A} — (w;/v;).

2. Waves of two different families j # k are present at a given point x. These will produce
quadratic source terms, due to transversal interactions.

3. Since the decomposition (3.10) is defined pointwise, it may well happen that the travelling
j-wave profile U; at a point = is not the same as the profile U; at a nearby point z’. Indeed,
these two travelling waves may have slightly different speeds. It is the rate of change in this speed,
i.e. 0, that determines the infinitesimal interaction between nearby waves of the same family.
A detailed analysis will show that the corresponding source terms can only be linear or quadratic



w.r.t. 0., with the square of the strength of the wave always appearing as a factor. These terms

can thus be estimated as O(1) - vo; . + O(1) - vio5 .

Lemma 6.1. The source terms in (6.1) satisfy the bounds

i, Yi =0(1) > ([vjal + [wjal) - [w; — 0505 (wrong speed)

2

J
+0(1) - Z [vj 2w — vjw; 5] (change in speed, linear)
J
+0Q)- Z ~x{|wj/vj|<351} (change in speed, quadratic)

wj
Uj —
; Vi /) e
J

+01) > (ljve] + [vjevk] + [vjwi| + [vj.0wk] + [vwp,0] + |wjw])
ik

(interaction of waves of different families)

From a direct inspection of the equations (6.1), it will be clear that the source terms depend
only on the third order jet (u, uy, Uzy, Uzzy). Since all functions ¢;, ¥; vanish in the case of a
travelling wave, for a general solution u their size can be estimated in terms of the distance between
the third order jet of w and the (nearest) jet of some travelling wave. This is indeed the strategy
adopted in the following proof. An alternative proof, based on more direct calculations, will be
given in Appendix A.

Proof of Lemma 6.1. The conclusion will be reached in several steps.

1. The vector (ug,u;) = A(u,v,w) satisfies the evolution equation

o) = (87 o) ().~ () (et e ) - 69

Observe that, in the conservative case A(u) = D f(u), the right hand side vanishes because
(uz @ A(w))uy = (up ® A(u))uy = D* f(u) (ug @ uy).

In the general case, recalling (5.6) we deduce

(ug @ A(w))us — (us @ A(u))uy, = O(1) - Z (Jvjo] + [vjwgl). (6.4)
ik

2. For notational convenience, we introduce the variable z = (v, w) and write A for the 2n x 2n
diagonal matrix with entries \; defined at (4.21):

A= <diago®) diag(xi)> :



From (6.3) it now follows
oA oA (v A(m) 0 OA (v OA
- — A e - T UYxzx
et 3 (), (10 ) -5 ()
%A 0%\ Vg Vg 92\ Uy
T oul? (U @) = 922 (wx> ® <wx> B 28u82 Us & <waz>

= (e a0y e )

Therefore,

o (1), (0(0).- ().,
_ gﬁ (x (;’))) - ([Aé“) A(u)] A>m +22A(U)Ux+ <(uw,A(u))ut v (utoA(u))uz>

0%A %A Vg Vg 9?A Vg
+ aum (ux ®ux) + 82[2] ' (wz> “ (wz> * zﬁuaz e @ <wz>
(6.5)

=F
Since the differential OA/0z has uniformly bounded inverse, the right hand sides in (6.1) clearly
satisfy the bounds

OI—I

¢ =0(1) B, b =0(1) - E, i=1,...,n. (6.6)

3. To estimate the quantity F in (6.5), it is convenient to introduce the function

Ai(u,vi,wi,ai)i(( vif'y(u, Vi, o) ) (6.7)

w; — A7 (u, v, o)

so that A =Y A; and E =) E;, where
_ 0N (v Aw) 0 ], [ ONis L OA
= 0z <5\iwi >m - <[ 0 A(U)} Al>m - do; Aiia Ou zj:A(u)vm

N 0 N O, N PN (i Vix
i (s o Alw))ur — (uy @ A(uw)uz) ) 9" P T 50wy )P \wis 65

O?A; 02N, i 2V %A, ; %A,
+ 10—1'2@"’_2 - <Jl7zvl7z> +2 . </UZ’I> ® Uy + 25— - O,z Ux

do? 00; 0z; \ OizW; z 0u0z; \ Wi oudo; 7
8Al 8%7@2 492 8201- s s+ (92O'iw2
do; \ Ov? HF Ovow; "N wE )

Notice that in (6.5) we regarded A as a function of the three independent variables (u, v, w), while
in (6.8) we think A as a function of the four independent variables (u, v, w, o). Regarding the o; as
independent variables, one has the advantage that the maps A; = A;(u, v;, w;, 0;) are now smooth,
while A; = A;(u, v, w) in (5.8) was only C1'!, because of the singularities of the map (u, v;, w;) — o;
in (5.7). The last term in (6.8) is due to the nonlinear dependence of o; w.r.t. v;, w;. By m;(v)



we denoted the i-th component of a vector v w.r.t. the basis {r},...,r%}. Also notice that in the
previous computation we used the identity

8AZ 80’i /~\ s 6A, (90'1' S\i,zwi

da; Ov; " do; Ow;
= s w; /v - 0T o —0iTi.o vi\ _ (0
N wz/vz(’wl/ﬂl — )\:)9;77%5 —(wi/vi — )\r)egfz’o' w; N0/

4. By Lemma 5.2, the inverse map A~! sets a one to one correspondence

(Uy Ugy U ) = (U, v, W)

between two neighborhoods of the point (u*,0,0) € IR®". This map is C* with Lipschitz continuous
derivative. It can be prolonged to a map

(u7umauxmvuxxm) ’_> (’U/,'U,'UJ,O', Um7wx7ax) (69)

which is one-to-one, but of course not onto. Indeed, (5.6) and the identity u; + A(u)uy = Ugs
together imply

g w;T; + 5 Usz
= § Vs, «Ti + § VT u'U]rj + § Uzrz vwViz + § 'Uzrz oc0i,x -

(6.10)

A vector (u,v,w,0,v;, Wy, 0,) € IR™ corresponds to some third order jet (Uy Uy, Uy Ugp) PLO-
vided that it satisfies the vector equation (6.10), together with

Uz._A;_e(:jf), _w—we(U’) i=1...n.  (611)

5. By the analysis at (6.2), F;(u,v?,w?, 0?09, w, 0¥) = 0 whenever the argument corresponds
to the third order jet of a viscous travelling i-wave. This is the case if

vf:w;?:v;?x:w;?izo, ;>w_0 for all j # 1, (6.12)
—()\ —0; ) <>7 w<> ’wQ
i,x Yy O x Yy &
{ ()\ s ) 1<>’ ? < 361, o/ =\ 0?7 07 =0. (6.13)

In order to estimate F;(u,v,w,o,v,,w,,0,) we proceed as follows. We introduce a new vector
(u,v°,w®, 0,08, w¢,00) corresponding to the jet of a travelling i-wave, by setting

&
w; w
v? = v, w?z@( Z)vi, ol =0y =\ — 5 - (6.14)
(% v;
The quantities U?I ,wi?a:, afm are then defined according to (6.13), while the components j # i

are as in (6.12). The above construction implies EZ<> = Bi(u,v®,w®, 0% 0¥, wl,08) = 0. Hence
E;=E;— E°.



6. Taking the inner product of (6.10) with 7;, recalling that 7; has unit norm and is thus orthogonal
to its derivatives, we obtain

w; + (>\z - )\;k)vz = Vi + o,

where
e = Z<T1, )\ —A 7“]>Uj +ZZ 7°17 T] urk>vﬂ)k
JFi Jj#i k
+ Z (T, Tj0) V02 + Z (ri, 14,0)Vj0j (6.15)
j#i j#i
=0(1)-60 Y _ |vjl.
J#i

The above estimate on © is obtained using (5.20) together with the L bounds in (5.23)-(5.24)
and the bound on 7;, in (4.24). We can now write

Vi = wi + (A — AP Jvi + O(1) - 69 Y _ |vj]

) 7 (6.16)
= (A — 00)vi + (w; — Op0;) + O(1) - 8o Y Jvg] -
J#i
We recall that 6; = 0(w;/v;). The first equality in (6.16) yields the implications
lwi| < 361 |vi = 0. =01) v +0(1) -6 Y |v;l. (6.17)
J#i
lw;| > 61| — 0 =0(1)-viz+0(1)- 5 Y |vl. (6.18)
J#i
Moreover, from the second equality in (6.16) we deduce
(Xz — O'Z')’U)i = (5\2 — Ui) ['Ui,m — (5\ /\ )Uz + O (50 Z ’U]‘
JFi
= (A = 0i)Vie — (A = X)) (V2 — (wi — Bi03)) + O(1) - 6o > [v;]
J#i
w; w; N
:TULx_ <U,_91> Ui,ﬂ:'—i_()\i_Az)( 9’[)Z +O 6OZ|UJ|,
J#i
and hence, by (6.18),
(N —o))w; = % +O(1) - [w; — B3] + O(1) - 86 Y o]
‘ J#i
From the definitions (6.13)-(6.14), using the above estimates we obtain
jwi — wf| = |w; — v;| + O(1) - 60 Y _ |vjl,
J#
2% = Nws — 050 ) ,
’v%x vz,z| 0(1) ’wi 911}1| + O(l) 50 Z ‘,U]‘ ’ (619)
J#i
0 = | Wiali T Wilix 1 ) »
= w0y = | ] 01) s = i+ O(1) 00 S gl

J#i



7. We now compute

E;=E; - EY
oA [ Aiv; Aw) 0 ], _0AY [ AF? Aw) 0 ] 40
= 2 — il — 0.0 ) T ¢
OA; ~ oA\, -
+ 780’,‘ i Oix — % E A('U,)?)j’l“j

J#i
0 oA PAY o i
+ Wz((ux [ ] A(u))ut — ('I,Lt [ ] A(u))ux) + 8’“[2] Uy & Uy — 8“[2} 'UZT'i X ’[)Z’r'i

PN; [ v vie | OPAY (0l
+ . ’ X ’ — . & ®
9212 Wiz Wi 9212 Wy’

DN %N, (v, DA [ v %A
3 2 o x = 2 . b i~§> 2 ’ 1,0 Wx
T 07 e T 2500 \wiw ) ©M T 2000 \w?, ) © T T Y0, T
82Ai 0 2Vix 8/\2 320'7; 2 820'7; 820'7; 2
+ 2822-8@ (Ui,xwi,z + do; \ 0%v; Vi 28111-810@- VigWie + 02 lwi’m '

(6.20)
Observe that the quantities u,v;, 0;,7;, A; remain the same in the computations of F; and E? .

Moreover, all the terms involving derivatives w.r.t. o; vanish when we compute Ez<> .

In the remaining steps, we will examine the various terms on the right hand side of (6.20) and
show that they can all be bounded according to the lemma. As a preliminary, we observe that by
(6.7) and (4.24) the derivatives of the smooth function A; = A;(u, 2;, 0;) satisfy

oN; 0%\ 0%\,

D0 ol Dmge; ~ OW (il + fil), (6.21)
ao—i , 8u80_1 , 80.2 = U; VWi ) - .

7

8. We start by collecting some transversal terms. Using (6.4) and (6.21)-(6.22) we obtain

OA; R 0
ou Z#‘ A(u)v;7; <7ri((ugC o A(u))uy — (ug ® A(u))uy) >
Y]
+ A 2 0%\, Vs
o7 A o i i N 6.93
oull ;k VjURT @ T — 0T QT | + 28uazi j%éi (wm> ® vj; (6.23)

= O(1) - Y (lvjor] + [wjorl) + O(1) - > (Jwjwi| + |vjvi| + [vjwi ).
j#k J#i

Here and in the following, by “transversal terms” we mean terms whose size is bounded by products
of distinct components j # k, as in (6.23).

9. We now look at terms involving derivatives w.r.t. o;. One should here keep in mind that, if



oiz # 0, then both sides of the implication (6.16) hold true. Using (6.21) we obtain
azAi < O0i,zVix

0z;00; \ OizWiz

) = O(l) . Ui(|vi,ac| + |’wi7z|)0'i,a:

=0(1) - v?am + O(1) - (wiv; ¢ — W; zV;)0; 5 + transversal terms

2
(1
UZ . JE—
V; z

=0(1) - |wivi,z - wi,mvi\ + + transversal terms.

(6.24)

"X, Jvi] <361}

An application of (6.22) yields

OA; ~ 0%\, 0%\,
8—@)\1»0,»798 + Waix + QMJWUZC = O(1) - v} (|oia| + |07 ,|) + transversal terms
2
"
= O0(1) - [vjw; z — WiV x| + O(1) - |v; - <Uz>x "Xy s <851 + transversal terms.
(6.25)
Next, we observe that the quantity
820'1' 2 + 9 820i + 820'1' 2
57— Y; Vig Wiz + 75— W;
82111' b 8’018'(1]2 ’ ’ 82wi &

vanishes in the special case where w; , = (w;/v;)v; . In general, recalling (6.16) a direct compu-
tation yields

aAl 8201' 2 9 820'1' + 820'1 2
— V; Vi xW; —w;
Oo; \ 0%v; “* ov;ow; " Q2w UF
OA\; {< w? w; w? w; w?
= —0— 20— ) w2 +2(0) = 4+ 0 —= ) v pw; o — 0 —w?
. ? 4 1 ,.3 1,T (3 4 1 ,.3 2, %1,T (3 4 1,T
0o, U5 U5 U] U5 U5

2 (6.26)
- gAZ 2 <9;/u}}12 + 0;%) [ <'U]7;’Z — wiv‘i,x> _ G;Iwijf <wi,m . ’Ll)i’U‘i,w)
7i vi Yi Vi v; (%
(%)
vi | —
Vi ),

10. We now complete the analysis of the remaining terms. As a preliminary, we observe that
the only difference between A? and A; is due to the fact that one may have w? # w;. The first
estimate in (6.19) thus implies

=O0(1) - [vjwi p — WiV 5| + O(1) - + transversal terms.

"Xy /051<361}

IAY — A, |DAY — DA;|, |D*AY — D2A;| = O(1) - |w; — 00| + O(1) - 502 vl -
JjFi
By (6.17) and (6.27), if we compute A; or its partial derivatives at the point (u,v;, w;, 0;) instead

of (u, v, w; ,a?) = (u,v;, w?, 0;), the difference in each of the corresponding terms in (6.20) will
have magnitude

(6.27)

O(1) - lw; — O;vi| - (|vie] + |wie|) + transversal terms.
For example,
(a% 92N

a0 au[ﬂ) (viT; @ viT;) = O(1) - |w; — ;0] v? + transversal terms

(6.28)

=0(1) - |w; — ;v Uﬁm + transversal terms .



Indeed, if w; # 6,v;, then both sides of the implication (6.17) hold true

Observing that §%A;/0w? = 0 and recalling (6.17), we have

821\1' Vi x Vi.x Ui<>:1: Ui<>w
2] A I U Rl U S B U
azi Wi 2 Ws 2 wm fwm
- O( ) ( 7, T (Uf?x)2) + O(1> : (vi,xwi T 'U?xw?m)
=0(1) - vi zlw; — O;v;| + O(1) - w; |w; — 0;v;] + O(1)|w;v; » — v;w; 5| + transversal terms.
(6.29)
In a similar way, using (6.17) and (6.19) one derives the estimate
82A¢ Vigxg — 'U§>
’ s iTi = O(1) - vi g (wi — 0;0;) + O(1) - w; z|w; — b;v;
dudz; (wi,z—w;@)@vr (1) vs0 (s = bi0i) + O) - wiaws = bivil (6.30)
+ O(1) - |w;v; ¢ — viw; »| + transversal terms.
Using the identity (4.23), we now compute
821 A 0 A(U) ! . o 0 I— A(u) (’LUZ — )\;F'Ui)fi,v 0 )\sz
n fz‘ 0 S\zzvz o Tiuli + (Ni — Ti)Tiw 0 Vi
—A\iT Ty i 2 Wi LN (FiaTi + (N — 0)Tiw)  TiwTi + (N — 03)Tiw Wy,
Alw) 0 | O\ DA(u)7; 0 A(w) 0 | 0A;
- [ 0 A(u)] 300w 22 0 pamr | N2 0 )| e v
j
With similar arguments as above, we obtain
(A2 Vil 0 _ AS o) 20 7Y,
Aivn)oviwi = Nw)iiw )~ \ (AF0f)ovf (wf = Nof)S,
+ O(1) - v; »|w; — 0;v;] + transversal terms,

_ 0(1) . ’viw@m — Uz‘,mwi| . X{|’wi/vi|§351}

Ni 2 Vi A wP

X )\<>’ <> = O0(1) - |vjw; z — Vi gw;| + O(1) - v 5 |w; — 6;v;] + transversal terms
’ 1,T Z

ViVsz UOUQ

in;,x - ZO Z<>z O) - |viw; o — vi gw;i| + O(1) - v; x|w; — O;v;| + transversal terms

The above estimates together imply

oo () - (18 il ) - G ) - (%7 o)), o
= O0(1) - |w; — 0;v;| (Jvia] + |wie|) + O) - [wivie —

V; W, x| + transversal terms.

This completes the proof of Lemma 6.1.



7 - Transversal wave interactions

The goal of this section is to establish an a priori bound on the total amount of interactions
between waves of different families. More precisely, let v = u(t,x) be a solution of the parabolic
system (3.1) and assume that

e ()], < o t€0,7]. (7.1)

In this case, for ¢ > ¢, by Corollary 2.2 all higher derivatives will be suitably small and we can
thus define the components v;, w; according to (5.6)-(5.7). These will satisfy the linear evolution
equation (6.1), with source terms ¢;,¥; described in Lemma 6.1. Assuming that

/5 /|q§i(t,x)|+!zﬁi(t,m)‘dxdtgéo, i=1,...,n, (7.2)

and relying on the bounds (5.22)—(5.24), we shall prove the estimate

T
[ /Z(!vﬂ/kl+|vj,ka|+\vjw1e|+|Uj,zw1e|+\vjwk,a:|+lewk)dwdtzo(l)'53- (7.3)
Tk

As a preliminary, we establish a more general estimate on solutions of two independent linear
parabolic equations, with strictly different drifts (fig. 7).

Lemma 7.1. Let z, 2! be solutions of the two independent scalar equations

2+ (Mt 2)z) | — 2ee = @(t, ),

7.4
A+ (Nt a)h), —2E, =it ), 7

defined for t € [0,T]. Assume that
itnf)\ﬁ(t,a:) — supA(t,z) > ¢ > 0. (7.5)

t,x

Then

/OT/‘Z(t’x)‘ |24 (t, x)| dadt

< % (/ ‘Z(O,J})‘d.Z‘—F/(;T/}(,O(t,QS‘)’d.rdt) (/ ‘zﬁ(O,w)‘dx+/OT/}wﬁ(t,x)‘dxdt) .

