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Systems of Conservation Laws

ut + f(u)x = 0, u ∈ Rn, f : Rn 7→ Rn. (1)

Strictly hyperbolic if the Jacobian matrix Df(u) has n distinct

eigenvalues

λ1(u) < λ2(u) < . . . < λn(u).

Existence of solutions with small BV data: Glimm [1965]

Stability in L1: Bressan [1995]

Technical difficulties:

• The solution develops discontinuities in finite time

• No monotonicity
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Existence and stability are proved by means of a decreasing func-

tional Q(u).

This functional is a potential: it measures all the possible future

interactions of non linear waves in (1).

The key estimate is that

TV (u) + CQ(u), C À 1, (2)

is decreasing in time for ”entropic” solutions of (1).

Remark. This functional is different from the entropy. It is

related to the growth of entropy dissipation.
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Plan of the talk:

• The linear part of the Glimm functional

• Glimm functional for scalar conservation laws

ut + f(u)x = 0, u ∈ R

• Glimm functional for vanishing viscosity and semidiscrete schemes

ut + f(u)x = εuxx, un
t +

1

ε
(f(un)− f(un−1)) = 0

• Glimm functional for kinetic models
{

ut + vx = 0
vt + ux = 1

ε(f(u)− v)
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1. The linear part of the Glimm functional

We say linear part because it decreases also for linear systems.

Consider for example the linear 2× 2 system
{

u1,t − u1,x = 0
u2,t + u2,x = 0

(3)

The component u1 of the solution u travels with speed −1, while

the component u2 travels with speed 1:

the oscillations of u1 belong to first family of waves of (3),

corresponding to the eigenvalue −1, while u2 is the second family,

corresponding to the eigenvalue 1.
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u 2

u 1

The two components u1, and u2 cross because have different

speeds −1, and 1. Denote

P (t, x, y) = u1,x(t, y)u2,x(t, x), Pt + divx((1,−1)P ) = 0.
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It follows that

Q(u) =
∫ ∫

x<y
|u1,x(t, y)||u2,x(t, x)|dxdy = ‖P‖L1(x<y)

is decreasing and
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The extension of this linear part of the Glimm functional to

vanishing viscosity, semidiscrete schemes and relaxation can be

done by means of Fourier-Laplace transform, and some analytic

tools.

Remark. For a scalar conservation laws

ut + f(u)x = 0, u ∈ R,

this part does not exists, and if f(u) = λu, then there is no

decreasing functional (the solution translates).

We will thus look for the part of the Glimm functional related

to the nonlinearity of f .
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Define the functional (∧ is the external product in R2)

Q(γ) =
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2

n∑
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i<j
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Let γ′ be obtained from γ by replacing the two segments P`−1P`

and P`P`+1 by one single segment P`−1P`+1 (a cut). The area

of the triangle with vertices P`−1, P`, P`+1 satisfies

Area(P`−1P`P`+1) =
1

2
|v`+1 ∧ v`| ≤ Q(γ)−Q(γ′). (5)

15



Let γ′ be obtained from γ by replacing the two segments P`−1P`

and P`P`+1 by one single segment P`−1P`+1 (a cut). The area

of the triangle with vertices P`−1, P`, P`+1 satisfies

Area(P`−1P`P`+1) =
1

2
|v`+1 ∧ v`| ≤ Q(γ)−Q(γ′). (5)

More generally, for absolutely continuous curves,

Q(γ) =
1

2

∫ 1

0

∫ 1

x

∣∣∣γx(x) ∧ γx(y)
∣∣∣dydx, (6)

15



Let γ′ be obtained from γ by replacing the two segments P`−1P`

and P`P`+1 by one single segment P`−1P`+1 (a cut). The area

of the triangle with vertices P`−1, P`, P`+1 satisfies

Area(P`−1P`P`+1) =
1

2
|v`+1 ∧ v`| ≤ Q(γ)−Q(γ′). (5)

More generally, for absolutely continuous curves,

Q(γ) =
1

2

∫ 1

0

∫ 1

x

∣∣∣γx(x) ∧ γx(y)
∣∣∣dydx, (6)

(Area of the zonoid of the measure dµ(x) = dγ(x).)

