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We consider the (special) Jin-Xin relaxation model [Jin-Xin '95]

Ut + Uy — 0
R™ AeR 1
F : R" — R"™ smooth.
Scaling:
x— /N, v— N\v = N=1,

Diagonalizing 2F~ = u — v, 2FT = u + v, we obtain the BGK
model

{ by —Fy = %(M_(”LO—F_) F~ T cRr® (2)

Fr+rF = Lt - Fh)

where u = F~ + FT, M~(u) = “=2) prt(y) = w2,
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General settings
Equation (1) can be written as

ur + A(w)ur = e(uzr — ust), u € R", (3)

with A(u) = DF(u).
The above equation is meaningful even if A(u) is not a Jacobian
matrix.

Assumptions:
1) A(u) strictly hyperbolic and

—14c<)(u) <1-—c, c > 0;

2) the initial data (ug,eug;) are sufficiently smooth and with
total variation less than g < 1:

luollLoe, llevo el oo < 00, [luo,zllp1, ll€vo,tall 1 < do-
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EXistence and stability theorem. Under the above assump-
tions, there exists a global solution (u,u;) of (3), defined for all
t > 0, such that

()| oo, [eu(t) || e < Coo,  lua(®)p1, lleut ()1 < Cdo. (4)
Moreover,
Ju(t) —a(s)[l 1 + ellue(t) — ue(s) | 2
< 1]t — sl + | (o + euo,) — (o + eiio, )|

)
+ Le ¥ e||lug — toll 11

+ L(Plug e — ool + Eluo s — Gotwally1)-  (5)
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Convergence theorem. As e — 0, the solution u¢(t) with initial
data (ug,eug ) converges to a unique limit u(t) in L _.
The function u(t) has uniformly bounded total variation and gen-

erates a Lipschitz continuous semigroup u(t) = S;_su(s),

Ju(t) —u(s)]z1 < L(|t — s+ [lu(r) — ﬂ(f)l\Ll), t,s>7>0. (6)
Moreover,
|u(t) — (uo + uo )|l 1 < Lt. (7)

T his semigroup is defined on a domain D containing all the func-
tion with sufficiently small total variation, and can be uniquely
identified by a relaxation limiting Riemann Solver, i.e. the unique
Riemann solver compatible with (3).
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Remarks.
ougt & L1, so that the variable v, = —u; is not well defined (even

if A(u) = DF(u)).
However, set

a(t,z) = u(t,z) + ee V' ug 4 (x),
which satisfies

?Lt —|— A(U)ﬂx = E(ﬂx;c - att)j —|— fe_t/e(A(u)uo,tm - EuO,tm:E)j .
Ty exponential decgy of initial data

The initial data for w are (ug + eug ¢, 0):

in BV estimates it is important not u; € L1 but w;, € L.
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e Green kernel for relaxation. [Zeng '99, Hanouzet-Natalini-

SB '04]

Consider the 2 x 2 system
Ut + v = O
v+ ur = Au—wv

Then for the Green kernel I'(t,x) = [ F11 T ]
21 2o

o— (@2=At)2/(4(1-X2)(1+1))
2/(1 = A\2)(1+1¢)

M11(t,2) = + exp.dec., h.o. terms,

g e—(@?=At)?/(4(1-22)(1+t))
Or  2./(1—=22)(1+1)

M21(t,x) = + exp.dec., h.o. terms,
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The kernels 15, o> show that only v, influences u:

8 [ e—(@2=2t)2/(4(1-2?)(1+1))
M1o(t,x) = + exp.dec, h.o. terms/|,
Ox 2/(1 = A2)(1 4 1)
8 [ 8 e—@*=2)2/(4(1-22)(1+1))
(oo (t,x) = +"," | + exp.dec.
Ox \ 0z 2,/(1 —A2)(1 +1t)

This result is important when studying decay to an equilibrium
state (u,v) = (0, F(0) = 0), because by Duhamel formula

u(t) \ u(0) ¢ 0
( o(1) ) = m*( v(0) >+/o fE =) ( Fu(s)) — AO)u(s) >st

~Ga(t—5)*u(s)2
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e The dependence w.r.t. ug + eugs Can be easily seen with the
example

utr = e(ugy — ust).
with initial data «(0) = 0, u:(0) = ¢ 1.
The solution is 1 — e~ /€, which converges to u(t) =1, t > 0.
The hyperbolic limit e — 0 has the "initial data”

Hm w(t) =1 =I1imu EUt (-
Jim (t) lim 0 + €u o
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BV estimates in the conservative case