(7.6)

-bb-error = =
figure 7



Proof. We consider first the homogeneous case, where ¢ = ¢ = 0. Define the interaction potential

Q(z.2F) = / Kz — y) |2(x)] |2(y)| dady (7.7)
with L J1/c if s >0,
K(s) = { 1/c-ecs/? if  s<0. (7.8)

Computing the distributional derivatives of the kernel K we find that ¢K’ — 2K is precisely the
Dirac distribution, i.e. a unit mass at the origin. A direct computations now yields

—Q(( /}thztm‘dw
Therefore

[ [ 10 0 daat < (0, #0) < 2 ) O (7.9

proving the lemma in the homogeneous case.
To handle the general case, call I',T* the Green functions for the corresponding linear ho-
mogenous systems. The general solution of (7.4) can thus be written in the form

z(t,z) = /F(t,:r,O,y)z(O,y)dy—i—/o/f‘(t,x,s,y)@(s,y)dyds,

) (7.10)
A(t,z) = /Fﬁ(t,w,O,y)zﬁ(O,y)dy+//Fﬁ(t,:c,s,y)wﬁ(s,y)dyds.
0
From (7.9) it follows
T
1
/ /F(t,x,s,y) THt,x, 8"y ) dedt < = (7.11)
max{s,s’} ¢

for every couple of initial points (s,y) and (s’,%3’). The estimate (7.6) now follows from (7.11) and
the representation formula (7.10). U]

Remark 7.2. Exactly the same estimate (7.6) would be true also for a system without viscosity.
In particular, if
zt + ()\(t,:c)z)x =0, zf + ()\ﬁ(t,:n)zﬁ)x =0,

and if the speeds satisfy the gap condition (7.5), then

jt[i //M]zﬁ(t,x)z(t,y)}dxdy] < —/\z(t,x)\ | (t, )| da

In the case where viscosity is present, our definition (7.7)-(7.8) thus provides a natural counterpart
to the Glimm interaction potential between waves of different families, introduced in [G] for strictly
hyperbolic systems.

Lemma 7.1 allows us to estimate the integral of the terms |v;vg|, |vjwy| and |wjwy| in (7.3).
We now work toward an estimate of the remaining terms |v; yvi|, |v; zwg| and |v; ini
one derivative w.r.t. x.




Lemma 7.3. Let z, 2* be solutions of (7.4) and assume that (7.5) holds, together with the estimates

T T
/ /‘go(t, )| dzdt < 6o, / / ‘gon(t, )| dxdt < &, (7.12)
0 0
=@l s [1#@O) g < 0. e @l s [#@®)p~ = €735, (7.13)
[Xe(®)]| 0 < C* 00, lim A(t,7) =0 (7.14)
for allt € [0,T). Then one has the bound
/ /‘zx (t,z)| ‘z (t,x)| dodt = ) - 62 (7.15)

Proof. The left hand side of (7.15) is clearly bounded by the quantity

T—1
Z(T) = sup / /’zmtz (t+7x+§’d$dt<(0 5e)*-
(1,6€)€[0, T xR

the last inequality being a consequence of (7.13). For t > 1 we can write z, in the form

zw(t,x):/Gx(l,y)z(t dy—l—// (5,9) [0 — (A2)a] (t — 5, @ — y) dyds,

where G(t,x) = exp{—x?/4t}/2+/wt is the standard heat kernel. Using (7.6) we obtain
T—1

/ /!zm(t,x)zﬂ(t—i-T,x—i—ﬁ)‘dxdt
1

s/lT_T//\Gmu,y)z(t—l, v ) e+ x4 )| dyddeds
+/1T_T//01/HMLOO Gals,) 2(t — 5, 2 — y) (¢ + 7,0 + €) | dydsdadt
+/T_T//1/HMLOO Gu(,9) 2alt = 5, @ = ) (¢ + 7, + €)| dydsdadt
/T //t 1/\@* 5,1~ y)pls,9) 2t + 7+ 6)| dydsdadt
< (/\Gma,y)\dwuxauw/o /\Gz<s,y>}dyds)
s </1TT/‘z(t—s, z—y)| ‘zﬁ(t—i—T,x—l-ﬁ)‘dxdt)
+ (HAHLOO ./01/‘Gx(s,y)}dyds> . <S?££$/1T_T/‘zx(t—s, z—y)| \zﬁ(t+r,x+§)|dxdt>
1 [ [ Gt asty [ [ loteo]doa

<2 22602 b0 + 2\ T(T) + 003 - 20y
(7.16)



On the initial time interval [0, 1], by (7.13) one has

/0/‘zm(t,w)zﬁ(t—l—ﬂ:L‘+§)‘d:rdt§/0 el |25+ 7) | dt < (C*03)2. (7.17)

Because of (7.14) we have
2||)\HL°° < 2||)\||L1 < 20"y << 1.

From (7.16) and (7.17) it thus follows

w3
C

I(T) < (C*62)* + —2 +2C*6 - Z(T) + 20*653 .

For §y sufficiently small, this implies Z(T) < 952 /c, proving the lemma. L]

Using the two previous lemmas we now prove the estimate (7.3). Setting z = v;, 2 = vy,
A= 5\j, A= 5\k, an application of Lemma 7.1 yields the desired bound on the integral of |v;uvg|.
Moreover, Lemma 7.3 allows us to estimate the integral of |v; ;v,|. Notice that the assumptions
(7.13)-(7.14) are a consequence of (5.22)-(5.23). The simplifying condition (¢, —oo) =0 in (7.14)
can be easily achieved, using a new space coordinate ' = x — Ajt.

The other terms |vjwg|, |wjwg|, |vj 4wi| and |vjwy .| are handled similarly.

8 - Functionals related to shortening curves

We now study the interaction of viscous waves of the same family. As in the previous section,
let w = u(t, ) be a solution of the parabolic system (3.1) whose total variation remains bounded
according to (7.1). Assume that the components v;, w; satisfy the evolution equation (6.1), with
source terms ¢;,1; bounded as in (7.2). Relying on the bounds (5.22)—(5.24), for each i =1,...,n
we shall prove the estimates

T
/ /\wmvi — w;v; ;| dxdt = O(1) - 63, (8.1)
i

T
2| Wi
A log|* || —
t |wi/v¢\<361 Vi T

The above integrals will be controlled in terms of two functionals, related to shortening curves.
Consider a parametrized curve in the plane ~ : IR — IR?. Assuming that + is sufficiently smooth,
its length is computed by

2
dxdt = O(1) - 63. (8.2)

£0) = [ ()| da. (8.3

Following [BiB2], we also define the area functional as the integral of a wedge product:

A0 =3 [ eto) n et dody. (8.4
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To understand its geometrical meaning, observe that if v is a closed curve, the integral

;/fy(y)/\fyx(y)dy: ;/Ly%(x)w(y)dxdy

yields the sum of the areas of the regions enclosed by the curve v, multiplied by the corresponding
winding number (fig. 8). In general, the quantity .A(y) provides un upper bound on the area of
the convex hull of ~.

Let now v = (¢, x) be a planar curve which evolves in time, according to the vector equation

Yt + ()\’Y)x = Vzz - (8.5)

Here A = A(t, ) is a sufficiently smooth scalar function. It is then clear that the length £(v(t))
of the curve is a decreasing function of time. It was shown in [BiB2] that also the area functional
.A('y(t)) is monotonically decreasing. Moreover, the amount of decrease dominates the area swept
by the curve during its motion. An intutive way to see this is the following. In the special case

where « is a polygonal line, with vertices at the points Py, ..., P, the integral in (8.4) reduces to
a sum: .
A(’Y):iz:‘vi/\vj‘a vi=PF —F_1.
i<j

If we now replace v by a new curve 7’ obtained by replacing two consecutive edges vy, vi by one
single edge (fig. 8), the area between ~y and «' is precisely |vy A vi|/2, while an easy computation
yields

1
A() < A() = S lva AVl
The estimate on the area swept by a smooth curve (fig. 9a) is now obtained by approximating a

shortening curve v by a sequence of polygonals, each obtained from the previous one by replacing
two consecutive edges by a single segment.
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We shall apply the previous geometric considerations toward a proof of the estimates of (8.1)-
(8.2). Let v,w be two scalar functions, satisfying

v + ()\U)x — VUga = Qb,

W + (AW)y — Wee = . (8.6)

Define the planar curve v by setting

V(t, @) = </m u(t, y)dy, /I w(t,y)dy>- (8.7)

— 00 —0o0



By (8.6), the corresponding evolution equation for + is

Ve + Mo = Yoz = (/; o(t, y)dy, /_; Y(t, y)dy> : (8.8)

In particular, if no sources were present, the motion of the curve would reduce to (8.5). At each
fixed time ¢, we now define the Length Functional as

L(t)=L(y() = / VoR(t,z) + w(t, z) da (8.9)
and the Area Functional as

A(t) = // (t,y) — v(t,y)w(t, x)‘ dzdy . (8.10)

We now estimate the time derivative of the above functionals, in the general case when sources
are present.

Lemma 8.1 Let v, w be solutions of (8.3), defined fort € [0,T]. For each t, assume that the maps
r = v(t,z) v — w(t,x) and x — At,z) are CbY, i.e. continuously differentiable with Lipschitz
derivative. Then the corresponding area functional (8.10) satisfies

GAW® < = [ foatt, 2wt 0)—o(t. )t )| dot o0 000 2+ 0O s 60O - 11

Proof. Differentiating (8.10) w.r.t. time we obtain

-/ / sign (v(@)w(y) — w(z)o(w)) - {v(ehwly) + oy y) - vl () — vly)w() fdedy

/ / ., sign (v(z)w(y) — w(z)v(y)) - {(uz(x) — M@)v(2)), w(y) — v(y) (we(z) — )\(x)w(:v))m}dmdy
/ / sign (v()u(y) — wx)e(y)) - { () >w<y>}dwdy
- / /x<y sign (v(@)w(y) — w(z)v(y)) - 5 {(vz (@) w(y) — v(y) (we(z) — Mz)w(x)) }d:ndy
v/ / sign(v(z)u(y) - oz () () bdady
(8.12)

To simplify the first term on the right hand side of (8.12), for a fixed y we let {z4(y)} be the set
of points < y such that v(z,)w(y) — w(zs)v(y) = 0. Relying on an approximation argument, we
can assume that these points are in finite number, say xn(y) < -+ < 22(y) < 21(y) < 2o(y) = v,
and that the function x — v(z)w(y) — w(x)v(y) changes sign across each x,(y). For convenience,
we define the additional point xx; = —oo and let ¢(y) = £1 be the sign of v(z)w(y) — v(y)w(zx)
on the last interval, i.e. when = € [z, y]. We now can write

/y sign(v(az)w(y) — w(w)v(y)) . 881:{(1)%(.7:) — )\(:x)v(m))w(y) — v(y)(wm(:v) — )\(x)w(x))}dx

—0o0

N Za(y)
Z / | 81{(%(:5) = Az)v(z))w(y) — v(y) (wa(z) — )\(;p)w(x))}dx

a=0 at1(y

D (-1 vx (a(y))w(y) — we (xa(y))v(y)) + (va(y)w(y) — wx(y)v(y))> :

a=1



By direct inspection, one checks that the factor «(y) - (—1)® has always the opposite sign of
V(o) w(y) — wy(x4)v(y). Therefore

// _sign(v()uly) - w)(y)- DL (wa) = Awpola))w(e) — v(o) (wala) — Aaw(a) hdrdy

-
(8.13)

The bound (8.11) is now an immediate consequence of (8.12) and (8.13). U

o (2a () w(y) = v(y)ws (va(y)) |dy.

valy)wly) — vly)wn(y)|dy 2 i /

Lemma 8.2. Together with the hypotheses of Lemma 8.1, at a fized time t assume that v, (t,x) # 0
for every x. Then

Proof. As a preliminary, we derive the identity

da + || o) || o + [ @)|| s - (8.14)

|%cr|2 h’m|2 - <7xv '7rz>2 = (’U?c + wix) (’UQ + wi) - (Uvz + wrwém)2
= (vwge + vxwm)2 = vﬂ(w/v)xf.

Thanks to the assumption that v, never vanishes, we can now integrate by parts and obtain

- Ve, ’7a:t> Ve, ’Ya:zw <'7ma ()\'Ym w> <’Ya:a ¢ w > .
R e o= | { el ] Pl } !

Yz | Yz |

ol /)
<~/ Qo a7 190 O

Since the integrand is non-negative, the last inequality clearly implies (8.14). L]

Remark 8.3. Let u = u(t, z) be a solution to a scalar, viscous conservation law
ut+f(u)m — Ugz =0,

and consider the planar curve v = (u, flu)— uw) whose components are respectively the conserved

quantity and the flux (fig. 10). If A = f’, the components v = u, and w = —u; evolve according to
(8.6), with ¢ = ¢ = 0, hence v¢ + A\yz — V22 = 0. Defining the speed (fig. 11) s(x) = —ui(z)/u.(x),
the area functional .A( ) in (8.4) can now be written as

// ‘Ux x)ue(y) — ug(x)ug(y ‘d:ndy
- //< |t () da| - ua(y) dy] - [s(2) — s(y)|

1
=— wave at x] X [wave at y| x [difference in speeds].
2
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It now becomes clear that the area functional can be regarded as an interaction potential between
waves of the same family. In the case where viscosity is present, this provides a counterpart to the
interaction functional introduced in [L2] in connection with strictly hyperbolic systems.

Recalling that the components v;, w; satisfy the equations (6.1), we can apply the previous
lemmas with v = v;, w = w;, A = A\;, @ = ¢y, ¥ = Y, calling L; and A; the corresponding length
and area functionals. For t € [¢, T, the bounds (5.22)—(5.23) yield

Ai(t) < ||vilt) =0(1)- 63, (8.15)

i@

[
Li(t) < ||vi@®)||p + [Jwi(®)|| . = OQ) - bo. (8.16)
Using (8.11) we now obtain

T T
/ / ‘wi,xvi — wivi,x| drdt < /
t i

< Ai() + S (o)l + llwi®| ) - /tT/ (leit, )] + [wsi(t, @) ) daat

= O(l) 5(2)7

4] s [ (@@l + 0] 60, ) a

(8.17)
proving (8.1). To establish (8.2), we first observe that, by an approximation argument, it is not
restrictive to assume that the set of points in the ¢-x plane where v; ,(t,2) = w; »(t,z) = 0 is at
most countable. In this case, for almost every ¢ € [t,T] the inequality (8.14) is valid, and hence

T ) 2 T
[l o]
i Jwi/vi| <36 Vi ) i

=01

Zﬁi(t)‘ dt + /T <“¢i(t)HL1 + HT/Jz‘(t)HH) dt
/ / |6s(t, )] + [wilt @ \)da:dt (8.18)

Using the bound (5.23) on ||v;||Le, from (8.18) we deduce (8.2).

9 - Energy estimates

In the same setting as the two previous sections, we shall now prove the estimate

T
t



We recall that 0; = 6(w;/v;), where 0 is the cut-off function introduced in (4.5). Notice that the
integrand can be # 0 only when |w;/v;| > 0.

Consider another cut-off function 7 : IR — [0, 1] such that (fig. 5)

_fo it [s| <38,/5,
’7(3)_{1 it |s| >448,/5. (6:2)

We can assume that 7 is a smooth even function, such that
'] < 21/61, "] < 101/57.

For convenience, we shall write 1; = n(w;/v;). As a preliminary, we prove some simple estimates
relating the sizes of v;, w; and v; .. It is here useful to keep in mind the bounds

i — A =01) |/ —rf|=0Q1) -0, |vil, |wi| = O(1) - 53 , (9.3)
valid for t >t and i = 1,...,n. Recall also our choice of the constants
1
0 < g << 51§§ (94)

Lemma 9.1. If |w;/v;| > 381/5, then

|wi| < 2viz| +O(1) 80 > v, lvg| < =— %, |M|+o )60 ) ;. (9.5)
JAi VE
On the other hand, if |w;/v;| < 461/5, then
V0] < S1]vi] + O(1) - 60 Y _ gl (9.6)
J#£i
Proof. We recall the first estimate in (6.16):
Vig = W; + (5\1 —A)v; + 0O
=w; + (N — A + O(1) - &g Z lvj], (9.7)
JFi

with © defined as in (6.15). By (9.3)-(9.4), from the condition |w;/v;| > 3d1/5 two cases can arise.
On one hand, if

o
o] < 1T)|ui|, (9.8)
then 35 5 95
[vie] 2 =il = O(1) - Golvi| = 35 loil = ol
and hence
5 51
vg| < %, = Vil [wi| < v o] + g\w! < 20w g - (9.9)



On the other hand, if (9.8) fails, then by (9.3) we have

i = Af[ ol = O(1) - 65 Y Jug]. (9.10)
J#

In both cases, the estimates in (9.5) hold.
Next, if |w; /v;| < 401/5, from (9.7) we deduce

s

o1
=il + 5l +O(1) 60 Y o). (9.11)

J#i

|'Ui,m| S

If (9.8) holds, then |v; ;| < d1]v;|. If (9.8) fails, then (9.10) is valid. In both cases we have (9.6).
U

Toward a proof of the estimate (9.1), we first reduce the integrand to a more tractable expres-
sion. Since the term |w; — 6;v;| vanishes when |w;/v;| < d1, and is < |w;| otherwise, by (9.5) we
always have the bound

lw; — O;vi| < nwi| < mi | 2|vi| + O(1) - o Z |v;]
J#i

Therefore

(lvial + [wia) - [wi = i < (Jvie] + [wiz )1 | 2Jvie] +O(1) - 80 > Jvy]
i
< 2771'111-2@ + 20;|v; pw; | + z (|Ujvi,w’ + |iji,:z’)
i
< 30w, +mwl, + Y ([0l + [vjwiz])
i#i

(9.12)

Since we already proved the bounds (7.3) on the integrals of transversal terms, to prove (9.1) we
only need to consider the integrals of v?’ . and wﬁx, in the region where 7; # 0. In both cases,
energy type estimates will be used.

We start with vfz Multiplying the first equation in (6.1) by n;v; and integrating by parts,
we obtain

/mvi(m dﬂi—/

= / {m(v?/Z)t — AV Vi w — i AiV] + 0307, + ni,xvi,xvi} dx

—

N0V + 0i0i(NiVi )z — mvwi,m} dx

= / {(mvf/Q)t + (i) 2 (V2/2) = (e + 2Nz — i) (V2/2) + 772'%'2,:6} dz .