15



Let γ′ be obtained from γ by replacing the two segments P`−1P`

and P`P`+1 by one single segment P`−1P`+1 (a cut). The area

of the triangle with vertices P`−1, P`, P`+1 satisfies

Area(P`−1P`P`+1) =
1

2
|v`+1 ∧ v`| ≤ Q(γ)−Q(γ′). (5)

More generally, for absolutely continuous curves,

Q(γ) =
1

2

∫ 1

0

∫ 1

x

∣∣∣γx(x) ∧ γx(y)
∣∣∣dydx, (6)

(Area of the zonoid of the measure dµ(x) = dγ(x).)

We say that γ moves in the direction of curvature if γ(t) is

obtained from γ(s) by a sequence of cuts, for all s < t, s, t ∈
[t1, t2].
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γ

γ

(s)

(t)

Let Area
(
γ; [t1, t2]

)
be the area swept by γ in [t1, t2].

Theorem Let t 7→ γ(t) ∈ F denote a curve in the plane, moving

in the direction of the curvature. Then, for every t1 < t2 one has

Area
(
γ; [t1, t2]

)
≤ Q

(
γ(t1)

)
−Q

(
γ(t2)

)
. (7)
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γ(u;x) =
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


(u(x), f(u(x)) u is continuous at x

concave envelope of f |[u+,u−] u has a jump in x, u− > u+

convex envelope of f |[u−,u+] u has a jump in x, u− < u+
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1.1. A curve moving in the direction of curvature for scalar

conservation laws

Given a map u : R 7→ R with bounded variation, define γ(u) as

γ(u;x) =





(u(x), f(u(x)) u is continuous at x

concave envelope of f |[u+,u−] u has a jump in x, u− > u+

convex envelope of f |[u−,u+] u has a jump in x, u− < u+

x

u f(u)

(u)γ

u

1

2

3

4
5

1 245 3
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Viscous approximations

We can construct the interaction functional also for the viscous

approximations

ut + f(u)x − uxx = 0. (8)

In fact, the curve in R2

γ(t, x)
.
=

(
u

f(u)− ux

)
(9)

satisfies the parabolic system

γt + λ(t, x)γx − γxx = 0, λ(t, x) = λ(u) = f ′(u). (10)

γ moves in the direction of curvature
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The functional

Q(u) =
1

2

∫ ∫

x<y

∣∣∣γx(x) ∧ γx(y)
∣∣∣dydx

=
1

2

∫ ∫

x<y

∣∣∣ux(t, x)ut(t, y)− ut(t, x)ux(t, y)
∣∣∣dxdy, (11)

is decreasing, and controls the interaction quantity (Area swept)
∫

R

∣∣∣γt(t, x) ∧ γx(t, x)
∣∣∣dx =

∫

R

∣∣∣uxutx − uxxut

∣∣∣dx. (12)
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The functional

Q(u) =
1
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∫ ∫

x<y

∣∣∣γx(x) ∧ γx(y)
∣∣∣dydx

=
1

2

∫ ∫

x<y

∣∣∣ux(t, x)ut(t, y)− ut(t, x)ux(t, y)
∣∣∣dxdy, (11)

is decreasing, and controls the interaction quantity (Area swept)
∫

R

∣∣∣γt(t, x) ∧ γx(t, x)
∣∣∣dx =

∫

R

∣∣∣uxutx − uxxut

∣∣∣dx. (12)

Theorem.
d

dt
Q +

∫

R

∣∣∣uxutx − uxxut

∣∣∣dx ≤ 0.
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Semidiscrete schemes