We assume A(u) = DF(u), e =1 and ug; € L.
Differentiating w.r.t. x the BGK scheme (2)

fr—fr = Ly +—I_%‘(“)f+ e
R A e ’
Differentiating (2) w.r.t. t we obtain
— - I+A(u) — I-A(u) +
9 — 9z = ——>5 9 T —59 _
{ i + _ I—|—A2(u) _ I—A%u) + gi—Fti-
g9y +9z = — 5 9 ——5 g
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BV estimates in the conservative case

We assume A(u) = DF(u), e =1 and ug; € L.
Differentiating w.r.t. x the BGK scheme (2)

{ v —fz = —%(u)f_'Fi(“)f‘F = gt
AR S OV oY T
Differentiating (2) w.r.t. t we obtain
{gt—gx = A — y 124 o TR
gt +gf = AW %%“)ffr ST
Our aim:

(8)

(9)

1FEO 1, 19501 <60 =  f5(@1),97 (1) € L*(R).
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Center manifold of travelling profiles

We study the ODE

which can be written as the first order system

U — yo
(1-02)pz = (A(u) —ol)p (10)
O — 0

Close to any equilibrium (0,0, X;(0)), one can find a center man-
ifold of travelling profiles:

~

p = vifi(u, v, 0), A = (7, A(w)7y), |7(w)] = 1. (11)

11
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We can parameterize by the the kinetic component f;:
w=f —frT=—ous=f +fT
1 _ 1
= fm= T
l—0o 140

T he center manifold for the kinetic components f—, f+ IS

Uy

= Q- aintunn= 7 (0 0)= 5 )
(12)

,a> = fi 7 (u £, 0)
(13)

(1+ o)y,
l1+o

fT=QQ+0)F (u

12
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Identification of a travelling profile: u(z), o and f; (z),

ui |
| x
Uy
| X
f
— (1-0 )y, .
X X
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Identification of a travelling profile: w(z), o and fz-'"(:E),

ui |
i X
Uy
| X
= .f (1+ o)u,
(-0 )y .
: .
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!
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{f— . .
g Zigz-_’?{(u, fi_a i
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!
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ql"“ql

{ F- . T9) - _ g (_@
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We decompose (f~,g~) and (fT,gT) separately:

|
]
~.
&
S
!
IS
=

T
g Zzgz_l;:z—(ua fi_a

where 6; is the cutoff function N g

Similarly for (f7,g7):

i
gt

~ O-.
Zzgz_l_rz_l_(uw f@'_l_ao-z'—I_) ’

> fz'_l_r':i—l_(uﬂ fz'—I_’O-i—I_) + = 0, ( g,;l_) , (15)
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To find travelling profiles, we look separately to the ¢, x deriva-
tives of F—, FT, and try to fit n travelling profiles into F~ and
n into FT.

A F—

P(xo t)

e
o

X
We obtain thus 2n travelling waves: n for F~ and n for FT.

19



Equation for the components f;—L, g;—L are of the form:

20



Equation for the components f;—L, g;—L are of the form:

([ B 1427 2T B

) Jip = Jia =~y + ERIR TG (16)
1—|—>\_ B +

\fj—;_I'fj_,tt = > f; — ]f++< ()
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Equation for the components f;—L, gt

2\

\

y

\

f Jtt - ]Tw

1+ 555

9it — Yix

Y ?

+ 4t
git—l_gi,a;

Y

-~ are of the form:

1—|—>\_ 3T B
_ j f _|_ .7 f,_l_—|—gfj(t,a3) (16)
SE R i
> fj f ‘|‘§ (t 33)
- S+
1—|—2)\ gz_ + 1 2)\ gz (t :13) (17)
- +
“?512%+ﬁu@
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Equation for the components f;—L, g;—L are of the form:

([ B 1437 Xt B
fip= e = ——21f + SLf 4 ()
\ ’ ’ 1_|_>\_ _|_ (16)
\fj—,l;f_l_fj—;? — 2]fj_ ]f—l__l_g (tCU)
( ~
_ _ 14X 1-XF gy
9it — Yix — 59; T 2+ e it @) (17)
1+/\— o 1-X
g;@-l-g;t,; = 9, ——>5-9; —I-<+(t )

with gf g‘j: sources of total variation for FT, FjE and
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form

il lsgil < c;kuf |+ 1g; |><|f$|+|g;f|>+cz|g] £iF = £ g
J
f-l—
+OZ(|f + 112+ lg; -I-g+|2>x{f 2 1}
+ cz<||fj 12: +1IFTIZ015 = £y - £ < o3
J
+C YA 1+ 15120195 — g7 Idgy -9 < 03
J