Therefore

d -
oo =2 [ [ da:] b [ ot K = i) (07/2) o

(9.13)
— /)\iymm(U?/Z) dr + /771'1)@(]51' dz .
A direct computation yields
Y Ws ¢ Vi, t W4 X Wi 2 Ui,z W;
Nit + )\2‘772‘,95 — Nizx = 77§ ( — 5 ) + /\mg < — 3 )
(o CH (o v;
2
_ 771,’/ (U),) . 77/ (wi,aﬁw _ Ui,xzwi _ QUi,ngi,x 4 2”1'2,33;1)1'
i/ x V; vy v; U;
(9.14)

= {77; (wi,t + (S‘iwi)z - wi,r:r)/vi - néwi ('Ui,t + (S\ivi)z - Uzm)/”ﬂ
+ 205 07; Vi - (Wi /vi)e — 17 (Wi /vi)2

2
= 1; (1/1 - Wd)i) + 2] <w> — (w) :
V; V; U V; V; z V; z

Since ;\zm = (/N\Z — A\)z, integrating by parts and using the second estimate in (9.5) one obtains

’/5\“@%(1}?/2) dx

— '/(5\Z — )\f)(m’xv?/Q + mvivi,x) dz

. 1 5
< A = A e - 2/’772‘ Vwi,wvi—vi,xwildeJr%l/mviz,m d$+0(1)'50/2|ij|dx

J#i
1
< /\wmvi — v pw;| dz + B /mvﬁm dx + 50/2 lv;v;| d .
J#i
] (9.15)
Indeed, by (9.3)-(9.4), |A; — Af| = O(1) - 69 << 071. Using (9.14)-(9.15) in (9.13) we now obtain

2
;/mvzmd:v < —% [/ 77%2“1 dg:} +;/’n§‘(|viwi|+|wigbi|) d:v+/ NV, o (Z]:)w dx
1 w; 2
+2/ 772,”2'2 <vl> d:!:—l—/|wi,mvi—wivi@‘dﬁ—}—éo/Z|vivj|da:+/|viqz5i|dx.
v j#i
(9.16)

Recalling the definition of 7;, on regions where 1} # 0 one has |w;/v;| < 4d1/5, hence the bounds

(9.6) hold. In turn, they imply
W;

W W
/ 2 ! 2 7
N;ViVix <> 01m;v; ()
Vi ) & Vi ) x —
J#i

< 817 Jws w0 — wivs o] + O(L) - ol > <’iji,oc| + [0V«
JFi

<

(9.17)

).

wy
(%



Using the bounds (5.22)-(5.23). (7.2)-(7.3) and (8.1)-(8.2), from (9.16) we conclude

T T
/ /m vix dzdt < /mvf(f,x) dx—f—O(l)-/ /(|vi¢i| + |wz¢l|) dzdt
i

/ /\w“,;vZ w;v; | dzdt + O(1) 60/ /Z (|vjwie] + [vjvie]) dudt

J#i

T T .
1)/ / |Uz'(wi/’0i)w’2d.7}dt+250/ /Z|ij]dxdt+2/ /|Uid>i\dxdt
t J|w; /v <61 B oy :

=0(1)-62.
(9.18)

We now perform a similar computation for w .- Multiplying the second equation in (6.1) by
n;w; and integrating by parts, we obtain

Therefore, the identity (9.13) still holds, with v;, ¢; replaced by w;, ¢;, respectively:

d -
/mwim de=—— U niw? /2 d:z:] + / (it + Aiie — Miwa) (W /2) da

_/)\z 21i (w3 /2 )d$+/77iwi¢i dx . o

The equality (9.14) can again be used. To obtain a suitable replacement for (9.15), we observe
that, if n; # 0 then (9.5) implies

|wiw; o] < 200i 2Wi x| + 00 [vjwia] <07, +wl, +O(1) 60 Y 05wl
J#i J#i

Integrating by parts we thus obtain

\/ Riemi(w? [2) da

‘/(Xz — )\f)(m,xw?/Q -+ mwiwi,x) dzx

< HS\Z - >\;"HL<>o : {/|77£| |wi,x'Ui - 'Ui,xwi| dr + /mvﬁm dz

—i—/ w Ldxr+ 01 50/Z|v]wm]dx}

J#i

1 1
< /|wi7xvl v gw;| dr + = /77Z mdm+ 2/772-101-2@ dx+50/2\v]wzx|da:

J#i
(9.20)
Using (9.14) and (9.19) in (9.18) and observing that |w?/v?| < 6% on the region where 7} # 0, we

2
71

2

v




now obtain an estimate similar to (9.16):

Q/ini’wd.%'g—dt |:/ 121 dx +2/‘77;‘(’U1¢Z’+‘w1¢1‘) d$+51/ ngviv,’,m QTZ i dx
52 A\
—l—l/ R (w,) dx—l—/‘wi,mvi—wiviﬂdx
2 Vi ) .
1
—1—2/7]1‘111-2@ dx—{—&)/Z|vjwi7x]dx+/|wi¢i|dx.
J#i
(9.21)

Using the bounds (5.22)-(5.23), (7.2)-(7.3), (8.1)-(8.2) and (9.17)-(9.18), from (9.21) we conclude

T T
/ /m wzw dxdt < /niwf(f,x) dac+(’)(1)~/ /(|Uz'¢z| + \wiqﬁi\) dxdt
i i
T T
+00) - [ [ s~ wivnaldede +0(1) 80 [ 3 (ywial + [ogos) dade
i i

i

T T
+(9(1)-/ / ]vi(wi/vi)xfd:rdt—k/ /mvzmdazdt
Ig |’wi/1)7;|<51 £
T T
—1—50/ /Z]wi@z}j\d:rdt—i—Q/ /viqﬁi]dxdt
i i

J#i
=0(1) 6.
(9.22)
Using (9.18) and (9.22) in (9.12), we obtain the desired estimate (9.1).
10 - Proof of the BV estimates

In this section we conclude the proof of the uniform BV bounds. Consider any initial data
i : IR — IR", with

do
li u(r) =u* € K 10.1
N w_ir_noou(x) u* € (10.1)

We recall that  is the constant defined at (3.5), related to the Green kernel G* of the linearized
equation. This constant was introduced in connection with a fixed reference state u*, but it is
clear that it remains uniformly bounded as u* varies in a compact set K.

An application of Corollary 2.4 yields the existence of the solution to the Cauchy problem on
an initial interval [0, #], satisfying the bound

Tot.Var.{u} <

[ua (B2 < (10.2)

G0
N

This solution can be prolonged in time as long as its total variation remains small. Define the time

T = sup{T : Z/;/ ‘qbi(t,x)‘ + Wi(t, :E)’ dxdt < 520} : (10.3)



If T < oo, a contradiction is obtained as follows. By (5.21) and (10.2), for all ¢ € [£, T] one has
[ua (Bl < Z i (®)]| 0
) T
<5 (Il = [ 6.0 0.
p i

R )
< 2 fug i)y + 2 < o

Using Lemma 6.1 and the bounds (7.3), (8.1), (8.2) and (9.1) we now obtain

S [ [1o) + oo e - 00) - < P, (105)

provided that g was chosen suitably small. Therefore T" cannot be a supremum. This contradiction
with (10.3) shows that the total variation remains < &y for all ¢ € [£, oo[. In particular, the solution
u is globally defined.

Remark 10.1. The estimates (8.1) and (9.1) were obtained under the assumption (7.2) on the
source terms. A posteriori, by (10.2) the integral of the source terms is quadratic w.r.t. §p. Using
(10.2) instead of (7.2) in the inequalities (8.17) and (9.20), we now see that the quantities in (8.1)
and (9.1) are both = O(1) - 3. Recalling that g is the order of magnitude of the total variation,
we see here another analogy with the the purely hyperbolic case [G]. Namely, the total amount
of interactions between waves of different families is of quadratic order w.r.t. the total variation,
while the interaction between waves of the same family is cubic.

Remark 10.2. Within the previous proof, we constructed wave speeds o; = A — 6(w;/v;) for
which the following holds. Decomposing the gradients u,., u; according to

Uy = Zvi 7i(u, v, 04),

%

(10.6)
Uy = Z(wz — )\;k’l)z) Fz(u, Vi, O'i),
the components v;, w; then satisfy
Vit + (~ivi):r — Vigx = ¢Z(t7x) ; (10 7)
Wit + (S\sz)cz: — Wigx = sz(ta :L‘) )

where all source terms ¢;,1; are integrable:

/()Oo/‘¢i(t,w)‘dxdt<5o, /Om/‘wi(t,x)‘dxdt<5o. (10.8)

In general, the speeds o; defined at (5.7) are not even continuous, as functions of ¢, z. However,
by a suitable mollification we can find slightly different speed functions o;(t, ) which are smooth
and such that the corresponding decomposition (10.6) is achieved in terms of (smooth) functions
v;, w; satisfying a system of the form (10.7), with source terms again bounded as in (10.8).



We conclude this section by studying the continuous dependence w.r.t. time of the solution
t — u(t,-). By (10.4) we have

Tot.Var.{u(t)} = Hux(t)HLl < do for all t > 0. (10.9)

By the estimate (2.8) in Proposition 2.1, the second derivative satisfies

2/6(50/\/?? if t< Lt,
ex(t) || = = ) R
IR BV N
Therefore, from (1.10) it easily follows
, 1

for some constant L’. For any ¢ > s > 0 we now have

Ju(t) = u(s)]|. < / o)l dr
< L’(‘t—s]—i— }\/i—\/go,

(10.11)

Remark 10.3. A more careful analysis shows that in (10.11) one can actually take L' = O(1) -
Tot.Var.{u}. However, this sharper estimate will not be needed in the sequel.



11 - Stability estimates

Let u = u(t,z) be any solution of (3.1) with small total variation. The evolution of a first
order perturbation z = z(¢,z) is then governed by the linear equation

2+ (AW)z) = 2pe = (ug @ A(w))z — (z @ A(u))u, . (11.1)

x

As usual, by “e” we denote a directional derivative. The primary goal of our analysis is to establish
the bound
20t )| < L |20, ) || for all ¢ >0, (11.2)

for some constant L. By a standard homotopy argument [B1], [BiB1], this implies the uniform
stability of solutions, w.r.t. the L' distance. Indeed, consider two initial data i, v with suitably
small total variation. We can assume that u* = 4(—00) = v(—00), otherwise ||u — ¥||p: = oo and
there is nothing to prove. We construct the smooth path

0’ = 0u+ (1 - 0)7, 6 €[0,1].

Calling t — u?(t,-) the solution of (3.1) with initial data u’, for every ¢ > 0 we have

M| dul(t
) - vl < [ %52
1 0
<L'/ O (11.3)
B 0 df Iy

Indeed, the tangent vector

is a solution of the linearized Cauchy problem
20+ [DA(ue) . ze]u‘g + A(u?)28 = 22

29(0,3;) = Ee(x) = u(x) — v(x),

hence it satisfies (11.2) for every . The bound (11.3) provides the Lipschitz continuous dependence
of solutions of (3.1) w.r.t. the initial data, with a Lipschitz constant independent of time. In
particular, it shows that all solutions with small total variation are uniformly stable.

Remark 11.1. In the hyperbolic case, a priori estimates on first order tangent vectors for solutions
with shocks were first derived in [B2]. However, even with the aid of these estimates, controlling
the L! distance between any two solutions remains a difficult task. Indeed, a straightforward use of
the homotopy argument fails, due to lack of regularity. These difficulties were eventually overcome
in [BC] and [BCP], at the price of heavy technicalities. On the other hand, in the present case with
viscosity, all solutions are smooth and the homotopy argument goes through without any effort.

Throughout the following, we consider a reference solution u = u(t, z) of (3.1) with small total
variation. According to Remark 10.2, we can assume that there exist smooth functions v;, w;o; for
which the decomposition (10.6) holds, together with (10.7) and (10.8).



The techniques that we shall use to prove (11.2) are similar to those used to control the total
variation. By (2.19) we already know that the desired estimate holds on the initial time interval
[0, ﬂ To obtain a uniform estimate valid for all ¢ > 0, we decompose the vector z along a basis of
unit vectors and derive an evolution equation for these scalar components. At first sight, it looks

promising to write
2= zifi(u,v,0),
i

where 71, ...,7, are the same vectors used in the decomposition of u, at (5.6). Unfortunately, this
choice would lead to non-integrable source terms. Instead, we shall use a different basis of unit
vectors 71, ..., 7,, depending not only on the reference solution u but also on the perturbation z.

Toward this decomposition, we introduce the variable
T =z, — A(u)z,
related to the flux of z. By (11.1), this quantity evolves according to the equation

T+ (A@w)Y) — Tup = [(ul, e A(u))z— (2 ® A(u))ugﬁ} N A(u) [(ugC e A(u))z— (z @ A(u))uw}

+ (ug @ A(w)) Y — (us @ A(u))z.

xT

We now decompose z, T according to

z= Z h;T; (Uﬂ)i; A — e(gi/hi)) )
i (11.4)
T =) (9~ Arha)fi(u,vi, Af = 0(g:/hi))

where 6 is the cutoff function introduced at (5.5). In the following we shall write
i = 7i(u, 05, Af = 0(gi/hi)),

to distinguish these unit vectors from the vectors 7; (u,vi, AF— 0(w; /v,)) previously used in the
decomposition (5.6) of u,. Moreover we introduce the speed

N = (Fi, A(u)iy) (11.5)
and denote by X
0; = 0(gi/h;) (11.6)

the correction in the speed for the perturbation. The next result, similar to Lemma 5.2, provides
the existence and regularity of the decomposition (11.6).

Lemma 11.1 Let |u — u*| and |v| be sufficiently small. Then for all z,T € IR" the system of 2n
equations (11.4) has a unique solution (hy,...,hn,91,...,9n). The map (z,Y) — (h,g) is Lipschitz

continuous. Moreover, it is smooth outside the n manifolds N; = {h; = g; = 0}.

Proof. The uniqueness of the decomposition is clear. To prove the existence, consider the mapping
A : R*" — IR®" defined by

A(h, g) = Z/A\i(hi,gi), (11.7)
i=1



0 - hi i (u, vi, A} = 0(gi/hi))
Al 90) = ((Qz — Arhy) 7i(u, vi, Af —0(gi/hi)) ) ' (11.8)

Computing the Jacobian matrix of partial derivatives we find

oA 7+ (91/hi)0Fi0 ~Oifio (11.9)
O(hivgi)  \ =N = AH(gi/hi)0iFig + (9i/1i)20Fi 0 7i 4 NeOFio — (95/hi)0Fi0 )~

By (4.24), 7i, = O(1) - v;. Hence, for v; small enough, the differential DA is invertible. By
the implicit function theorem, IAXA is a one-to-one map whose range covers a whole neighborhood
of the origin. Observing that A is positively homogeneous of degree 1, we conclude that the
decomposition is well defined and Lipschitz continuous on the whole space R*". Outside the
manifolds /\Afi, 1 =1,...,n, the smoothness of the decomposition is clear. L]

Writing the identity YT = 2z, — A(u)z in terms of the decomposition (11.4) we obtain

Z(gi — )\jhz)ﬂ = Z hz‘,x'f’i — Z A(u)hﬂ% + Z hﬂ%"u ”Ujfj + Z hiTA’i,vax - Z hif’i’géiw .
% % i A i

7
(11.10)
Taking the inner product with 7; and observing that #; is a unit vector and hence is perpendicular
to its derivatives, we obtain R R
g; = hi,ac + ()\z - )\:)hz + ©

with
e = Z <7§1 s A(u)fj>h] + Z Z <fl y ijufk>hjvk + Z <fi y fj7v>h]‘7)j,gc + Z <fz ) "gj,g>hjéj,z .
J#i Jj#i k J#i J#i
(11.11)
Hence, by (5.20) and (4.24),
g; = hi@ + (5\@ — A?)hz + 0(1) - dg Z (‘hJ’ + ‘Uj‘) . (11.12)
J#i
A straightforward consequence of (11.12) is the following analogue of Lemma 9.1.
Corollary 11.2. If |g;/h;| > 301/5, then
5
91 < 2lhs o+ 0180 3 (Js 1) il < 5-lha +O()60 3 (gl +hs]) - (1113
i ! i
On the other hand, if |g;/h;| < 461/5, then
[Pie| < S1lhil + O1) - 60 Y (lvj| + Iy1) - (11.14)

J#i

Our eventual goal is to show that the components h;, g; satisfy a system of evolution equations
of the form

(11.15)

{ hi,t + (S\th)z - hi,r:r = ¢Ez 5
git + (ngz)m — Gixx = 12}7, )



where the source terms on the right hand sides are integrable on [f, oo xIR. Before embarking
in calculations, we must first dispose of a technical difficulty due to the lack of regularity of the
equations (11.4).

Since our equations (3.1) and (11.1) are uniformly parabolic, it is clear that for ¢ > 0 all
solutions are smooth. Moreover, by Remark 10.2, we can slightly modify the speeds o; occurring
in the decomposition of u,, so that (10.6)—(10.8) hold and the corresponding functions v; are now
smooth. On the other hand, the map A in (11.7) is only Lipschitz continuous, hence the same is
true in general for the functions h; = h;(t,x) and g; = g;(¢, z). Indeed, at points where h; = g; = 0
for some index 4, the derivatives h; , or g; , may well be discontinuous. In this case, the equations
(11.15) would make no sense. To avoid this unpleasant situation, we observe that each manifold N,
has codimension 2. Given the smooth functions z, T and € > 0, by an arbitrarily small perturbation
we can construct new functions h¥, T* satisfying

1% = zllcz + |TF = Tle= < €

and such that the corresponding decomposition (11.4) is C* outside a countable set of isolated
points (ty,, Tm)m>1. A further implementation of this technique yields

Lemma 11.3. Let z, T be solutions of (3.1) and (11.1) respectively. Then for any € > 0 there
exists smooth functions 2%, Yt such that the corresponding coefficients in the decomposition (11.4)
are smooth except at countably many isolated points (t,,Tm), m > 1. Moreover, these perturbed
functions solve the system of equations

2+ (A(u)zﬁ)z —zh, = (uy @ A(u))2* — (2% o A(u))um +e1(t, ),
T+ (Aw)r) —TE, [(um oA u>)zﬁ (2 u))ux} — Alu )[(ux o A(w)) 2t — (2f o A(u))um]
+ (uz @ A(w))Y? — (up @ A(u))2* + ea(t, 2),

for some perturbations ey, eq such that

/;O/ le1(t, 2)| + |e2(t, @) | dudt < €.

Thanks to this lemma, we can study the time evolution of the components h;, g; by means
of a second order parabolic system, at the price of an arbitrarily small perturbation on the right
hand side. In the remainder of the paper, for simplicity we derive all the estimates in the case
e1 = e3 = 0. The general case easily follows by an approximation argument.

In Section 6 we showed that the source terms in the equations (6.1) could be reduced to four
basic types. The following result is an analogue of Lemma 6.1, providing an estimate for the
source terms in the equations (11.15). The proof, involving lengthy calculations, will be given in
Appendix B.



Lemma 11.4. The source terms in the equations (11.15) satisfy the estimates

bilt,x), Ditw) = O(1) - D (hjal + hyvs] + g;05] + gzl ) s = 00

J

+0(1)- > (|Ujhj,x — hjvjal + 05,095 — 9j,205] + |hjwje — wihja| + |gjwje — gj,ij!>

J
2
.
+01) > (vl + k1) By (hﬂ)
)/ x
+0(1) - > (Ihgonl + 1hjvil + hyveal + hswe] + ;0] + |ga.50] + 95001 + hihal + higel )

j
ik

+0(1) - > (Ihjesl + sl + 195651 + lgsvs1)-

J

.X{Igj/hj|<351}

(11.16)
The key step in establishing the bound (11.2) is to prove
Lemma 11.5. Consider a solution z of (11.1), satisfying
|2(8)|| . < do for all t € [0,T7, (11.17)
and assume that the source terms in (11.4) satisfy
T
/1E /‘(Z)i(t,x)‘ + [¥i(t, )| dadt < & i=1,...,n. (11.18)
Then for each i =1,...,n one has the estimates
T T
/1E / |6i(t,2)| dadt = O(1) - 63 , /t /Wi(t,:v)‘ dzdt = O(1) - 62. (11.19)

Assuming the validity of this lemma, we can easily recover the estimate (11.2). Indeed, since
the equations (11.1) are linear, it suffices to prove the estimate in the case where

|2(0)||: = S‘S\/%ﬂ. (11.20)

We recall that & is the constant defined at (3.5). By Corollary 2.4, on the initial interval [0, ] we

have
=) < 26]|20)]],., = 4‘\5% relo.d. (11.21)

Define the time

T = sup{T : Z/;/ ‘qzi(t,x)\ + wi(t,x)]dg;dt < 520} : (11.22)



If T < o0, a contradiction is obtained as follows. First, we observe that the inequalities in (5.17)
remain valid for the decomposition of z, namely

2 < || < 2v/nlz]. (11.23)

For every 7 € [t, T], by (11.22) and (11.23) one has
el < i)
<y (Hhi(f)HLl +/£T/\<z3i(t,a:)\dacdt> (11.24)

% < 4.

< 2v/n||2(t) 5 =

o

We can thus use Lemma 11.4 and conclude

T
Z/t /\J%(t,x)\+\¢i(t,x)ydmt:o<1)-53 < % (11.25)

provided that g was chosen suitably small. Therefore T' cannot be a supremum. This contradiction
shows that the bound (11.2) holds for all ¢ > 0 and 2 € L!, with L = 8x/n. The remainder of
this section is aimed at establishing the estimates (11.19).