The simplest semidiscrete scheme (stable and diffusive for f ′ > 0)

is the upwind scheme,

ut(t, x) + f(u(t, x))− f(u(t, x− 1)) = 0. (13)

One can rewrite the scheme as

ut(t, x) +
f(u(t, x))− f(u(t, x− 1))

u(t, x)− u(t, x− 1)

(
u(t, x)− u(t, x− 1)

)
=

ut(t, x) + λ
(
u(t, x), u(t, x− 1)

)(
u(t, x)− u(t, x− 1)

)
= 0,

with λ > 0.
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Semidiscrete schemes

The simplest semidiscrete scheme (stable and diffusive for f ′ > 0)

is the upwind scheme,

ut(t, x) + f(u(t, x))− f(u(t, x− 1)) = 0. (13)

One can rewrite the scheme as

ut(t, x) +
f(u(t, x))− f(u(t, x− 1))

u(t, x)− u(t, x− 1)

(
u(t, x)− u(t, x− 1)

)
=

ut(t, x) + λ
(
u(t, x), u(t, x− 1)

)(
u(t, x)− u(t, x− 1)

)
= 0,

with λ > 0.
The curve γ solving

γt(t, x) + λ(t, x)
(
γ(t, x)− γ(t, x− 1)

)
= 0 (14)

moves in the direction of curvature for λ > 0.
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Similarly for the discrete scheme,

u(t + 1, x)− u(t, x) + f(u(t, x))− f(u(t, x− 1)) = 0,

and the curve γ solving (λ(t, x) = λ(u(x), u(x− 1)))

γt(t, x) = (1− λ(t, x))γ(t, x) + λ(t, x)γ(t, x− 1)
)

Remark. The construction of γ as a function of u is nontrivial

for the semidiscrete scheme, and open for the discrete.
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and construct the variable

P (t, x, y)
.
= ut(t, x)ux(t, y)− ut(t, y)ux(t, x). (15)

Pt + div
((

f ′(u(t, x)), f ′(u(t, y))
)
P

)
= ∆P, x > y, P (t, x, x) = 0.
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Glimm functional and flux through the boundary

Consider again the parabolic equation

ut + f(u)x − uxx = 0,

and construct the variable

P (t, x, y)
.
= ut(t, x)ux(t, y)− ut(t, y)ux(t, x). (15)

Pt + div
((

f ′(u(t, x)), f ′(u(t, y))
)
P

)
= ∆P, x > y, P (t, x, x) = 0.

The interaction functional Q(u) can be now interpreted as the

L1 norm of P in {x ≥ y},

Q(P ) =
∫ ∫

x≥y
|P (t, x, y)|dxdy, (16)
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Its derivative controls the flux of P along the boundary {x = y},
d

dt
Q(P ) ≤ −

∫

x=y

∣∣∣∣∇P · (1,−1)
∣∣∣∣dx = −2

∫

R

∣∣∣utxux − utuxx

∣∣∣dx. (17)
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Kinetic models

We consider two classes:

BGK models: the simplest are

Fα
t + αFα

x =
1

ε
(Mα(u)− Fα), u =

∑
α

Fα. (18)

For stability and compatibility,
∑
α

Mα(u) = u, 0 < DMα(u) < I.

At equilibrium

fα = Mα(u), ut +

(∑
α

Mα(u)

)
= 0.
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Broadwell model:




F−t − F−x = 1
ε((F

0)2 − F−F+)

F0
t = 1

ε(F
−F+ − (F0)2)

F+
t − F+

x = 1
ε((F

0)2 − F−F+)
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Broadwell model:




F−t − F−x = 1
ε((F

0)2 − F−F+)

F0
t = 1

ε(F
−F+ − (F0)2)

F+
t − F+

x = 1
ε((F

0)2 − F−F+)