(18)
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After some computations, one obtains the source terms of the
form

shil sl < € S Af 1+ gy |><|f$|+|g;f|>+cz|g] £iF = £ g
j7k

f-l-
—|—OZ(|fj—+fj*|2—|— Igj-l-g;r|2>x{f = 1}
J

+C A I+ I IZ01; = £ sy - £ < 03
J
+C YA 1+ 15120195 — g7 Idgy -9 < 03
j (18)

Prove that the source terms are quadratic w.r.t. || f¥| 1, |lg%] 1.
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Different types of source terms:
e interaction of different families:

ST+ 19y DUAFKTT+ g D
7=k
e interaction of the same family:
C> gy £ = £ 97
J
e energy type terms:

S Uf5 + 5P+ lg; 4+ g Pods g 21
J

o L1 decay terms:

21— sy - £ <oy + >_lgj — g Ix{g; -9 <o}
J J
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v=F +F", | Fu)<1l-c
{F;FFQ;F = 7 _ pt 7wl
(19)
Let Ff = f+, I = ¢gF, so that (same for g¥)

fi —fe = _—1_£)\f_+1%>\f+ /

o1 A(u) = F'(u). (20)
{ S+ = R AT

Construct a functional which bounds

/o+oo /R f(t2)g T (¢, 2) — g~ (¢, 2) fT(t,2)|dadt.
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= F
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We can rewrite the integrand as

- gt Foo BT
ot gt =t (L9 L9\ gt [ t
frgt =g fr =7 (f—+f+> by Iy ( Fa:—I_FQE'_),

— strengths of waves x difference in speed.
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We can rewrite the integrand as

- gt Foo BT
Tt gt =t (9 L9\t (Pt
frgt =g fr =7 (f—+f+> by Iy ( Fg;_l_Fj)’

— strengths of waves x difference in speed.

Remark. This is not a Glimm functional, it is the interaction
term.
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We can rewrite the integrand as

- gt Foo BT
Tt gt =t (9 L9\t (Pt
frgt =g fr =7 (f—+f+> by Iy ( Fg;_l_Fj)’

— strengths of waves x difference in speed.

Remark. This is not a Glimm functional, it is the interaction
term.

Since it holds g~ 4+ ¢T = f~ — fT, the condition g~ /f~ = ¢T/fT
implies that the solution is a travelling profile, replacing o, = O.
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We can rewrite the integrand as

- gt Foo BT
Tt gt =t (9 L9\t (Pt
frgt =g fr =7 (f—+f+> by Iy ( Fg;_l_Fj)’

— strengths of waves x difference in speed.

Remark. This is not a Glimm functional, it is the interaction
term.

Since it holds g~ 4+ ¢T = f~ — fT, the condition g~ /f~ = ¢T/fT
implies that the solution is a travelling profile, replacing o, = O.

For simplicity we assume in the following A = 0.
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Consider the system (20), and construct the scalar variables

P__(taajay> — f_(t,w)g_(t,y) o f_(tay)g_(tvx)
P_+(t,33,y> — f—l_(t?x)g_(t?y) o f_(tay)g—l_(tax)
P+_(t,33,y> — f_(t7$>g+(t7y) o f_l_(t?y)g_(t)x)
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Consider the system (20), and construct the scalar variables

P__(taajay> — f_(t,w)g_(t,y) o f_(tay)g_(tvx)
P_+(t,33,y> — f—l_(t?x)g_(t?y) o f_(tay)g—l_(tax)
P+_(t,33,y> — f_(t7$>g+(t7y) o f_l_(t?y)g_(t)x)

which satisfy the system

[ P74 div((—1,-1)P—) = PTHPTT . p—
Pt 4 div((-1,1)P~F) = E—EPTT_ p—+ (21)
Pr- 4 div((1,-1)pt—) = EEPTT_ pi-

Pt 4div(@,1)ptt) = ZEEPTT . ptt

for x > y and the boundary conditions

P_+(t,a:,:13) + P+_(t,zc,:1:) =0, P++(t,:1:,a:) =P " (t,x,x) = 0.
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We may read the boundary conditions as follows: a particle p—t
hits the boundary and bounce back as PT— but with opposite
sign.
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X=y

p—+

N
o N
N

-

X

We may read the boundary conditions as follows: a particle p—t
hits the boundary and bounce back as PT— but with opposite
sign.