Proof of Lemma 11.5. By Corollary 2.2, for t € [t,T], as long as Hz(t)HL1 < g we also have the
bounds

|z2(®)|| L = O) - 65, 220 ()], = O(1) - 65, 222 (t) || oo = O(1) - & -

By Lemma 11.1, the map (z,Y) + (h,g) is uniformly Lipschitz continuous. From the previous
bounds, for every t € [,T] and all j = 1,...,n it thus follows

i lprs [g7e®llp s 17Ol s Nai®llp = 0Q) -85, (11.26)

1252 poe > [|952(0)]| e = O(1) - 55 (11.27)

Recalling that v;, w;, h;, g; satisfy the systems of equations (10.7) and (11.15) with source terms
bounded by (10.8) and (11.18), we now provide an estimate on the integrals of all terms on the
right hand side of (11.16).

The same techniques used in Section 7 yield an estimate on all transversal terms, with j # k:

T
/ / (|hjvk:| + |hjevk| + [hjok | + [hjwr| + [g50k] + 195,20k] + |95Vk,2| + |Rjihe| + |hg’9k\) dxdt
t

=0(1)-02.
(11.28)



From (10.8) and (11.26) one easily obtains

/fT/ <!hj¢j\ + |hjps| + |gib5] + \gﬂbﬂ) dzdt < /tT/ (thHL“’ + ngIILoo) (1651 + [iby]) dadt

= oW (11.29)

A further set of terms will now be bounded using functionals related to shortening curves, as
in Section 8. At each fixed time ¢ € [t, T, for i = 1,...,n consider the curves

7 () = (/zovi(t,y)d% /;hi(t,y)dy>.

By obvious meaning of notations, we also consider the curves 'yi(v’g), %(w h), %(w’g), %(h’g). By (6.1)

and (11.15), the evolution of these curves is governed by vector equations similar to (8.8). For

example,

As in (8.9)-(8.10), we introduce the corresponding Length and Area Functionals, by setting
LMy = £(v"M (¢ /\/ (t,z) + h2(t, z) da

_Al(.”’h)(t) = A(y; (v, h) // |vi(t, 2)hi(t, y) — vilt,y)hi(t, )| dedy .

Similarly we define Egv’g)(t), .AZ(-U’Q) (t), etc... A computation entirely analogous to (8.17) now
yields the bounds

T
/ / <’Uihi,x — hivig| + [Vi2gi — gixVi| + |hiwie — wih; 4|
t

(11.30)
+ |giwi z — gizwi| + |gihix — higi,z|)d$dt =0(1) - 58-
Moreover, repeating the argument in (8.18) we obtain
T N 2
/ / h; <g’> dadt = O(1) - & . (11.31)
i Jlwi/vil <36, hi ),
Using the bounds (5.19) on ||v;||Le and (11.26) on ||h;||Le, from (11.31) we deduce
/ / (joi] + [al) |1 () dadt = O(1) - 53 (11.32)
|w; /vi] <381 i

The integrals of the remaining terms in (11.16) will be bounded by means of energy estimates.
For convenience, we write 7; = 1(g;/hi), where n is the cutoff function introduced at (9.2). In
Appendix C we will prove the estimates

T
| [#2ide = on)-a2. (11.33)
0



T
/ /g?,z fide = O(1) - 65 . (11.34)
0

Using (11.33)-(11.34) we now bound the terms containing the “wrong speed” |w; — 6;v;|. All these
terms can be # 0 only when |w;/v;| > §1. Hence by (6.18) we can write

Z ‘vj — 0;v;)

J#i

Uz’x Wy 9’[)1

(Iewsl + lgrvs]) s — B0x] = O(1) - (] + rgi\)(
y (7.3), (9.1) and (11.26) it thus follows

T
t

To estimate the remaining terms, we split the domain according to the size of |g;/h;|.

CASE 1: |gi/hi| > 461/5, |w;/vi| > 61. Recalling (9.5) we then have

(1hiz] + 19i,2]) lwi — O;vi| < (Jhiz] + 19i2]) [wil

= (il + i) (2100l +O1) - > [0

J#i
< (B, 490, +207,) + O) > |hipvi] + O1) - |giavs]
J#i J#i

Using (11.33)-(11.34), (9.17) and (11.28), we conclude

T
Iy (1
t Jgi/hi|>461/5

// h o i+ 97 4 i + 207 i) daedt + O(1) //Z (1hi 20| + 1gi,cv5]) dedt

, |) |w1 — 91U1| dxdt

J#i
=01

(11.36)

CASE 2: |g;/h;| < 401/5, |w;/v;| > 61. In this case we have

ii_iithii- 11.
il < S S (1137
Using (11.14) we can write
lw; — 0;v;] < |hy gw;]

= lgi = (\i = ADhi +O0(1) - 60 Y (IRl + |vj])| Jws] (11.38)

i

< Sfhiwi] + O(1) - 60 Y (1] + [v5]) [wil
J#i



By (11.28), the integral of the last terms on the right hand side of (11.38) is O(1) - §3. Concerning
the first term, using (11.36) and then (6.16) and (11.14), we can write

1
= [hiwi] < |hiwi — givil
< |hivig — hi 20l + il |wi — v 2| + [vil |9i — i

= hivie — hiavil + O(1) - doll (Jwil + 3 Jv5]) + O(1) - dofews! (Ia] + 3 (Ihs1 + g1} )-

J#i J#i
Hence, for dy small, one has

|hiw;| < 6lhivi » — hi zvi| + O(1) - Z (|hivj\ + |wih;| + ]wwj]) )
i

By (11.28) and (11.30) we conclude

T T
i Jgi/hi|<481/5 i Jgi/hi| <461 /5, |wi/vi|>61 (11.39)

=0(1)-52.
Recalling that d; < 1, the last remaining term can now be bounded as

|9i.2| |wi — ivi] < |gi0wil
< |gi,$wi - gzwl,w| + |giwi,1’|
46
< |gl 2 Wi — GiW; x| + — ! ‘hiwi,x|

< |g7, Wi — G W5 :v| + |h Wy Tz hz,xwz| + |hz,xwz| .

By (11.30) and (11.39) we conclude

/ / |9i,2| |wi — O5v;| dawdt = O(1) - 65 . (11.40)
lgi/hi|<481/5

This completes the proof of Lemma 11.5. L]

12 - Propagation speed

Consider two solutions u,v of the same viscous system (1.10), whose initial data coincide
outside a bounded interval [a, b]. Since the system is parabolic, at a given time ¢ > 0 one may well
have u(t,z) # v(t,x) for all x € IR. Yet, we want to show that the bulk of the difference |u — v|
remains confined within a bounded interval [a — St, b+ §t]. This result will be useful in the final
section of the paper, because it implies the finite propagation speed of vanishing viscosity limits.

Lemma 12.1 For some constants «, 8 > 0 the following holds. Let u,v be solutions of (1.10) with
small total variation, whose initial data satisfy

u(0,z) = v(0, z) x ¢ la,b]. (12.1)



Then for all x € IR, t > 0 one has
’u(t,x) - v(t,x)| dr < Hu(O) — UJ(O)HLoo - min {aeﬁt_(“’_b), aeﬂt+(z_“)} . (12.2)
On the other hand, assuming that
u(0,2) = v(0,x) x € [a,b], (12.3)
one has

lu(t,z) —v(t, x)| dz < [|u(0) — w(O)HU>o . (aeﬁt*(””*a) + ae’BH(””*b)). (12.4)

Proof. 1. As a first step, we consider a solution z of the linearized system
2t + [A(u)z}z + [DA(u) - z]ug — [DA(u) - uz| 2 = 240 (12.5)

with initial data satisfying
{ 2(0,2)| <1 if 2<0,

z(0,2) =0 if >0.

We will show that z(t,z) becomes exponentially small on a domain of the form {x > fgt}. More
precisely, let B(t) be a continuous increasing function such that

B(t) > 1+2] A /Ot <\/% + ﬁ) B(t) dt, B(0) = 1.

One can show that such a function exists, satisfying the additional inequality B(t) < 2e°*, for
some constant C' large enough and for all ¢ > 0. We claim that

t
|2(t,2)| < E(t,x) = B(t) exp {4HDAHL<><> / Hux(s)HLmds +1t— x} (12.6)
0
for all x € IR and t > 0. Indeed, any solution of (12.5) admits the integral representation
t
z(t) = G(t) x 2(0) — / Ga(t — s) * [A(u)z] (s)ds
0
t
+/ G(t—s)* [(um o A(u))z(s) — (he A(u))ux(s)}ds,
0
in terms of convolutions with the standard heat kernel G(t, z) = e~* /4t /2\/xit. Therefore

2(t, )| /Gtz— Oy‘dy+‘|A|Loo//‘G -8, —Y)

—|—2HDAHLoo/O/Hum(s)HLooG(t—s,x—y)‘z(s,y)}dyds.

‘z(s, Y) |dyds
(12.7)

For every t > 0 the following estimates hold (see Appendix D for details):

G — O d 76 “ y)2/4t yd = t 12 8
t, x < e e T, .
/ Y ‘ 4 / 2v/mt Y ( )



t
|| Al| Lo //‘Gw(t —8,x — y)}E(s,y)dyds < %E(t,x) — %et—w7 (12.9)
0

2| DA Lo /0 H“w(S)HLw </ G(t—s,x— y)E(s,y)dy) ds < %E(t,x) - %et_w. (12.10)

The bounds (12.7)-(12.10) show that, if (12.6) is satisfied for all ¢ € [0, 7[, then at time ¢t = 7 one
always has a strict inequality: ’Z(T, :1:)’ < E(7,x). A simple argument now yields the validity of
(12.6) for all t > 0 and z € IR.

2. We recall that, by (2.8),
2%50

Vi

le(o) g <
From the definition of E at (12.6) we now obtain
}z(t,m)‘ < E(t,z) < 2% exp {4| DAL~ -4/-@(50\/73} el < aeft® (12.11)
for some constants «, 8 > 0.

3. More generally, let now z be a solution of (12.5) whose initial data satisfies

|z(0,m)’§p if =<0,
2(0,z) =0 it x>b.

By the linearity of the equations (11.1) and translation invariance, a straightforward extension of
the above arguments yields
|z(t,2)| < p- aeft=(@=b),

On the other hand, if
‘Z(O,x)lgp if z>a,
z2(0,z) =0 if z<a,

then

‘z(t,az)‘ < p-aefttE-a),

4. Having established the corresponding bounds on first order tangent vectors, the estimates (12.2)
and (12.4) can now be recovered by a simple homotopy argument. For each 6 € [0, 1], let u? be
the solution of (1.10) with initial data

u?(0) = 0u(0) + (1 — 0)v(0).
Moreover, call ¢ the solution of the linearized Cauchy problem
2} + [DA?) - 2%uf + A(u?)28 = 28,
29(0,2) = u(0,z) — v(0,2).
If (12.1) holds, then by the previous analysis all functions 2? satisfy the two inequalities
(0) — U(O)HLoo Pt @=b)
u(0) — U(O)HLOQ - qePtte—a)

e



Therefore

1) .0 1
’u(t,x) —v(t,x)| S/ duég,az) dé?:/ ‘ze(t,$)|d9
0 0

< ||u(0) = v(0)|| o - min {aeﬁt—(x—b)’ aeﬁt—(a—x)}'

This proves (12.2). On the other hand, if (12.3) holds, we consider a third solution w of (1.10),

with initial data (0,2)
u(0, if x<b,
w(0,2) = {’U(O,LL’) if x>a.

For every x € IR and t > 0, the previous arguments now yield
(t,z)| < ||lu(0) — U’(O)HL«» . qeft—(@—a)
v(t, z) —w(t, z)| < [|w(0) — v(0)|| . - ce® 0.

=

=

E
!
g

Combining these two inequalities we obtain (12.4). U

13 - The vanishing viscosity limit

Up to now, all the analysis has been concerned with solutions of the parabolic system (1.10),
with unit viscosity matrix. Our results, however, can be immediatly applied to the Cauchy problem

uj + A(u)u, = eu, , u®(0,2) = u(x) (13.1)

for any € > 0. Indeed, as remarked in the Introduction, a function «° is a solution of (13.1) if and
only if
ut(t,x) = u(t/e, x/¢), (13.2)

where u is the solution of the Cauchy problem
ur + A(w)uy = Ugy u(0,2) = u(ex). (13.3)

Since the rescaling (13.2) does not change the total variation, from our earlier analysis we easily
obtain the first part of Theorem 1. Namely, for every initial data u with sufficiently small total
variation, the corresponding solution u®(t) = S;u is well defined for all times ¢ > 0. The bounds
(1.15)—(1.17) follow from

Tot.Var.{u®(t)} = Tot.Var.{u(t/e)} < C Tot.Var.{u}, (13.4)

[ (8) = v (1) ||y = e]|u(t) = 0(t)]| . < L |[u(0) = v(0)|, = eL é”ﬂ T (13.5)

t S
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Moreover, if u(x) = v(x) for x € [a,b], then (12.4) implies

|u (t, 2) — v* (t,2)| < | — | - {aexp (M) + aexp (w) } . (13.7)

|us (t) — u(s)|| 2 < el|ult/e) —u(s/e)||, <el <’Z - g’ +

e 9



We now consider the vanishing viscosity limit. Call i/ C Lj,, the set of all functions @ : IR +

IR" with small total variation, satisfying (1.14). For each ¢ > 0 and every initial condition u € U,
call Sfu = u®(t,-) the corresponding solution of (13.1). Thanks to the uniform BV bounds (13.4),
we can apply Helly’s compactness theorem and obtain a sequence €, — 0 such that

lim w® (¢,-) = u(t,) in Lj,.. (13.8)

vV—00
holds for some BV function u(t,-). By extracting further subsequences and then using a standard
diagonalization procedure, we can assume that the limit in (13.8) exists for all rational times ¢ and
all solutions u® with initial data in a countable dense set U* C U. Adopting a semigroup notation,
we thus define

Syu= lim S;ma in Lj,., (13.9)

for some particular subsequence ¢,, — 0. By the uniform continuity of the maps (¢, @) — u®(t,-) =
Siu, stated in (13.5)-(13.6), the set of couples (¢, w) for which the limit (13.9) exists must be closed
in IRy x U. Therefore, this limit is well defined for all w € U and t > 0.

Remark 13.1. The function u(t,-) = S;u is here defined as a limit in L}, .. Since it has bounded
variation, we can remove any ambiguity concerning its pointwise values by choosing, say, a right
continuous representative:
= i .
ut,z) = lim u(t,y)

With this choice, the function w is certainly jointly measurable w.r.t. ¢,z (see [B5], p.16).

To complete the proof of Theorem 1, we need to show that the map S defined at (13.9) is
a semigroup, satisfies the continuity properties (1.18) and does not depend on the choice of the
subsequence {&,,}. These results will be achieved in several steps.

1. (Continuous dependence) Let S be the map defined by (13.9). Then

HStﬂ - StﬁHLl = sup/ (Sew)(z) — (S.) ($)‘ dz .

r>0J—p

1

For every r > 0, the convergence in L;,  implies

‘s

/ ' (Si1) (@) = ($7) («)] do = 1im

—r m—oo [ _

(S;ma)(z) — (S o) (x)‘ do < L |-, .

T

because of (13.5). This yields the Lipschitz continuous dependence w.r.t. the initial data:
St — Sev|, < Lja—o|, - (13.10)

The continuous dependence w.r.t. time is proved in a similar way. By (13.6), for every r > 0
we have

T

[ |sm)@ - soy@la= im_ [ |(sia)@) - (s78) @)

—_r m—00 —_r

' 7
zlimemL/<’—S +‘ N
Em

m—o0 Em Em Em

)

=L'|t—s].



Hence
|Se0 = Ss|| 0 < L'Jt— . (13.11)

Together, (13.10) and (13.11) yield (1.18).

2. (Finite propagation speed) Consider any interval [a,b] and two initial data u,v, with
u(z) = v(x) for x € [a,b]. By (13.7), for every ¢t > 0 and x € |a + (t, b — St[ one has

‘(S’tﬂ) (z) — (Sv) (ZL‘)‘ < limsup |(S;™a)(z) — (S;m0) (:r)‘

m—r o0
t—(x — t —b
< lim [[a —9|Le - {aexp (M) + avexp (Mm)>}
=0.

(13.12)
In other words, the restriction of the function S;u € L}, to a given interval [a’,b'] depends only
on the values of the initial data @ on the interval [a’ — St, b’ 4+ St]. Using (13.12), we now prove a
sharper version of the continuous dependence estimate (13.10):

b+t

b
/ (S,7) (z) - (sta)(x)‘dng-/ la(z) — o) de. (13.13)
a a—ft

valid for every u,? and t > 0. Indeed, define the auxiliary function

(x)_{ﬂ(m) if x€la—pt, b+ 5],
o(z) if x¢a—pt, b+ 5.

Using the finite propagation speed, we now have

r

(Si7) (2) = (S17) ()| da = /ab (S1) (2) = (S0) ()| d

b+p8t
< L||w — v|p :L-/ |u(z) — 0(x)| dx.
a—fBt

3. (Semigroup property) We now show that the map (¢,u) — S;u is a semigroup, i.e.
S()ﬁ - ﬁ, SsSth - Ss+tﬂ . (1314)

Since every S€ is a semigroup, the first equality in (13.14) is a trivial consequence of the definition
(13.9). To prove the second equality, we observe that

Ss+tﬂ = lim Sim Sfma, SSStﬂ = lim ng Sth . (1315)
m—o0 m— oo
We can assume s > 0. Fix any r > 0 and consider the function

- L [ (Sa)(2) if |z| <r+28s,
() = { (Sima)(z) it Ja| >+ 28s.



Since S;™u — Sy in L}, ., using (13.7) and (13.5) one obtains

lim sup/ (SgmSima) (z) — (SgmSpu) (x)‘ dx

m—o0 —r

< lim 2r- sup

T om—oo |z|<r

(S 857 a) () — (sgmam)(x)] + lim S5 — S5 S5l

< : Em gy _ 5 . _BS/E’"L o . 7 — Em 55

_W}EnOOQTHSt U umHLOo 20e —}—mlgnooL Hum Sy uHL1

=0.
By (13.15), this proves the second identity in (13.14).
4. (Tame Oscillation) We now exhibit a regularity property which is shared by all semigroup
trajectories. This property, introduced in [BG], plays a key role in the proof of uniqueness. We
begin by recalling the main definitions. Given a < band 7 > 0, we denote by Tot.Var.{u(T) ; Ja, b }
the total variation of u(7,-) over the open interval ]a, b[. Moreover, consider the triangle

Ta={(ta); t>7, atft<az<b—pt}.

The oscillation of u over A;b will be denoted by
Osc.{u; A7 ,} =sup {|u(t,:n) —u(t',a)]; (), (') € A;b}.

We claim that each function u(t, z) = (S;u)(z) satisfies the tame oscillation property: there exists
a constant C’ such that, for every a < b and 7 > 0, one has

Osc.{u; A],} <C"-Tot.Var.{u(7); la,b[ }. (13.16)

Indeed, let a,b, T be given, together with an initial data u. By the semigroup property, it is not
restrictive to assume 7 = 0. Consider the auxiliary initial condition

u(x) it a<xz<b,
o(x) =< u(a+) if x<a, (13.17)
a(b—) if x>0,

and call v(t,z) = (S¢0)(x) the corresponding trajectory. Observe that

lim w(t,z) = u(a+)

T—>—00
for every t > 0. Using (1.15) and the finite propagation speed, we can thus write
Osc{u; A7} =Osc{v; A],} < 2sup (Tot.Var.{Stﬁ})
t
< 2C - Tot.Var.{v} = 2C - Tot.Var.{u(7); Ja,b[ },
proving (13.16) with C" = 2C.