Define

u1 = F− + F0 + F+, u2 = F+ − F−, v = F− + F+





u1
t + u2

x = 0
u2

t + vx = 0
vt + u2

x = 1
ε((u

1)2 + (u2)2 − 2u1v)
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Broadwell model:




F−t − F−x = 1
ε((F

0)2 − F−F+)

F0
t = 1

ε(F
−F+ − (F0)2)

F+
t − F+

x = 1
ε((F

0)2 − F−F+)

Define

u1 = F− + F0 + F+, u2 = F+ − F−, v = F− + F+





u1
t + u2

x = 0
u2

t + vx = 0
vt + u2

x = 1
ε((u

1)2 + (u2)2 − 2u1v)

then its relaxation limit is




u1
t + u2

x = 0

u2
t +

(
u1

2 + (u2)2

2u1

)
x

= 0

38



t

x

t

x

39



t

x

t

x

40



t

x

t

x

41



t

x

t

x

42



t

x

t

x

43



t

x

t

x

For BGK the probability of changing speed depends only on the

state u, while for Broadwell depends on the density of the parti-

cles with different speeds.
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An estimate for kinetic models
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An estimate for kinetic models

Consider the simplest BGK model, i.e. linear with only two

speeds,
{

F−t − F−x = −1
2F− + 1

2F+

F+
t + F+

x = 1
2F− − 1

2F+ (19)
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Consider the simplest BGK model, i.e. linear with only two

speeds,
{

F−t − F−x = −1
2F− + 1

2F+

F+
t + F+

x = 1
2F− − 1

2F+ (19)

The Dirichlet boundary conditions are given by

F−(t,0) + F+(t,0) = 0.
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An estimate for kinetic models

Consider the simplest BGK model, i.e. linear with only two

speeds,
{

F−t − F−x = −1
2F− + 1

2F+

F+
t + F+

x = 1
2F− − 1

2F+ (19)

The Dirichlet boundary conditions are given by

F−(t,0) + F+(t,0) = 0.

One can explain the above boundary condition by saying the

when a particle hits the boundary {x = 0} it changes sign.
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Due to diffusion, it is possible to verify that after some time, in
each (t, x) the number of particle which have bounced at x = 0
an even number of times is very close to the number of particles
which have bounced an odd number, more precisely

∫ +∞
0

|F+(t,0)|dt ≤ 3
∫

R

(
|F−(0, x)|+ |F+(0, x)|

)
dx. (20)
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Explicit computations

We consider the slution as the sum of families of generations of

particles,

(F−, F+) =
∞∑

i=0

(F−,i, F+,i),
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Explicit computations

We consider the slution as the sum of families of generations of

particles,

(F−, F+) =
∞∑

i=0

(F−,i, F+,i),





F
−,i+1
t − F

−,i+1
x = F−,i+F+,i

2 − F−,i+1

F
+,i+1
t + F

+,i+1
x = F−,i+F+,i

2 − F+,i+1
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Explicit computations

We consider the slution as the sum of families of generations of

particles,

(F−, F+) =
∞∑

i=0

(F−,i, F+,i),





F
−,i+1
t − F

−,i+1
x = F−,i+F+,i

2 − F−,i+1

F
+,i+1
t + F

+,i+1
x = F−,i+F+,i

2 − F+,i+1

Each generation decays at a constant rate, and two particles of

the next generation are created with opposite speeds.
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1
2 of the initial number of particles annihilates.
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−t−e  /2
−tte  /2

−t

x x

t t

e  /2

1
2 of the initial number of particles annihilates.