We are interested in an estimate of the flux of P—1 through the
boundary {z = y}, which is given by

+o00 +oo
P—+(t x, dﬁ=/3 / —gt — g~ T |dzdt.
L LI oldedt = [ [ g — g7 fTde

26



Flux through the boundary
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Flux through the boundary

A very simple situation is the 2 x 2 system
_|_ —
fe =1t = ! Ef
— T+ XL Z O,
{ ft+ ‘|'ff5|_ — %
with boundary condition fT(z =0)+ f—(z = 0) = 0.
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Flux through the boundary

A very simple situation is the 2 x 2 system
_|_ _
fe =1t = ! Ef
— T+ T Z O,
{ ft+ ‘|'ff5|_ — %
with boundary condition fT(z =0)+ f—(z = 0) = 0.
We want to estimate

[T 1oyl (22)

0
i.e. the total amount of particles which hit the boundary and

bounce back with the opposite sign.
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X X

We can rewrite the integral (22) as

particles with speed -1 — particles with speed 1.
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Y

o

X X

We can rewrite the integral (22) as

particles with speed -1 — particles with speed 1.

After some time we expect that the solution has almost forgotten
the initial data so that

particles with speed -1 ~ particles with speed 1.
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We consider the solution (f—, fT) with initial data (0,4d(z)) as

F@a) N (F0e) (e (A0 w)
Y, x) Fr0(t, ) FHLi, ) f2(tz) )
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We consider the solution (f—, fT) with initial data (0,4d(z)) as

F@a) N (F0e) (e (A0 w)
Y, x) Fr0(t, ) FHLi, ) FH2(t, z)

where

~

_¢—,0
/ (0,5(x)),

{ f70 = 20
_f-l—,O

04 g0
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We consider the solution (f—, fT) with initial data (0,4d(z)) as

F@a) N (F0e) (e (A0 w)
fr(t,x) FrO0(t, x) fl(t, x) f2(t,z) )
where

_¢—,0
/ (0,5(x)),

{ f70 = 20
_f-l—,O

04 g0

—,1 -1 _ =040 _
fr gt = s g
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We consider the solution (f—, fT) with initial data (0,4d(z)) as

F@a) N (F0e) (e (A0 w)
Y, x) Fr0(t, ) FHLi, ) f2(tz) )

where

ft—7o_fw_7o — _f_’o (O 5($>)
-1 —1 04 ¢+0 _
ook = T 5T oo
gt bt = L0 g

(0,0).

{ ft —f:c 2 f—,1_|2_f+,1 n f+,25f—,2
—15 41 —2 42
Pt = L L
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Explicitly

F0(t, ) =0,

\j

F0t,x) = e to(x — 1),

\j
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Explicitly

\j

%) =0,  fTOLa) =eto(x - 1),
—t
Fol(tz) = %x{o <z <t}

¢
FHAta) = ~ X0 < e <)+ Letole — ).

\j
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The flux of f50, f1 at = 0 is 1 4 1/2, the source term for
f%2 has total mass of 1/2.
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The flux of f50, f1 at = 0 is 1 4 1/2, the source term for
f%2 has total mass of 1/2.

We thus proved that after 1 4+ 1/2 boundary flux, the L1 norm
has become 1/2 of the initial L1 norm.
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has become 1/2 of the initial L1 norm.
We thus can estimate the flux as
flux of fF0 4 &1 141/2 2
loss of L1 norm 1—-1/2
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The flux of f50, f1 at = 0 is 1 4 1/2, the source term for
f%2 has total mass of 1/2.

We thus proved that after 1 4+ 1/2 boundary flux, the L1 norm
has become 1/2 of the initial L1 norm.

We thus can estimate the flux as
flux of fF0 4 &1 141/2 2
loss of L norm  1-1/2

We conclude that

/Ooo fm @O <3 E=0)pn+ I TE=0)1).  (23)
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The flux of f50, f1 at = 0 is 1 4 1/2, the source term for
f%2 has total mass of 1/2.

We thus proved that after 1 4+ 1/2 boundary flux, the L1 norm
has become 1/2 of the initial L1 norm.

We thus can estimate the flux as
flux of fF0 4 &1 141/2 2
loss of L1 norm 1—-1/2
We conclude that

/Ooo fm @O <3 E=0)pn+ I TE=0)1).  (23)

Similarly we can estimate

+o0
Jo o Je Mot g lande <3 o 1P = O)lL1 (o>
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