5. (Conservation equations) Assume that the system (13.1) is in conservation form, i.e. A(u) =
D f(u) for some flux function f. In this special case, we claim that every vanishing viscosity limit is



a weak solution of the system of conservation laws (1.1). Indeed, with the usual notations, if ¢ is a
C? function with compact support contained in the half plane {z € IR, t > 0}, one can repeatedly
integrate by parts and obtain

[[twons s dede = tm_ [ [ [ o0t sm)0.) dod

:—liin // ;o4 f(utm), ]dwdt:—hm //sm "¢ dxdt
— lim //8 U Py dxdt =
m— o0

An easy approximation argument shows that the identity (1.5) holds more generally, assuming only

¢ eCl

6. (Approximate jumps) From the uniform bound on the total variation and the Lipschitz
continuity w.r.t. time, it follows that each function u(t,z) = (S;u)(z) is a BV function, jointly
w.r.t. the two variables ¢, z. In particular, an application of Theorem 2.6 in [B5] yields the existence
of a set of times N C IR} of measure zero such that, for every (7,€) € Ry x IR with 7 ¢ N, the
following holds. Calling

u™ = lim u(r, ), ut = lim (T, ), (13.18)
THE— r—E+

there exists a finite speed A such that the function

L u if z <A,
Ut,z) = {w N (13.19)

for every constant x > 0 satisfies

rlg&rz/r/_m (T4t &+x)— (t,x)}dxdt:O, (13.20)
rlg&'r/_m‘ (r+7 {+x)—U(r,z)|de =0. (13.21)

In the case where u~ # u™, we say that (7,¢) is a point of approzimate jump for the function
u. On the other hand, if v~ = u™ (and hence X\ can be chosen arbitrarily), we say that u is
approximately continuous at (1,£). The above result can thus be restated as follows: with the
exception of a null set N of “interaction times”, the solution u is either approximately continuous
or has an approximate jump discontinuity at each point (7, ).

7. (Shock conditions) Assume again that the system is in conservation form. Consider a
semigroup trajectory u(t,-) = Siu and a point (7,£) where u has an approximate jump. Since u is
a weak solution, the states u~,u™ and the speed X in (13.19) must satisfy the Rankine-Hugoniot
equations

Aut —u”) = flut) — flu). (13.22)

For a proof, see Theorem 4.1 in [B5].
If w is a limit of vanishing viscosity approximations, the same is true of the solution U in
(13.9). In particular (see [MP] or [D]), the Liu shock conditions must hold. More precisely, call



s+ S;(s) the parametrized shock curve through u~ and let A;(s) be the speed of the corresponding
shock. If u™ = S;(s) for some s, then

Xi(s') < \i(s') forall " €10, 9]. (13.23)

Under the additional assumption that each characterictic field is either linearly degenerate or
genuinely nonlinear, it is well known that the Liu conditions imply the Lax shock conditions:

Ai(u™) <A< Ni(u™) (13.24)

8. (Uniqueness in a special case) Assume that the system is in conservation form and that
each characterictic field is either linearly degenerate or genuinely nonlinear. By the previous steps,
the semigroup trajectory u(t,-) = Syu provides a weak solution to the Cauchy problem (1.1)-(1.2)
which satisfies the Tame Oscillation and the Lax shock conditions. By a well known uniqueness
theorem in [BG]J, [B5], such a weak solution is unique and coincides with the limit of front tracking
approximations. In particular, it does not depend on the choice of the subsequence {e,,} :

Sta = lim Sfﬂ,
e—0+

i.e. the same limit actually holds over all real values of ¢.

The above results already yield a proof of Theorem 1 in the special case where the system
is in conservation form and satisfies the standard assumptions (H). To handle the general (non-
conservative) case, we shall need to understand first the solution of the Riemann problem.

14 - The non-conservative Riemann problem

Aim of this section is to characterize the vanishing viscosity limit for solutions u® of (13.1), in
the case of Riemann data
_ u” if <0
u(xr) = ’ 14.1
(z) { ut if x>0. (14.1)
More precisely, we will show that, as ¢ — 0+, the solutions u® converge to a self-similar limit
w(t,x) = ©(x/t). We first describe a method for constructing this solution w.

As a first step, given a left state v~ and i € {1,...,n}, we seek a one-parameter curve of right
states ut = ¥, (s) such that, for every s, the non-conservative Riemann problem

wi + A(u)w, =0, w(0,z) = {Z:L ﬁ ; i 8’ (14.2)

admits a vanishing viscosity solution consisting only of i-waves. In the case where the system is in
conservation form and the i-th field is genuinely nonlinear, it is well known [Lx] that one should

take (5) ;
R;(s if >0,
Wils) = {Si(s) if s<0.

Here R; and S; are the i-th rarefaction and shock curves through v, respectively. We now describe
a method for constructing such curve ¥; in the general case.



Fix €,5 > 0. Consider the family I' € C°([0, s]; IR" x IR x IR) of all continuous curves

T y(r) = (u(T), v (T), Ui(T)), T €[0,s],

with
u(0) =u", !u(T)—u*} <e, ‘vz(7)| <e, ‘ai(T)—)\Z-(ufﬂ <e.

In connection with a given curve v € I', define the scalar flux function

fily, ) = /OT i (u(s), vils), oi(s)) ds T elo, ], (14.3)
where \; is the speed in (4.21). Moreover, consider the lower convex envelope
conv f;(vy,7) = inf {0]‘}(7,7”) +(1=0)fi(v,7"); 0€l0,1], 7, 7" €[0,s], T=07"+(1 —0)7'”} .

We now define a continuous mapping 7; s : I' = I' by setting 7; v = 4 = (4, 0;, 6;), where

r) =+ [, 60, (e)) ds.

0

{)1(7-) = f1(77 7-) — conv fz(’% 7_) > (144)
i(r) = - conv [i(7,7).

We recall that 7; are the unit vectors that define the center manifold in (4.13). Because of the
bounds
la(r) —u=| <7 <5,

(1) = XNi(uT)[ = 0(1) - sup
G€J0,s]

K (ul). wi(s), 03()) = Mi(u)| = 0(1) - 7.

Xi(u(s), vi(s), 7i(s)) = A(w™)| = O(1) -5,

bi(T)| =0(1) - 5 s

it is clear that for 0 < s << € << 1 the transformation 7; ¢ maps I' into itself. We now show that,
in this same range of parameters, 7; s is a contraction with respect to the weighted norm

[, vi,09) ||, = llullees + [lvillue + € loiflue

Indeed, consider two curves v, € I'. For each 7 € [0, s] one has

S
m—wmws/
0

= 0(1) -5 (J[u= vl + s = il + oilliee o = oo )

ds

fi(ua (%) Ui) - f’i(ul) qu/;a 0-;)

19 — 03]l < 2| () = fi(V) || oo

s
<2
0

=0(1) - s ([Ju=wllgw + v = il + Jvillies los = ol )

Ni(u,vi,04) — (W', 0f, 0F)

ds




< sup
T€[0,s]

d d d d
5 —_ &l < . — / . —_ /
63(7) = 61l < sup | conv fify, ) — S-conv f(3,7) i 5007 = 4 fitn)|

T€0,s]

< A = Xl = 0 - (Jlu = e + s = villeoe + sl llos = ol )

For some constant Cy, the previous estimates imply

o 1
17 =l < Coelly =~"lly < Sl =lly (14.5)

provided that e is sufficiently small. Therefore, by the contraction mapping principle, the map 7; s
admits a unique fixed point, i.e. a continuous curve v = (u, v;, ;) such that

u(t) =u + /OT fi(u(g), v; (<), ai(g)) ds,

vi(1) = fi(y, ) — conv fi(~,T), (14.6)
oi(1) = % conv fi(~y, 7).

Recalling the definition (14.3), from the continuity of u,v;, o; it follows that the maps 7 — wu(7),
7+ v;(7) and T — f;(v,7) are continuously diferentiable. We now show that, taking u™ = u(s)
corresponding to the endpoint of this curve 7, the Riemann problem (14.2) admits a self-similar
solution containing only ¢-waves.

Lemma 14.1 In the previous setting, let v : 7 — (u(7), vi(7), 04(7)) be the fized point of the
transformation T; s. Define the right state ut = u(s). Then the unique viscosity solution of the
Riemann problem (14.2) is the function

u- if w/tSUi(()),
w(t,z) =< u(r) if z/t=o0(1), (14.7)
ut if x/t>o(s).

Proof. With the semigroup notations introduced in Theorem 1, we need to show that, for every
t>0,

Ellrgl+ |ow(t) — S;w(0)|| . =0. (14.8)

The proof will be given in several steps.

1. Assume that we can construct a family v® of solutions to

v + A(V)vy = €Uy, (14.9).
with
: el _
im, |v°(t) —w(®)|| . =0 (14.10)

for all t € [0,1]. Then (14.8) follows. Indeed, by a simple rescaling we immediately have a family
of solutions v® such that (14.9).-(4.10) hold on any fixed interval [0,7]. For every ¢ € [0,T], since
by assumption v°(t) = S;v°(0), using (1.16) we obtain

i ) = S5Ol < T o) = v (@) + T [0 (0) = S5 (0)]|,

< 0+L'El_i>%l+ [|v%(0) —w(O)HL1 = 0.



2. For notational convenience, call VV L the set of all vanishing viscosity limits, i.e. all functions
v:[0,1] X IR — IR" such that

. erpy _
€y£§+‘h)(t) o(t)|| =0 t €10,1] (14.11)
for some family of solutions v¢ of (14.9). . By Step 1, it suffices to show that the function w at
(14.7) lies in VVL.
Let us make some preliminary considerations. Consider a piecewise smooth function v = v(¢, x)
which provides a classical solution to the quasilinear system

v+ A(v)vy, =0 te0,1],
outside a finite number of straight lines, say = = z;(t), j = 1,..., N. Assume that there exists
0 > 0 and constant states u; uj such that
u; if x;(t) -0 <z<ux;(t),
U(t,(L’)_{ i_ ] ]() — J()
uj if x;(t) <a <wz(t)+7,

Moreover, assume that each pair of states u;,u;r can be connected by a viscous travelling wave

having speed ;. Finally, let v be constant on each of the two regions where x > rg or x < —ry,
for some r( sufficiently large. Under all of the above hypotheses, it is then clear that v € VV L.
Indeed, a family of viscous approximations v¢ can be constructed by a simplified version of the
singular perturbation technique used in [GX].

As a second observation, notice that if we have a sequence of functions v, € VV L with

Hm ||op, (t) —o(t)||, =0 tel0,1],

m—r o0

then also v € VV L.

3. Consider first the (generic) case where the set of points in which f; is disjoint from its convex
envelope is a finite union of open intervals (fig. 12), say

{7‘ €[0,s]; filvy,7)> CODVfZ‘(’}/,T)} = U laj, b;|. (14.12)

Our strategy is to prove that w € V'V L first in this special case. Then we shall deal with the
general case by an approximation argument.

-bb-error = =
figure 12 figure 13

If (14.12) holds, we can make the two following observations.

(i) For each j =1,..., N, we claim that the left and right states u(a;), u(b;) are connected by a
viscous travelling profile U such that

U = (AU) o))", U(~00) = ulay), U(00) = ulby). (14.13)



Here o0;; is the constant speed
oij = oi(1) = 4 conv fily, 1) T € [a;,b;].

To construct the function U, consider the variable transformation |aj, b;j[— IR, say 7 — z(7),
defined by

aj—i—bj B dl’(T)_ 1
x( 2 )_O’ dr (1)’

Let 7 = 7(z) be its inverse. Then the function U(z) = u(7(z)) is the required travelling wave
profile. Indeed, U obviously takes the correct limits at +c0. Moreover,

= VT,

du dt
V=0 @
U" = v oTi + 0iTi n
= 0; (Vi 75 + VT 7)
= v;(\i — 04)Fi + 2 (Fiufs + Tiw(Ni — 05)03).
Recalling the identity (4.22), we see that U also satisfies the differental equation in (14.13), thus

proving our claim.

(ii) On the intervals where f;(,7) = conv f;(v,7) we have v;(7) = 0. Hence, by the first equation
in (14.6) and by (4.16), u, = 7; = r;(u) is an i-eigenvector of the matrix A(u).

4. In general, even if the condition (14.12) is satisfied, we do not expect that the function w has
the regularity specified in Step 2. However, we now show that it can be approximated in L! by
functions wg satisfying all the required assumptions. To fix the ideas, let

O0=by<a1 <by<ax<by<---<any<by<ani1 =5.

A piecewise smooth viscosity solution can be defined as follows (fig. 13). Fix a small § > 0. For
each £k =0,..., N, consider a smooth non-decreasing map

Tk © [k‘é, (k + 1)5} — [bk, ak+1}

such that
T(.T)— bk if x§k5+5/3,
T arg if > ko +20/3.
We then define the initial condition
u(0) if =<0,
ws(0,z) = ¢ u(7(z)) if ké<z<(k+1)d,
u(s) if x> (N+1)).

A corresponding solution of the Cauchy problem can then be constructed by the method of char-
acteristics:

) =u" if  z<o0;(0)t,
ws(t,z) = < u(0) if  xz=y+oi(m(y))t forsome ye |kd, (k+1)d[,
u(s) =ut it 2> (N+1)d+0i(s)t.



It is clear that the above function ws satisfies all of the assumptions considered in Step 2. Hence
ws € VVL. Letting § — 0 we have |lws(t) — w(t)HLl — 0 for every t. Therefore, by the last
observation in Step 2 we conclude that also w € VV L.

5. To prove the Lemma in the general case, where the set in (14.12) may by the union of infinitely
many open intervals, we use an approximation argument. For each § > 0, by slightly perturbing
the values of A, we can construct a second matrix valued function A’ with

sup |A'(u) — A(u)| <6, (14.14)

such that the following properties hold. For some right state at with [at — u*| < §, the non-
conservative Riemann problem

- if z<0
+ A'(w)uy =0, 0,z) =4 Y ! ’ 14.15
up + A(u)u w0, ) {fﬁ if >0 (14.15)
admits a self-similar solution w’ which is limit of vanishing viscosity approximations and satisfies
38
/ |w'(t,2) — w(t,z)| de < 6 te0,1]. (14.16)
—38

Clearly, the fact that w’ is a limit of vanishing viscosity approximations can be achieved by choosing
A" so that a corresponding transformation 7/ will admit as fixed point some curve v : 7 —
(u'(7) ,vi(7),0(7)) for which «/(0) = u™, w/(s') ~ u™ and with f;(v/,7) differing from its convex
envelope on a finite number of open intervals.

Call w® the solution of the viscous Riemann problem (13.1) with initial data (14.1). Using

(13.7) with v* =u*, a =0, b = oo, for all ¢ € [0, 1] we obtain

oo o0

lim |w®(t, ) — w(t,z)| dz < lim lu™ —ut] - aePt=D/edr = 0. (14.17)
e—0 8 e—0 8
Similarly,
El% N |w®(t, ) — w(t,z)|dz =0. (14.18)

To establish the convergence also on the interval [—/, /], call v° the solution of the Cauchy problem

u” if <0,
oo v (0,z) =S at  if 0<z<3p,
ut if =>30.

v + A'(v° )0 = ev

Clearly,

B
lim 0% (t, @) — W' (t,2)| dz = 0. (14.19)
e—0 8
because w’ is a vanishing viscosity limit and because of the finite propagation speed. Using the
triangle inequality we can write

B B
lim sup/ |w®(t, #)—w(t, z)| do < lim sup/ |w®(t, x) — v°(t, z)| d
e—0 -8 e—0 —B

(14.20)

B B
+ lim |v°(t, x) —w’(t,a:)|dx+/ W' (t,2) — w(t, z)| de.
e—0 _B _6



Since t — w®(t) = S;fw(0) is a trajectory of the Lipschitz semigroup S¢, recalling (14.14) we have
the estimate

¢ ve(s — SsvE(s)||,
4700 = (O o < £ o7(0) = @) + 2 [ {hli%a e Sl }ds

<3BL|at —ut|+ L. /Ot {/ ’A(va(s,x)) - A’(UE(S,x))) |02 (5, )| d.r} ds

< 3BLJ + L6 C - Tot.Var.{v*(0) }

<C",
(14.21)
for some constant C”. Estimating the right hand side of (14.20) by means of (14.21), (14.19) and
(14.16), we obtain

e—0 —

B
limsup/ |w® (t,2) — w(t,z)|dz < C"6 + 0+ 0.
B
Since ¢ > 0 can be arbitrarily small, together with (14.17)-(14.18) this yields

lim ||w®(£) — w(t)||, =0 for all t € [0,1],

e—0
completing the proof. ]

Remark 14.2. The transformation 7; s defined at (14.4) depends on the vectors 7;, and hence
on center manifold (which is not unique). However, the curve v that we obtain as fixed point of
7i.s involves only a concatenation of bounded travelling profiles or stationary solutions. These are
bounded solutions of (4.2), and will certainly be included in every center manifold. For this reason,
the curve 7 (and hence the solution of the Riemann problem) is independent of our choice of the
center manifold.

For negative values of the parameter s, a right state u™ = ¥;(s) can be constructed exactly
in the same way as before, except that one now takes the upper concave envelope of f; :

conce fi('%T) = sup {in('%T,)+(1_9)fi(7,7'/,) ) e [07 1] ) 7_/77_// S [075] y T = 07_/_‘_(1_0)7_/,} ’

instead of the lower concave envelope.
Our next step is to study the regularity of the curve of right states ut = ¥;(s).

Lemma 14.3. Given a left state u~ and i € {1,...,n}, the curve of right states s — W;(s) is
Lipschitz continuous and satisfies

lim

s—0 ds

= ri(u”). (14.22)

Proof. We assume s > 0, the other case being entirely similar. For sake of clarity, let us
introduce some notations. For fixed i and s > 0, let v** = (u"®,v{,0f) be the fixed point of
the transformation 7; s in (14.4). Then by definition

Ui(s) = u'(s).



For 0 < s’ < s, let 4/ = (v, v}, o)) be the restriction of v** to the subinterval [0, s']. Since 7; & is

sy Ui
a strict contraction, the distance of 7/ from the fixed point of 7; s is estimated as

I =7l = 0) - | = Town/[l; = 001) - (s = &) s.

In particular,

’

[uh* (s") —u"5(s") | = O(1) - (s — &) 5.
Observing that

u"(s) —u"(s") = /S i (u*(<), v (<), 0f () ds = (s = ) - 1i(u™) + O(1) - (s — 8)s,
we conclude
|Wi(s') = Wi(s') — (s — s )ri(u™)| =O(1) - (s — &) 5. (14.23)

By (14.23), the map s +— W,(s) is Lipschitz continuous, hence differentiable almost everywhere, by
Rademacher’s theorem. The limit in (14.22) is again a consequence of (14.23). U

Thanks to the previous analysis, the solution of the general Riemann problem (14.2) can now
be constructed following a standard procedure. For a left state u™, call s — W;(s)(u") the curve
of right states that can be connected to u~ by i-waves. Consider the composite mapping

U (81y.0058,) = Uy(sy)o--0oWy(sy)(u™).

By Lemma 14.3 and a version of the implicit function theorem wvalid for Lipschitz continuous
maps (see [Cl], p.253), ¥ is a one-to-one mapping from a neighborhood of the origin in /R"™ onto a
neighborhood of u~. Hence, for all u™ sufficiently close to u~, one can find unique values s1, ..., s,
such that ¥(sq,...,s,) = u™. In turn, this yields intermediate states ug = v, u1,...,u, = u™
such that each Riemann problem with data u;_1,u; admits a vanishing viscosity solution w; =
w;(t, x) consisting only of i-waves. By strict hyperbolicity, we can now choose intermediate speeds

—00 =A< A <A< <N, <AL =00

such that all i-waves in the solution w; have speeds contained inside the interval [\;_;, A}]. The
general solution of the general Riemann problem (14.2) is then given by

w(t, z) = wi(t, ) for N_, < f <M. (14.24)
Because of Lemma, 14.2, it is clear that the function w is the unique limit of viscous approximations:

el—i>%l+ [|lew(t) — wa(O)HLl =0 for every t > 0. (14.25)

15 - Viscosity solutions and uniqueness of the semigroup

In [B3], one of the authors introduced a definition of viscosity solution for a system of con-
servation laws, based on local integral estimates. Assuming the existence of a Lipschitz semigroup



of entropy weak solutions, it was proved that such a semigroup is necessarily unique and every
viscosity solution coincides with a semigroup trajectory. We shall follow here exactly the same
approach, in order to prove the uniqueness of the Lipschitz semigroup constructed in (13.9) as
limit of vanishing viscosity approximations.

Toward the definition of a viscosity solution for the general hyperbolic system

up + A(u)uy, =0, (15.1)
we first introduce some notations. Given a function v = u(t,x) and a point (7,&), we denote by
U (ﬁu,T 6 the solution of the Riemann problem (14.1) with initial data

u” = lim u(r, x), ut = lim u(r,z). (15.2)
r—E— =€+

Of course, we refer here to the vanishing viscosity solution constructed in Section 14. In addition,
we define U(bu,T ¢) S the solution of a linear hyperbolic Cauchy problem with constant coefficients:

wy + Aw, = 0, w(0,z) = u(r, z). (15.3)

Here A = A(u(r,§)). Observe that (15.3) is obtained from the quasilinear system (15.1) by
“freezing” the coefficients of the matrix A(u) at the point (7,&) and choosing u(7) as initial data.

As in [B3], the notion of wviscosity solution is now defined by locally comparing a function u
with the self-similar solution of a Riemann problem and with the solution of a linear hyperbolic
system with constant coefficients.

Definition 15.1. A function v = u(t,x) is a viscosity solution of the system (15.1) if the
following integral estimates hold.

i) At every point (7,€), for every 3’ > 0 one has
(i) Y P ; y

E+8'n
lim / ’u(T—}— h, ) — U(ﬁu,T 6)(h’ x — 5)‘ dz = 0. (15.4)
. Ty

(ii) There exist constants C, 3 > 0 such that, or every 7 > 0 and a < £ < b, one has

b—Bh 2
lim sup / ’u(T +h, z)— U(bu.T Q(h,x)’ dx < C- (Tot.Var.{u(T); la, b] }) . (15.5)
h—0+ a+Bh Y

The main result of this section shows that the above viscosity solutions coincide precisely with
the limits of vanishing viscosity approximations.

Lemma 15.2. Let S : D x [0,00[+— D be a semigroup of vanishing viscosity solutions, constructed

as limit of a sequence S as in (13.9) and defined on a domain D C L}, of functions with small

total variation. Let w : [0,T] — D be Lipschitz continuous w.r.t. time, i.e.
|u(t) — u(s)HL1 < L|t — s (15.6)
for some constant L and all s,t € [0,T]. Then

u(t) = Szu(0) for all t € [0,T]. (15.7)



if and only if u is a viscosity solution of(15.1).

Proof. Necessity: Assume that (15.7) holds. Let any ' be given and let 8 be the constant in
(13.7) and (13.13), providing an upper bound to the propagation speed. Then, for any (7,¢), an
application of (13.13) yields

E+8'h
/ u(r + by @) = Ul o (b, @ = €)| da
g_IB/h b K

<L- {/: ‘U(T, x)— U(T,f—)‘ dr + /jJr(BJrﬁ')h ‘u(T,x) —u(T, §+)) dx}

—(B+8")h

SL(B+5/)h{ sup Ju(ma)—u(re-)| - sup \U(T,x)U(T,&)\}
E—(B+B ) Yh<x <€ E<a <&+ (B+B)R

Hence (15.4) is clear.

To prove the second estimate, fix 7 and a < £ < b. Define the function

u(T,a+) if z<a,
o(z) = ¢ u(r,z) if a<xz<b,
u(r,b—) if z>b.

Call v, w® respectively the solutions of the viscous systems

w4+ AwS = e w’ (15.8)

T )

vi + A(v°)vl = e v

TxT )

with the same initial data v°(0,z) = w*(0,z) = v(x).
Recalling that S¢ is a semigroup with Lipschitz constant L, as in [B3], [B5] we can use the
error formula

[ (B) = v (R)| 2 = [[w® (R) = S5o[ .
‘ h i Hwe(t—i—r) - Sﬁws(s)HLl
<L /0 {l f dt

r—04 r

SL./Oh/’g—A(wE(t,x))‘ |ws (t, )| dedt

<Lh <sup

up [4(7(0,)) - A(w (1.0) ) w0 20y

<Ch (Tot.Var.{T)})

for some constant C'. Letting ¢ — 0 and using the estimate (13.13) on the finite speed of propaga-

tion, we obtain
1 [b—Bh 1 b—Bh
‘u(T +h, z)— U(bumé)(h, x)‘ dx < 7 lim |v° (h, z) — w®(h, )| da

h Jaysn =0 Jo18n

<C <Tot.Var.{z7}>2 =C (Tot.Var.{ﬁ; ]a,b[})Q.



This proves (15.5), with 5 the constant in (13.13).

Sufficiency: We now consider a function v = wu(t,x) which satisfies the conditions (15.4)-(15.5)
at every 7 € [0,T], and prove that u(¢,-) = Syu(0). Given any interval [a, b], thanks to the error

estimate
b—tB
/a+t/3

u(t, z) — (Syu(0)) (az)’ dz

<L- /Ot {liminfl /b_(ﬂ—h)ﬁ ‘U(T +h,z) — (Shu(T))(ﬂi)‘ d:v} dr,

It +(r+h)B

(15.9)

it suffices to show that the integrand on the right hand side of (15.9) vanishes for all 7 € [0, T7.

Fix any time 7 € [0,7] and let € > 0 be given. Since the total variation of u(r,-) is finite, we
can choose finitely many points

a+TB=a0<11 <---<aIN=b—T8

such that
Tot.Var.{u(T, )5 e, x][} <e.

By the necessity part of the theorem, which has been already proved, the function w(t,-) =
Si—ru(T) is itself a viscosity solution and hence it also satisfies the estimates (15.4)-(15.5). We
now consider the midpoints y; = (x;—1 + x;)/2. Using the estimate (15.4) at each of the points
¢ = x; and the estimate (15.5) with { = y; on each of the intervals |z;_1, x;[, choosing S
sufficiently large we now compute

lim sup— / ‘U(T +h,x) — (Shu(T))(x)‘ dx
h—0+ a+(7+h)B
N-1 1 z;j+hpB
< Zlimsup/ ()U(T—i—h,x)—U(ﬁu_Tx_)(T—Fh, m)‘
=1 h—o+ h x;—hB T

+ ‘Uéju;r,xj)(T +h, z)— (Shu(T))(:p)D dz

N ' 1 [zi—hs X
+ thsup 7 /gthhB <‘u(7’ +h,x) = Ulyyr gy (he @ — 5)

[V (2= ) = (Spu(r) )] ) o

<0+ g:C <T0t.Var.{u(T); lzj_1, wj[})z

j=1
< Ce- Tot.Var.{u(7); Jzo, zn[}.

Since € > 0 was arbitrary, the integrand on the right hand side of (15.9) must vanish at time 7.
This completes the proof of the lemma. L]



Remark 15.3. From the proof of the sufficiency part, it is clear that the identity (15.7) still
holds if we require that the integral estimates (15.4)-(15.5) hold only for 7 outside a set of times
N C [0,T] of measure zero. By a well known result in the theory of BV functions [EG], any BV
function of two variables u = u(t, x) is either approximately continuous or has an approximate jump
discontinuity at every point (7, ), with 7 outside a set A/ having zero measure. To decide whether
a function w is a viscosity solution, it thus suffices to check (15.4) only at points of approximate
jump, where the Riemann problem is solved in terms of a single shock.

Using Lemma 15.2, we now obtain at one stroke the uniqueness of viscosity solutions and of
vanishing viscosity limits:

Completion of the proof of Theorem 1. What remains to be proved is that the whole family
of viscous approximations converges to a unique limit, i.e.

51_1>1%1+ S;u = Siu, (15.10)

where the limit holds over all real values of € and not only along a particular sequence {e,,}. If
(15.10) fails, we can find v, 7 and two different sequences &,,, e, — 0 such that

lim S5 # lim Si"3. (15.11)

m— 00 m—0o0

By extracting further subsequences, we can assume that the limits

lim Sc7a = Sy, lim So"a = Sla, (15.12)

m— 00 m— 00

exist in L}, for all t > 0 and % € U. By the analysis in Section 13, both S and S’ are semigroups

of vanishing viscosity solutions. In particular, the necessity part of Lemma 14.2 implies that the
map t — v(t) = S is a viscosity solution of (15.1), while the sufficiency part implies v(t) = Sjv(0)
for all ¢ > 0. But this is in contradiction with (15.11), hence (15.10) must hold. [

Remark 15.4. The above uniqueness result is obtained within the family of vanishing viscosity
limits of the form (1.13)., with unit viscosity matrix. In the more general case (1.21)., if the
system is not in conservation form, we expect that the limit of solutions as € — 0 will depend
on the form of the viscosity matrices B(u). Indeed, by choosing different matrices B(u), one will
likely alter the vanishing viscosity solutions of the Riemann problems (14.4). In turn, this affects
the definition of viscosity solution at (15.2).

16 - Dependence on parameters and large time asymptotics

We wish to derive here a simple estimate on how the viscosity solution changes, depending on
hyperbolic matrices A(u).

Corollary 16.1. Assume that the two hyperbolic systems

up + A(u)ug, =0,
up + ﬁ(u)um =0,



both satisfy the hypotheses of Theorem 1. Call S,§ the corresponding semigroups of viscosity
solutions. Then, for every initial data w with small total variation one has the estimate

|Sva — S]], = O(1) - t(sgp | A(u) - A(u)H) - Tot. Var.{i} . (16.1)

Proof. Call 5S¢, S the semigroups of solutions to the corresponding viscous problems
us + A(u)uy = €Uy, U + E(u)um = EUypy -

Let L be the Lipschitz constant in (1.16) and call w®(t) = S¢u. For every ¢ > 0 we have the error
estimate

Hgts_ - SfﬂHLl = Hwe(t) - SfﬂHLl
t £ _ QE,pE
< L-/ {liminf Hw (s 4 h) = Spw (S)HLI } ds
o | h—0+ h

<L- /Ot/‘g(wa(s,x)) - A(ws(s,w))‘ w3 (s, )| duds
< 1 (sup A — A} [ i) s

O1)-t (sgp HA\(u) - A(u)H) Tot.Var.{u}.

Next, we show that all semigroup trajectories are asymptotically self-similar.

Corollary 16.2. Under the same assumption of Theorem 1, consider an initial data @ with small
total variation, such that

0 o)
u(xr) —u |dx a(z) —ut| dzr < oo .
/_OO\() \d+/o}() | dz < o0, (16.2)

for some states v~ ,ut. Call w(t,z) = @(x/t) the self-similar solution of the corresponding Rie-
mann problem (14.2). Then the solution of the viscous Cauchy problem

ur + A(u)uy = gy , u(0,x) = u(x) (16.3)
satisfies
Tli_)Iglo/ ’u(T, TY) — d}(y)’ dy =0 (16.4)

Proof. The assumption on w implies that the limit (14.25) holds. For fixed 7, call ¢ = 1/7 and

consider the function v*(¢,x) = u(rx, 7t). Clearly, v° satisfies the equation
v + A(%)vl = e v} ve(0,2) = u(x/e).

T )

Therefore,

/ }u(T, TY) — @(y)‘ dy = / ‘ve(l,x) — w(l,x)‘ dx
< |[S50%(0) — STw(0)|| . + [|STw(0) — w(D)]| L. -

(16.5)



Observing that

[S7v7(0) = S5w(0)||1 < L - [|SF0°(0) = STw(0) ||,

e </_Ooo|a(x) —u\d“/ooo \a(x)—uﬂdx),

and using (14.25), from (16.5) we obtain (16.4). 0

Appendix A

We derive here the explicit form of the evolution equations (6.1), for the variables v; and w;
defined by the decomposition

Uy = Zviﬁ (u,vi, Af — 9(wi/vi)), Up = Z(wl — /\fvi)fi (u,vi,)\;-k — O(wi/vi)). (A.1)

i 7

By checking one by one all source terms, we then provide an alternative proof of Lemma 6.1. The
computations are lengthy but straightforward: one has to rewrite the evolution equations for wu,
and u; :

A.
(we)e + (A(w)uy) = (ue)aa = (us ® A(u))ur — (ur @ A(w))uy (4.2)

in terms of v;, w;. For convenience, we set ; = 6(w;/v;). The fundamental relation (4.23) can be
written as

xT

{ (ux)t + (A(u)ux)w - (Um)mc =0,

’Uifi’u’l:i — A(u)fz = —5\sz + (—5\1 + )\;k — Hi)vifi,v . (A3)
Differentiating (A.1) w.r.t.  and using (A.3) we obtain

U — A(u)uy, = Z Vi oTi + Z ViTip — Z A(u)v;T;

= Z Ui@fi + Z (% [Ui":i,u":i - A(u)fl]

~ / 2\ ~ ~ ~
+ E [ [Uz‘,z?“i,v — 92-((1)1‘11%,:5 - wivi,z)/vz‘ )Ti,a} + E ViU uTj
i i#£j

= (i — Nvi)Fi + Y (=i + AT — 0;)viF
Z( 1,T 7 z) [3 Z( 7 7 1) Y

+ Z V; [’Ui’ﬂﬂ:i’v — (9; ((ini,x — wi’ljiw)/’l)?)?ziﬁ} + Z ’U{Uj?ziyufj
i i#j

= (vis — Aivi) [ﬁ‘ + VT + 0] (wi/vi)fw} + Z (wiz — Aiw;) [— Gﬁw}
+ Z Ui2 ()\: — Hi)ﬂ’v + Z ?)ﬂ)jfi’ufj s

i i#]
(A.4)



Uty — A(u)uy = Z(wl e — A Vi z)Ti + Z — N 0;)Ti g — z:(wZ — Av)A(u)T;

_ Z (Wie — AjVi )T Z(wZ — \jv;) [0iFs s —iA(u)Fi]
+ Z — Ay, [Uiyzrm — 9;((Ul~wi@ — wiviym)/vf)ﬁ,g] + Z:(wZ — )\;‘vi)vjﬁ,ufj
:Z (wip — Aiw Z)\ (Vi — Ai; r,+z i — M) ( i—i—)\f — 0;)viT5 0
+ Z — A, [U@wrw — Qi((viwi@ — wivi,m)/vi )ri,g] + Z(wi — )\fvi)vjﬁ’ufj
i#]
= (vie — Nivy) {wim,v +0; (wi/vi)zﬁa} + Z (Wi — Ajw;) [72 — (ngi/vi)fi,a]

+ > wiwi (A = 0:)Fiw + > wiviFi
i i#]

_ Z )\f{ (Ui,z - S\lvz> ['FZ- + Ui + (ngi/vi)fi,a] + (wm - 5\2w1> [ - (%Fi,a}

+ UiQ ()\;k — 01-)72-,1, + Z 'Uz'vj":i,ufj}-
J#i
(A5)

Differentiating (A.1) w.r.t. ¢t one obtains

Uy = Z Uijtfi + Z ViTit
— Z Uz tT'z + Z V; [Uz th v (wz tV; — W;V; t)/v )T@gi| + Z vi(w )\*Uj>fl UIFJ (AG)
- Z%t [7:1 + vifi + (Ojwi/v;) 7:’7"} + Zwi’t { B ;ﬁ’a} + sz A3 )i
P %

Uy = Z(w” Afvg )7+ Z — \[vi)Fig
= Z Wiy — Nvig )7+ Z = Xjoi) [T = 0 (w005 — wivi) /vf)m]
+ Z — X)) (wj — Ny T
=3 v [wm,v +6) (w; /Ui)%,a} 3 wia[Fi = 0 (wi/0) i | + D7 wi(w; = Ao
i i i,
S {vi,t [7" i + (0w, /v,-)@,a} —wi OjFi o+ Y vi(w; — A;vj)fi,ufj}.
%

’ (A7)



Differentiating again s, — A(u)uy and upy — A(u)us wor.t. x, from (A.4) and (A.5) one finds

Uy = (uz)m — (A(u)um)m
- Z (Ui,mz - (S\zvz)w) |i7:z + Uifi,v + eg(wi/vi)fi,a] + Z (wi,mz - (S\zwz)w) [_egfi,ol
+ Z(U,‘w - /N\,Ul) [Z Uj?zi,ufj + QUiyxﬁﬂ) + ( - 91-,93 + (Ggwi/vi)x>ﬁ7g + Z Ujvi":i,vufj

J J

~ / ~ ’ ~ ~ / ~
+ ViV 2T vv T ( — i » + eivi,wwi/vi)'ri,va + E 0;0; (Wi [V )T 0Ty — gi,mgi(wi/vi)'ri,(rcr]
J

3 /o~ /o~ ~ / ~ / ~
+ g (Wi z — Aiw;) [—Qi,xﬁ,g - g 0,07 oulj — Vi 00;Ti gv + eiei,xri,(ra’]
- ,

J

+ E (vi (A — 0:)) Fiw + Z vi(AF —6;) [Z ViTioulj + VigTivw — 9i,xﬁ',va]
i i ]

+ Z(Uivﬂ')xﬁiu“fﬂ' + Z V0 [Z Ok (Fi,uu(Fj ® Pr) + FiuTj,ulk)
i#] i#] k
+ Vj 2Tl T ViaTiuwls — 0aTiulje — ai,mfi,uafj] ;
(A.8)
(Ut) e — (A(u)ut)w
= Z (Viww — (S‘zvz)x) |:wi7:i,v + 0; (wi/Ui)in,a} + Z (Wi z0 — (Swwz)w) [7:1 - eg(wi/vi)fi,a]

5 - L - ' 2 -
+ E (Viw — Aivi) [wi,zri,v + E WiV T pulj + Wil z Tiwo + ( — wib; » + 0;(w; /v;) Ui,w>ri,vtr
- .

J

+ (9§(wi/vi)2)ji,g + Zvj‘%(wi/vi)2fi,dufj — eg(wi/vi)Qei,wfi,aa}

J

+ Z(wzm — Aw;) [Z VT 0+ ViaTiw — (0ip + (Ojwi/vi)e)Fio — Z'Ujgé(wi/vi)fi,aufj
] J

( J
— 0,20, (Wi J0;)Ti o0 + Gi,:g@;(wi/vi)fi,ao] + Z (wwi()\? — Hi))xfi,v
+ Zwivi ()\;k - 91) |:Z ’Ujfi,vufj + Ui,rfi,vv - Hi,m"zi,va] + Z(wzv])mfz,uf]
i J i#£j

+ ) wiv { > "0k (P (7 @ Fr) + FouFjoulh) + VjaTi i + ViaFiwus — 052 ufio — 0iaFiuot
i£j k

— Z /\f{(vm ) {fz‘ +oiTiw + 92(%/’02‘)@,0} + (wie — Niw;) [—927:1,0}

j#i v



Substituting the expressions (A.6)—(A.9) inside (A.2) and observing that
(ur ° A(u))ut — (ut ° A(u))um = 2:(10Z — Ajv)vj [(fj ° A(u))fi — (7’1- ° A(u))f]} ,
J#i

we finally obtain an implicit system of 2n scalar equations, describing the evolution of the compo-
nents v;, w;:

Z('Ui,t + (S\ZUz)x — Ui,m> [771' + VT + 9;(%/%)@,0} + Z(wi,t + (S\'sz)x - wi,rz) [—9%,5]

% 7

= Zﬁ’uﬂ ['Uz' (Ui,ac — 5\11}1) — V; (wz - )\jvl)]
+ Z fmﬂ%‘ |:(Ui7x — Xivi)vj + (vivj)m — Uy (U)j — )\;Uj)]

+ Z Tiv [2%@ (viw — S\ivi) + (A - 91))30}

3 i | (s = Ae00) (= o+ (B0s/01)) = (w1 = M), |
+ Z i [V (vie = Aivi) + 0} (A = 63)]

+ Z P |10 (Vi = Aivi) + vuE(N; = 63)]

+ gr (000 (Vi = Divi) + vigvP (A = 03)|

+ Z Tivo [(sz — Xiv;) (_Uiei,x + (%Ui,xwi/'ui> — (Wi, — Aw; ) v 105 — VE (AT — 0;)0; 4
+ Z Ti.ouli [(sz - S\ivi)t%wi — (wip — Xiwi)vﬂé]
+ Z Fi,aufj [(in — S\ivi)vﬂgwi/vi — (wm — S\I’LUZ)’UJGQ}
i#£]
+ Z Tioo [— ('Ui,ac — S\ivi)@,xegwi/vi + (wi,m - S\iwi)egei,x}

+) v, { > "0k (P (7 @ Fr) + FiouFjoulh) + VjaTi i + ViaFiun®s — 052Fiufio — OiaFiuot
itj k

= Zai(twr):

(A.10)



D (vie + itn)s = Vi) [0+ 01000/ Fis | + 3 (i + Ao = wie ) | = 05w f00) o |
R { (st ovn), = i) [ i+ 00 )] = 35 (s (), = ) [0}

—Z%u[ wi e = Awi)vi = w;(w; = Nvy)| |

+ ;fﬁzyu [(wi,x = Xiwi)vj — wi(w; — Njv;) + (wivj)x}

+ er [(vm — A Wi+ (Wi — Nw)vi g + (w0 (AT — ei))m}

- Z (050 = Xev) (0% 3/ 03)2), = (w0 = M) (B + (Bpos /1))

- Z o[ (010 = Asvs)wive + win? (47 — )]

+ ) i {(vm — X)) Wi + Wi (NF — Hi)}

+ 3 Fio [(vm — A )wivg + wivivy (A — ei)}

+ ;:ﬁ,w |:(Ui,1: — Avi) (= wibli o + 05 (Wi /0:)?vi.0) — (Wie — Nw;) s ow; /v — wiv (A — 0;)0; 4

+ Z oot (v = Aivs) 02 [v; = (w10 = Ao O]

+ XZ: Ti,oul’j [(vz’,x = Aivi)v;; (wi /i) — (wi — ;\iwi)”jegwi/vi}

1#]
+ Z Tz oo [ (% T S\ivi)eg(wi/vi)zgi,m + (wi,a: - S\iwi)e/ei,wwi/vi]

(A.11)

Recalling the expression (5.10) for the differential OA/O(v, w), we recognize that the equations
(A.10)-(A.11) provide the explicit form of the system (6.5). The uniform invertibility of the differ-
ential of A implies the estimates

Gjy ¥ =O1) > (|as| + [bi]).-

%



To prove Lemma 6.1, it thus suffices to show that all the terms in the summations defining a;, b;
have the correct order of magnitude.

First of all, one checks that all those terms which involve a product of distinct components
i # j can be bounded as

O1) > (lvjol + [vj2vk] + [vjwk| + [0 0wk] + |[vjwk 2| + [wjw]). (A.12)
7k

In most cases, this estimate is straightforward. For the terms containing the factor 6; , or 6; , this
is proved as follows. Recalling the bounds (4.24) we have, for example,

— W;Vj o
v]z J73,T 0(1) . (|wj,:1:| + |Uj,a:|) = 0(1) . 587

Wi V4
9],@,,’:],70 = 0(1) . Uj 9; LI

because of (5.24). Hence
vivjej,xfi7ufj7a = 0(1) . (Sgh}i’vﬂ .

Next, we look at each one of the remaining terms on the right hand side of (A.10) and (A.11)
and show that its size can be bounded as claimed by Lemma 6.1. To appreciate the following
computations, one should keep in mind that:

1. By (6.16) there holds
Vi — (A = AD)vs —wi = O(1) - 60y _ |vy].-
i

Therefore

(ol + [wi | [vi,2] Wi ]) [0 — i = AP v —wi| = O(1)-80 > (lvivg |+ [wivs |+ [vi 2] + [wi 2;]) -

ji

2. By (5.5) the cutoff functions satisfy 6] = 6/ = 0 whenever |w;/v;| > 3d;.
3. By (4.24) we have 7 o /vi, Tioo/Vi, Tiou/vi = O(1).

4. One can have |w; — 0;v;| # 0 only when |w;| > d1|v;]. In this case, (6.18) yields

vi = O0(1) v e +O(1) -6 Y _ |vj].
J#i

What follows is a list of the various terms, first those appearing in a;, then the ones in b;.

Coefficients of 7 ,7; :

Ui(vi,:r - /\ivi) - vi(wi - )\fvz’) = Uy [Uz’,z - (/\i - )\f)vi - wz‘],

Vi(Wie — Aw;) — wi(w; — Afvi) = [ini,a: - Uz’,zwi] + w; [Ui,a; — (A — )\;‘k)vi - wi]~

)



Coefficients of 7, :
2’01'71(’[)1‘@ — S\ZUZ) + (U?()\j — 91))x = 21)2‘,55 [Uz’,r — (/N\Z — )\:)’UZ — 01’1)1] + 9; [vi,mwi — ini,z]

= 20; & [vi,r — (i — AD)v; — wz} + 205 4 [wi - inz’] + 0, [Uz’,mwi - 'ini,x]a

Wi (Vi — NiV;) + Vg2 (Wi 2 — Niw;) + (wiv (A — 91))w
= 211)1730 [Ui,ﬂc — (5\Z — )\;k)’l)z - wi] + 2wm [wi — 911)1] + ()\;k — 91 — 5\1 + ngl/vz) [vi,xwi — ini@] .

Coefficients of 7;  /v; :

V3 (Ui,m - Aivi) <—9i,z + (eéwz/vz)r) — 3 (wi,z - S\zwz)ggx = _(ini,a: - wwz’,m)%/ (wi/vi)x

ot [or (i), |
. (Ui,z—j\ﬂ)z‘) <0£(wi/vi)2>x_vi (wi,z—j\iwi) <0i’r—|—(9£wi/vi)r): —<9;/(wi/vi)+29;) [w (wi/vi)x]2.

Coeflicients of 7 4,7 :

v; (Ui,fﬂ - 5‘%”%) + 0} (A = 6;) = v} [’Ui,m —(\i— A vi — wi] + 07 [wi - 91‘%},

ViWw; (Ui@ — S\Z’Uz) + ’U?’LUZ()\;i< — 01) = V;W; [Ui@ — ()\z — )\ik)’l)i — w,} “+ v;W; [wz — QZ’UZ] .

)

Coeflicients of 7 4, :

ViV ¢ (Vg — 5\1'%') — Uz‘,wU?(Af —0;) = ViV ¢ [Ui,a: - (5\1 = A)vi — wi] + ViViz [wi - ‘9“’1’}’

Wi o (Vi — Ai¥s) — V5 20w (A] — 6;) = wiv; 4 {Uz‘,x — (XN = A))v — wz} + Wiv; 5 [w; — ;5]

Coefficients of 7 40 :
(Ui,z - S\zvz)( - Uiei,z + Ogvi,mwi/vi) - (wi,m - ;\iwi)Hévi,z - U?()\f - 91‘)975@
= 0,207 (Vi 2 W; — VW; ) [V — b5 205 (Ui,z — (N = AF + ei)vi)

(%

= 20; <wal - wi,a:) {[Uzz — (A= X)) — w;] + [w; — Givi]} + (5\1 — AL+ 6,)0; [wiovi — wivig),

(Ui,a; - )\ivi) (—U/z‘ei,z + Gg(wi/vi)%m) - (wi,a: - S\iwi)‘%vi,wwi/vi — vjwi (A} — ei)9i,m

- 29;% <inwi — wi,x) {[’Uz‘,x — (5\Z — /\:()Q}z — wi] + [wi — QZUZ]}

U (%

— (S\z — )\;k + 01)0; ['LUvai — wivivx] w,-/fui .

Coefficients of 7; 4,7 /v; :

(Ui,:v - )\ivi)wivieg - (wi,r - ;\iwi)vfﬁé = 9;% [Ui,rwi - ini,x],



(’U@x — lez)wf% — (wi,x — S\zwl)wzvﬂ; = Hg’wz [7)1'73;71)@‘ — ini,x] .

Coefficients of 7; 5o /v; :
- - 2
_(Ui,r - )\ivi)wieéei,x + (wi,x - )\iwi)vi(%ei,z = —(92)2 |:'Ui (wz/vz)m} )

_(Ui,x — S\ZUZ)U}Z (wl/vz)eit?z,w + (wm — /N\zwl)wﬁ;@w = —(9;)2% [Ui (wl/vl)mr

This completes our analysis, showing that all terms in the summations that define a;, b; have the
correct order of magnitude, as claimed by Lemma 6.1. ]

Appendix B

We compute here the source terms c;ASi, vf)i in the equations (11.15) for the components of a first
order perturbation, and prove Lemma 11.3. We recall that

As in (A.4)—(A.11), the computations are lengthy but straightforward: one has to rewrite the
evolution equations for z and Y :

2 + (A(u)z)w — Zpg = (ur ° A(u))z — (z ° A(u))um ,
T+ (A(u)T)x — Vo = [(uz e A(u))z— (2@ A(u))um] e A(u) [(uz e A(u))z— (2@ A(u))ur}

+ (ug @ A(w)) Y — (us @ A(u))z,
(B.2)
in terms of h;, g;. The fundamental relation (4.23) implies
Differentiating (B.1) w.r.t.  and using (B.3) we obtain

2y — Alu)z = Z P o i + Z h; [Uz‘f’z;u?:i - A(U)ﬁ] + Z h; [Uz‘,xﬂ‘,u - (é;(hzgzx - gihi,x)/h?)fao}

+ Z hivjfi,ufj
1#]
= (hi,m - j\ihi)ﬁ' + Z hiviri (fi - 7%) + Z hi [vi,z - (5\1 — A+ éi)vz}ﬁ,u
- Z 0, [(gzaz - ;\igi) - % (hiw — 5\}7/1):| Pio + Z hiviti T,
i ' i#]
= (hiaz— j\ihi) {72 y (gi/hi)fi,a] - Z(gm - j\lgz)é;f'za

+ Z hwzﬂ’u (fz‘ — 721) + Z hi [Ui,:c — (5\Z — /\;k + éz)vz} 721'71, + Z hﬂ)j?’i’ufj y
% A i#£]
(B.4)



Y, — A(u)Y = Z(gZ o= A hig)Pi + Z {vm uli — A(u)ﬂ}

+Z = AThy) [vi,mri,v— (Bi(Rigice — giie) /H2) o | + D0 (g0 = At v
—Z (950 — Nigi) 7 Z)\* hiw — Aihi Wrz #;m,u(fi—m)
+Z [vm i A —f—@i)vi}ri,v

- Ze’ < — A > [(gm — Nigi) — Z—i(hm — Nihi) } P + ; it

= Z i — Aih [9, (gz/h ) 7 a} + Z Ji,x — j\igi) [fz - é;(gz/hz)fm]
+Zgz[vm— —1—0)01}7““,—1—2911)11”,” Ty — 7 +Zgzvjrwrj

17#]

_ Z /\*{ — Xihs) [n +0:(gi/ha)s, o} (9i0 = Xi9:)0iFso

—i—hi[vm —()\ —)\*+0 )vz}rw—khvznu( Ty — 7 —i—Zh vjrzur]}
J#i
(B.5)

Next, differentiating (B.1) w.r.t. ¢ we obtain
2t = Z P et + Z hi (P ute + v 4P 0 — éi,tf’z‘,o)
= th t7‘1 =+ Zh |:Q)Z tT'“) — (gz th gihi’t)/h?)f’i,g]—i-zm(wj — )\;Uj)fi,u?zj (BG)
—tht[r2+9 gz/h 7"7,0':| Zezgztrza+zhvztrzv+zh )\U] T’Lu’rjv
Tt = Z(gz t )\ hz t Tz =+ Z h ) (TZ wlUt + Vi, trz v éi,tf'i,a)

- Z gz t )\ hz t 7'1 + Z |:Uz trz v (é;(gz,thz - gihi,t)/h?)f'i,a:|

+Z i i i w]‘ —)\j’Uj)T‘Z"uTj
_tht[ gz/h Tza}_‘_zgzt[ (gz/h rza}"f'zgzvztrzv"i_zgz )\Uj)rzurj
_Z)\{ ztrz'i_e gz/h)rzo}_ngtrzo+hvztrzv+zh )\;Uj)fi,ufj}-

’ (B.7)

Differentiating again z, — A(u)z and Y, — A(u)Y w.r.t. z, from (B.4) and (B.5) one finds



zae = (AW2), = D (hies = ihi)e) [Fs 40301 /hi)Fu| = D (9100 — (Aig)2)Oifo

+ Z(hzr - j\zhz) [z VT uTj + VigTivo + (_ézx + (é;gz/hz)z)ﬁa

i J

+ 0w, 2(gi/hi)Ti o0 + Z 0079/ Pi)Pi o T — 0; Iég(gi/hi)ﬁw]
j
+ Z Giw = Nigi [ 07 (9i/hi)atic — > 0105 uals — i 2 vo + égéi,xfi,aa]
J

+ Z (hivifs (P — 7)) + Z( (vie — (Ni = Af + 0 )w)) Tiw
+ Z hi(vie — (i — AF + 91‘)%‘) [Z VT vuTj + Vi g vo — éi,xﬂ‘,w]

i J

+ Z h; ’U] Tl uT] + th Uj |:Z Vk Tz UT] uTk + 74 uu(rj ® Tk))

i#] i#] k

+ V) oFi a0 + ViaFiouTj — 0jaTiufjo — éi,m,mfj} , (B.8)
Yew = (WD), = 32 e = b)) B 1) | + 3 1 = ) 7 = B i)
+ Z(hi,m — Aihi) |0 [ (Wi /i) 2w Pie + (05095 /1i)?) Fio
57 0096/ i) ooy — ég(gi/hméi,m,w]

J

+ Z(gl,w - S"ng) |:Z Ujf‘i,u":j + vi,xfi,v - (61 z T (elgz/hf ) )fi,o

i J
- Z Ujé;(gi/hi)fi,ﬂufj - Ui7$é£ (gi/hi)’fli,va + éz,zé; (gi/hi)'ﬁi,(ra’]
J
e s T
—"_ ; |:gZ (U'L7x —"_ v'L rl v —"_ Z g'L’UZTZ U Z l) =
+ Zgi (Vi — (\i = Af + ei)vi) [Z VT o5 + Vi 2T v — ei,xfi,w] + Z(givj)xfi,ufj
i J £

+ E 9iVj [ g Ok (PiuTsuTh 4 Piun (g @ Tr)) 4 Vjai a0 + Vialivuy — 05 aliiuljo = bialiouly
i#j k

_ Z )\*{ ~A ihi) {n + 0/(gi /i), U} (950 — }igi)gﬁ,w

+ hi (’Ui’glj — (;\z — )\;k + éi)’ui)ﬂw + hiv,ﬂ,u (7:1‘ — 7%) + Zvivjf’i’ufj} . (Bg)
j#i @



Substituting the expressions (B.6)—(B.9) inside (B.2) we obtain an implicit system of 2n scalar
equations governing the evolution of the components h;, g;:

Z(hi,t + (S\th)m — hi,rz) [ﬁ' + é;(gz/hz)f‘za} + Z(gi,t + (;\zgz)x — gi,zm> [ - é;”;za}

; Z i uli |:Ui(hi,ac - ;\zhz) — hi(w; — /\:)}

+ ;f’i,u@ [(hiw = Niha)o; + (hiv;),, = i = Ajvy)]
oy
+ Z P [(hm — Aihi)via + (hi (Vi — (A — Af + éi)vi))m _ hivi,t]
37 o [(hie = M) (= O+ Ol )) = (910 = Nigi) O
+ Zrur [hivi(vie = (i = X7+ 0)vs) |
+ ZZ:@,W@- [hﬂ;j (viw — (A — A7 + éi)vi)}
n ;@w [hi% (vie — (A — A + éi)vi)]
+ ng [(hi,x — Nihi)0ivi e gi/hi — (9iw — Nigi)viw0) — hi(vie — (i — Af + éi)ui)éi,z]
n iﬁ"’“ﬂ [(hm — Xihi)vibligi/hi — (910 — Xigi)viég}
n im,m@ [(hm — Aiha)vi0lgi/hi — (gix — Xigi)vjég}
+ § oo | = (hie = M) 801 5gu/ i+ (91,0 = Nigi) 0ifso| + 3 (haviti (7 — 7))

xT

+ E hivj |: E Vg (fi,u":j,u":k + ’fli,uu(fj X fk:)) + vj,acfi,ufj,v + Ui,x"qvufj - ej,mfi,u":j,a' - ei,:vfaufj:|
k

(B.10)



Z(hzt + (;\ hi), — hi,xw) [é;(gz/h1)2f10:| + Z(Qi,t + (ngz)z - gi,m) {ﬂ - 9§(gi/h¢)fi,a]

- Z Al {( it + (Nihi)e — hi,mx) [ﬁ‘ + é;(gi/hi)fi,o} + Z(Qi,t + (Xigi)e — gi,mm) [— 9;7"10} }
= Zh‘,uﬁ‘ [(gzx — \igi)vi — gi(w; — A:”i)}

+ ZTZ u'r] |: Gi,x — zgz) gi(wj - )‘;Uj) + (givj)l"i|
i#]

+ Zrz ’ [( Viw — (N — Af + éz‘)vi))r + (9ie — Nigi)vie — gm,t]

+ Z“ a[ ie = Xihi) (01(9i/1i)?), = (9i0 = Nigi) (0ie + (é;gi/hi)m)}

+ Z P ol [ Via — (A = XF + 0,)v;) gﬂ)z}

+ Zr (i = G = X7 +65)0) grve|

+ Z o | (Ve = (s = AL+ 00)vi) giv |

+ gﬂvw [(hm — Xihi)05(9i/Pi) i — (giw — Nigi) Ovi wgi/hi — gi(vie — (Ni — Xf + éi)”i)éi,x]
£ 37 i (hice = M) 03 1) = (960 = Nigi)Olvigi

3 P [ (i = Aili) 00 gi/ i) = (910 = Nigi)vifligi /]

i#j

+ Z Fioo [— (hiw — j\zhz)é;(gz/hz)Qézz + (9,2 — j\igi)éléi,mgi/hi} + Z(givifi,u(fi - fz))

i
+ E giv; [ g (s (Ti,ufj,ufk + 70 (75 @ fk)) + V5 2T uTj0 + Vizliwulj — 02Tiulj o — Qi,m?”i,aufj]
i k

e w0 o0 A5
+Z()\;—)\i)vlh o AR+ S [ (i o A@) 75 = (75 o Aw) ]

(B.11)



Recalling the expression (11.11) for the differential afx/a(h, g), we can write (B.10)-(B.11) in
the more compact form

A ‘ < [hi,t + (S\zhz)x — hi,xm} > _ Z (A a; )
h,g) \ [gie+ (Nigi) , — Giswa) bi —Ajai ) -

%

By the uniform invertibility of the differential of K, to prove the estimates stated in Lemma 11.3,
it suffices to show that, for every ¢ = 1,...,n, the four quantities

a , bi , (X = A)hi) (X = A)gi),
can all be bounded according to the right hand side of (11.16).

We start by looking at all the terms in the expressions (B.10)-(B.11) for a; and b;. First of
all, one checks that all those terms which involve a product of distinct components ¢ # j can be
bounded as

0(1)'2 (|hjhk|+|hﬂ)k|+|hj,zvk|+|hjvk,z!+|hjwk|+|gﬂ)kz|+|gm,jvk|+\gjvk,x|+|gjwk|)~ (B.12)
J#k

For convenience, quantities whose size is bounded as in (B.12) will be called “transversal terms”.
More generally, quantities whose size is bounded according to the right hand side of (11.16) will
be called “admissible terms”. We denote by A the family of all admissible terms. We now exhibit
various additional terms which are admissible.

1. By (6.16) it follows

ULQ; — (5\1 — )\;()’UZ — Ww;

(1ha] + gil+1hi 2] + 9ie])

B.13
—0(1) 60 3 (thevs| +lgsvg| + hiwvs| +lgsarsl) € A, P
JFi
2. Two other other admissible terms are
hi|wi 20 — wiv; o] = [hiw; o — Wil 2 |vi + Wi 2V — v 5] € A7
s, o) = [hiwie — wibi Joi + wilh o B0
9i [wi,wvi - wivi,m] = [giwi,x - wigi,ac]vi + w; [gi,xw - gi?)z‘,x] cA.

3. We now consider terms that involve the difference between the speeds: 0; — 0;,. We claim that
the following four quantities are admissible:

hivi(0; — 0:),  givi(0i — 05),  hiwvi(0i —60;),  gizvi(fi —6;) € A. (B.15)
Indeed, from the definitions and the bounds (4.24) it follows

Since |0'| < 1, one has

10 — 03] < |(gi/hi) — (wi/vi)|.



Using (6.16) and (11.12) we now obtain
|hvil [0 — 0:] < |givi — wihy]

= | (1 G = 2030+ 00160 3 (s + )
J#i

—(vi,x—l—(j\i—)\ Ju; + O(1 502|’UJ>

JFi

~ ~

= (hmvi — Ui,gchi) + ()\z - )\l)vlhz + O(l) . (50 Z ("Uj’l)i| + |hj1)i|)

J#i
< ‘hi,xvi — Ui,xhi‘ + 0(1) . 50‘@1 — nghz’U@‘ + O(l) : 50 Z (’Ujvk‘ + |hj’l)k’) .
J#k
Hence
|givi — wlhz| S 2|hi,wvi — Uiywhi‘ + 0(1) . 50 Z (|’U]‘Uk’ + |h]’Uk|) S .A, (B17)

7k
showing that the quantity hivi(éi — 6;) is admissible.

Observing that 6; — 6; # 0 only if either |g;/h;| < 661 and |w; /v;| < 361, or else |g; /hi| > 68,
and |w;/v;| < 391, we can write

givi(éi —0;)| <lgi/hi ‘hzvz(éz - 91)‘ .

) + 261 |g;vi

X{|gi/hi\§661 | 'X{|9i/hi\2651: \wi/vi|§351}

< 601]gi/hi| |hivi(0; — 0;)| + 401 | givi — wihy].

Hence g;v;(0; — 0;) € A. In turn, using (11.12) we obtain

hz‘wvi(éi — 91) = g;V; (él — 91) + (5\1 — )\f)hzvl(él — 01) + 0(1) . 50 Z ("Uﬂ)ﬂ + ‘Uith?
J#i

showing that the term hiyxvi(éi — 6;) is also admissible. Finally, using (6.16) one can write
gi,zvi(éi —0;) = (éz —0;) [gi,zvi - Ui,zgi] + givi,x(éi —0;)

= (éz —6;) [gi,zvi - Ui,zgi] + giwi(éi —6;)

+ (N = A)givi(0; — ;) + O(1) - &g Z |viv,| -
i

To estimate the term giwi(éi —0;), we observe that 0; —0; = 0 if |w; /v;| and |g;/h;| are both > 36;.
Hence, using again (6.16), we can write

|giwi (0; — 60;)| = 301 |givi (6 — 6)] 'X{|wi/vi‘<351} + 361 | haw; (0; — 0;)] - X{ g, /nil<so }

105 — 6: + O(1) - Y lhivy] -

J#

= 351|gzvz|‘9 Uz r (5\1 - )\:‘)Ul)




By the previous estimates, this shows that gi,xvi(éi —6,;) € A, completing the proof of (B.15). By
(B.16), the following terms are also admissible:

hilhi = Ai)s gihi =N, hiei =N, giw(hi — i) € A (B.18)

4. Next, we claim that
Indeed, one can write

— A/L‘, ~A ~A’ —_ AA,
(r Tiu)T Tiw — Tiv }

hl(fl — ,’gl)x = hz’l)z(é, — 91){2 ijA— + [ A ——
j Uz(gz — 02) i(0; — (9z>

+0.(gi/hi) [viwhi — i wvi] (Fi0 Vi) + g, [ViGie — 9iViz | (Fio /Vi)
+ (w; Jv:)0; [vi whi — Vil g ] (Fi o [Ui) + 0 [hi gw; — hiw; 5] (Fi o /vi),

. - (Fiw — Tiu)Tj fz‘v—f’m}
i(Ti — T4)z = givi(0; — 0; Vj—— + Vi —= .
g ( ) g ( ){zj: ’ Ui(ei_‘gi) , Ui(ei_ei)
+0)(g:/h:)? [vi,ahi — higvi] (Fio Jvi) + 0.(gi/h:) [Vii.e — 9iViz | (Fio/ Vi)
+ (w;i/v;)0; [Ui,mgi — Uigi,z] (Fio/vi) + 0] [gi,:rwi — giwi,w] (Tio Vi)

By (4.24), the above expressions within braces are uniformly bounded. Hence the first two quan-
tities in (B.19) are admissible. To prove the admissibility of the last two terms it suffices to repeat

the above computation, with 7; and #; replaced by by \; and i

In a similar way as in Appendix A, we are now ready to check one by one all the (non-
tranversal) terms in the expressions of a;,b; in (B.10)-(B.11), showing that all of them are admis-
sible.

Coeflicients of 7 ,,7; :

Ui(hi,x_)\ihi) - hi(wi - )\fvi)
= [vihiz — hivi ] + [vihi(N — N)] + |:hi (viw — (N = A)v; — wi)},

~

Vi(gi,e—Aigi) — gi(wi — Ajv;)
= [gi2vi — vi2gi] + [vigi(Ni — N)] + [Qz‘ (Vip — (A = Af)v; — wz):|

Coefficients of 7, :
Vio(Piz — j\ihi)‘i‘(hi (vie — (N = A + éz)vz)) — hvit
= 2[hi,m (viz — (N = Ao — wz):| + 2[hi o (w; — 0;v;)]
+ [hivie — higvi] (\f = 0; = N + 0}g:/hi) + 0, [vigi 0 — vi 0]
+ 2[R pvi (N + 0 — N — 0:)] + [hi((j‘i - j\i)vi)x} — hioi,



<9i (vivx - (S\i - A+ éi)vi)>x + i,z (G2 — j\igi) — giVit
=2 [gi,z (Ui,z - (5\1 - )\f)vi - wz):| +2 [gi,m (wi - in)}
+ ()\f —0; — A + é{gz/hz) [Ui,xgi - Uigi,:z:] + é;(gz/hz)Q [Uihi,m - Ui,zhi]
+ 2[92‘79:%(5\1‘ +0;— i — éz)] + [gi((j\i - Xz)vz)x} — 9i®i -

Coefficients of 7; ,/v; :

2
Vi (hie — ;\ihi)(_éi,x + (é;gz/hz)x) —vi(Giz — j\zgz)é;w = —v; [é;;/hz‘ <;]LZ> ] )

2
Coeflicients of 7 4,7 :

v;h; (Vie — (i — A+ él)vz) = [Uihi (vie — (N = A))v; — wi)] + [vihi (w; — Hivi)}

+ [Ufhz(j\l + 91‘ - 5\1 - éz)} y

Vigi (Ui,m - (5\1 — A+ éz)vz) = [Uigi (Uz',ac - (5\2 —A})vi — wz)] + [Uigi(wi - 91'%')}

+ [’U?gz(j\z +6; — 5\1 — éz)} .
Coefficients of 7; 4, :

(Ui,z — (5\1 — A+ ei)vi)} + [hivivi,z(j\i +0; — X\ — éz):|
= [Uihi,x (Vi — (i = AD)w; — wz)] + [hwivz‘,x(S\i +6; — X\ — éz)}
+ v; [hi,:z: (wi - ini)} + (Uz’,r =+ (5\1 - )\f)vi - 91'111‘) [hivi,r - Uz’hi,z]a

9iViz (Viw — (N — A))vi + éivi) =v; [gi,x (vip — (A = A))vi — wz)} + [givivia (N +0; — A — éz)]
+ v [gi,a:(wi - ewi)] + (Ui,m - (5\1 —Aj)vi — 9z‘Uz') [givi,w - Uigw] .

Coefficients of 7 4o :

(hiw — j\zhz)é;(gz/hz)vzx — (9ie — Nigi)0}vi o — by (Vi — (N = AF + éz)vz)ém
= 0 500(hiwgi — hiiw)/hi — Oizh (Vi — (N = A\f + éz)vz)
= 29; (hz,x(gl/hz) - gi,z) [(Uz’,r - (5\1 - )\;k)'Uz - wz) + (wz — QZ’UZ)}

+ <2(5\z‘ — A 0;) — (i = A4 6)) {éi (V529 — Vigin| — 0,(g:/h:) [vi,5hi — vihiz) },



(hiw — Xiha)0(9:/ 1) viw — (Gie — M) 03vi.09i /i — i (Viw — (N = A} + 0;)0:)0;

0; gl (hi,zf; - gi,z> [('Ui,x - (S\Z - )\;‘)vi — wi) + (wi — 9%’)}

+ (2(5\1‘ — AL H0) — (N = AF + éz)) {é;(gz/hz) [Ui,mgi - Uigi,z] — 0/(gi/hi)? |:'Ui,whi - Uihi,gci| }

Coefficients of 7; 4,7 /v; :

(hiz — )‘h )9/U292/h (Gie — j\igi)%?@é = é;% [vi,rgi - Uigi,:r] + é;vz(gz/hz) [Uz‘hi,z - hwz’,m],

(hie — )9/ Q(Qz/hz‘)Q —(Gie — j\igz)el 2(9z/h )
= 0;vi(gi/hi ){ [Vi29i — Vigie) + (9i/hi) [Vihie — hivig] }

’L

Coefficients of #; 5o /v; :

—(hie — Xihi)vi(9i/0i)0.0; 0 + (910 — Nigi)vi0.0; 0 = (0])*vih; [(gi/hi)x]za
_(hz x — j\zhz)vz(gz/hz)Qé;éz,w + (gi,r - )\292)9 91 xvz(gz/h ) ( ) Vigi [(gz/h ) ]

There are a few remaining terms in (B.10)-(B.11) which we now examine. Recalling (B.14)

we have

+O(1) - hivi (0; — 6;) + O(1) - hivi (i — 74)s

<9ivifi,u(fi - fz)) =0(1) - gi .03 (0; — 0:;) +0(1) - Gi0iV; 5 (0; — 0;)
+O(1) - g (0; — ;) + O(1) - gvi (75 — 7).

(2

0(1) . hZUZ(fZ — ’I“i) s

hivs[ (7s & A(w)7; — (71 @ Aw) ]
hivi A(u) [(7:1 ° A(“)) (7’1 o Alu ))f ]
(wihs — v:gi) (7 @ A(w))#;

~

O(1) - |lwih; — givi| ,

xT

[vihi ((@- o A(u))i; — (7 o A(u))fi)] = 0(1) - (Js.whi| + [vihio|)[Fs — 4] + O1) - vih(Fs — )

These terms are all admissible because of (B.15)—(B.19).
We have thus completed the analysis of all terms in (B.10)-(B.11), showing that the quantities

ai, b; are admissible. The admissibility of the terms ((5\1 - ;\l)hl)x and ((5\1 — j\z)gz)w follows
immediately from (B.18) and (B.19). This completes the proof of Lemma 11.3. U



Appendix C

Aim of this section is to derive energy estimates for the components h;, g; and prove the
bounds (11.33)-(11.34). We write the evolution equations (11.15) for the components h;, g; in the

form _
{ hi,t + ()\zhz)m - 7, xT ¢'L 9
it + (ngz)z — Gijzx = %‘ .
For convenience, we define 7; = n(g;/h;). Multiplying the first equation in (C.1) by h;7; and
integrating by parts, we obtain

/ﬁihzﬁgi dx = / {ﬁihihi,t + ﬁihi(j\ihi)z - ﬁihihi,m} dx

(C.1)

= / {ﬁi(h?/Q)t — Didihihi e — i g Nih? + ﬁihix + ﬁi,xhi,mhi} dx

— [ {h212),+ a2 2) = (s + 2 = ) (02/2) + 602, }

Therefore
d ~
/ Nihy , do = - [ / fih? /2 daz] + / (it + Nifliw — Niwa) (R /2) dz
—/Xi,xﬁi(hf/z) d:p—i—/mhiqBi dx .

As in (9.14), a direct computation yields

A 3 oA A A 1,2)1 i CbAi Mg (9 A gi 2
) S —_p gz g -V
it + Aznz,z Nizz = T; (hi he b, + 27; I, I ) 7); I, ) . (C.3)

Since 5\1 = (5\1 — Af)g, integrating by parts and using the second estimate in (11.13) one obtains

/ Nixi(h2)2) dz| = ‘/ — X)(i,xh? /2 + fihih ) do

(C.2)

. 5 .
S H)\Z—AzHLm { /}nzngx i — i zx’dx_'_ nlh?@d’m

26,
502/ |hivj| + |hih; \)d:p}

J#i
L[
< /\gi,xm ~hiagi a5 [ ih? o dyS [ (hao] + hih) da
J#L
(CA4)
because B
|/\z—)\:|:O(1)(50 << 6 <1.
Using (C.3) and (C.4) in (C.2), we now obtain
L[ d Mih? Ly ) ) / N gi
z 'y < _Z ( - / b b Iny I
2 /m hiwdv < == [/ 2 w] +5 [ 10| (hithil + |g:]) dz + [ |0ihikia hi), o
~|—1 irn? (2 2 d:L‘+ \gi.whi — gihi | dx (C.5)
9 i Tl hz 1,2l illi,x .

+do (|hivj| + |hih;]) do + \hidi| da .
j

J#i



Recalling the definition of 7);, on regions where 7, # 0 one has |g;/h;| < 461/5, hence the bounds

(11.14) hold. In turn, they imply
Phikie (I2) | < = |ih2 (Z) |+ 01) 60 S |iths (2
i ) <h1>z U h; . + () 0; UA h; .

— 20
= O(1) - |gi.ahi = gihiel + O1) -0 > ([viGiel + [vhie] + i gie] + [hjhizl) -
i

5

(Joj| + |ny])

(C.6)
Using (C.6) and then the bounds (11.18), (11.26), (11.28), (11.30) and (11.31), from (C.5) we
conclude

T T
/ /"71' h?,x dxdt < /ﬁih?(faiﬁ) dz + O(1) / / (’hﬂ&z’ + ‘9#2%‘) dxdt
i i
T T )
+ (9(1) : / /gi,whi - gihi7$| dxdt + O(l) [ / ‘hz(gz/hl)g;’ dzdt
i i

T
+O(1) - & Z/ / (|vjgi 0| + |vihie] + [higi e + |hihi ) dadt
j#i 7t

T T
+5OZX /(‘hivj|+hih]'|) dwdt+2ﬁ /!hi¢i|d$dt
j#i 7t b
= 0(1)- 82,

(C.7)
proving the estimate (11.33)

We now perform a similar computation for gfl, Multiplying the second equation in (C.1) by
7;9; and integrating by parts, one obtains

/ﬁz’gz’z@i dx = / {(ﬁi9?/2)t + Ni)2(92/2) — (e + 2Xi%i0 — Niwa) (92/2) + ﬁigim} dx .
Therefore, the identity (C.2) still holds, with h;, ¢Ez replaced by g;, 1[1@', respectively:
~ 2 d ) ~ Y A ~ 2
/nigi,a: dx = o [/ 1ig; /2 dw} + / (it + Nifliw — i) (97 /2) da
(C.8)
- /Ai,xﬁi(gfﬂ) dx + /ﬁigiwi dx .
The equality (C.3) can again be used. To obtain a suitable replacement for (C.4) we observe that,

if 7; # 0, then (11.13) implies

19:9i.0] < 2[Riagial + O1) 60 Y (105950] + |hj9i0
i

)

and hence

9i9i,2] < h?,x + sz +0O(1) - do Z (lvjgil + 1hjgil) -
i#i



Integrating by parts we thus obtain

‘/)‘zxnz 91/2

< A= Al {

‘/( )‘*) (772 z9; /2 +1i9i9i, z) dx

ﬁ; |gi7$ i — 3 la:| d$+/ﬁihzz,z dx

+/mgmdw+0 502/ !vggzlﬂhjgz)dw}

J#i

1 (. 1
S/’gi,mhi_hi,mgi‘daj""2/771'}1?71, dm+2/mgmdx+502/ v;gil + |hjgil) dx

J#i
(C.9)
Using (C.3) and (C.9) in (C.8) and observing that |g?/h?| < 67 on the region where 7} # 0, we
now obtain an estimate similar to (C.5):

1 d 1ig; 7 [ ) 2 2 [ |~ gi
- < —— ( Z1 / aly - ' gt
5 [ ivwtads <5 | [ 2 aa] + 5 [1ai(hidid+ lo ) do+ 3 [ Jiihihos () | as
7 i ? 1 R
—1-21/ i} h? <}gL> dx+/|gi,mhi—gihm]dx+Q/nih?yx dx
+5OZ/ ‘UJQZ“thgz da:—l—/|g,1/11|d$
J#i
(C.10)

Using (C.6) and then the bounds (C.7), (11.18), (11.26), (11.28), (11.30) and (11.31), from (C.10)

we conclude

T T
/ /fh—g?’xdxdtg/ﬁig?(f,:v)dxwLO(l)-/ /(|hl¢z|+|gl¢l|) dxdt
7 7
T
1)/ /|gzm i — gihi z| dzdt + O(1) / /‘h (g9i/hi) ‘ dxdt

502/ / j9il + i) dedt (C.11)
J#i
T A~
/ /nzh-7zdxdt+5oz/(|Uj9i|+|hjgi|)d$+2/ /|hi¢z"dIdt
J#i i

=0(1) -4,

proving the estimate (11.34).



Appendix D

We derive here the two estimates (12.9)-(12.10), used in the proof of Lemma 12.1.
t
||A||Loo//‘Gx (t — s,z —y)|E(s,y)dyds

il [ [ et

(z —y) ’
.eXp{_él(t—s) —|—4||DA||Loo/0 Hux(a)HLwda—Fs—y}dyds

t
< ||A|| L~ exp {4|DA||Loo/ Huw(a)HLmdathx}

L rm (e )

:exp{4HDAHLOO/O Hux(J)HLooda—i—t—m} i ”J”Li </\§ Vit —sle¢ dg)

t t
<o {tIDA [ Nuso) o+t -2 [ Al (4 V) Bl as
<exp{4||DAHLoo/ e HLmdaH—x} (’f_;

E(t,z) — %exp {4||DAHLoo / Hum HLoodath — :U}

2 DA| /Otuux(s)nm (/ Gt — s,x—y)E(s,y)dy> ds
= 2D Al | tB(s)-exp{zluDAum / Suux<o>l\mda+s}
ot ((f oo {520 =) s
< B | DAl ()] exp{4\DAuLm / Suumwlmdv}ds

(t)et—* B exp {4\\DA1LOO /OtHW)HLde} - H
1

< —E(t,x) — %et_m.

S~

[\
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