The total amount of crossing is bounded by

crossing of gen. 1,2

mass disappearing
=

1 + 1/2

1/2
= 3.
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Estimate for BGK models

Consider the linearized BGK scheme

Fα
t + αFα

x = cα

(∑

β

Fβ

)
− Fα, cα > 0,

∑
α

cα = 1. (21)
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Estimate for BGK models

Consider the linearized BGK scheme

Fα
t + αFα

x = cα

(∑

β

Fβ

)
− Fα, cα > 0,

∑
α

cα = 1. (21)

Define

gα =
∂Fα

∂t
, fα =

∂Fα

∂x
,
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Estimate for BGK models

Consider the linearized BGK scheme

Fα
t + αFα

x = cα

(∑

β

Fβ

)
− Fα, cα > 0,

∑
α

cα = 1. (21)

Define

gα =
∂Fα

∂t
, fα =

∂Fα

∂x
,

and introduce the functions

Pαβ(t, x, y) = fα(t, x)gβ(t, y)− fβ(t, y)gα(t, x). (22)
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A simple computation shows that

P
αβ
t + (α, β) · ∇Pαβ =

∑
γ

(
cβPαγ + cαP γβ

)
− 2Pαβ.
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A simple computation shows that

P
αβ
t + (α, β) · ∇Pαβ =

∑
γ

(
cβPαγ + cαP γβ

)
− 2Pαβ.

Because of the symmetry of (22) one has Pαβ(x, y) = −Pβα(y, x).
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A simple computation shows that

P
αβ
t + (α, β) · ∇Pαβ =

∑
γ

(
cβPαγ + cαP γβ

)
− 2Pαβ.

Because of the symmetry of (22) one has Pαβ(x, y) = −Pβα(y, x).

x

y
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A simple computation shows that
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∑
γ
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A simple computation shows that

P
αβ
t + (α, β) · ∇Pαβ =

∑
γ

(
cβPαγ + cαP γβ

)
− 2Pαβ.

Because of the symmetry of (22) one has Pαβ(x, y) = −Pβα(y, x).

x

y

56



A simple computation shows that

P
αβ
t + (α, β) · ∇Pαβ =

∑
γ

(
cβPαγ + cαP γβ

)
− 2Pαβ.

Because of the symmetry of (22) one has Pαβ(x, y) = −Pβα(y, x).

x

y
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The Glimm Functional is

Q(t) =
∑

αβ

‖Pαβ(t)‖L1(x>y)

=
∑

αβ

∫ ∫

R2

∣∣∣Fα
t (t, x)Fβ

x (t, x)− Fα
x (t, x)Fβ

t (t, x)
∣∣∣dxdt, (23)
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The Glimm Functional is

Q(t) =
∑

αβ

‖Pαβ(t)‖L1(x>y)

=
∑

αβ

∫ ∫

R2

∣∣∣Fα
t (t, x)Fβ

x (t, x)− Fα
x (t, x)Fβ

t (t, x)
∣∣∣dxdt, (23)

and the flux through the boundary {x = y} is

I =
∑

αβ

∫ +∞
0

∥∥∥(1,−1) · (α, β)Pαβ(t)
∥∥∥
L1(x=y)

=
∑

αβ

|α− β|
∫ +∞
0

∫

R

∣∣∣Fα
t (t, x)Fβ

x (t, x)− Fα
x (t, x)Fβ

t (t, x)
∣∣∣dxdt.
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The solution to the BGK scheme can be written as

Pαβ(t, x, y) =
+∞∑

n=0

Pαβ,n(t, x, y),
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The solution to the BGK scheme can be written as

Pαβ(t, x, y) =
+∞∑

n=0

Pαβ,n(t, x, y),

where each function Pαβ,n satisfies

P
αβ,n
t + (α, β) · ∇Pαβ,n =

1

2

∑
γ

(
cβPαγ,n−1 + cαP γβ,n−1

)
− Pαβ,n.
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The solution to the BGK scheme can be written as

Pαβ(t, x, y) =
+∞∑

n=0

Pαβ,n(t, x, y),

where each function Pαβ,n satisfies

P
αβ,n
t + (α, β) · ∇Pαβ,n =

1

2

∑
γ

(
cβPαγ,n−1 + cαP γβ,n−1

)
− Pαβ,n.

We will say that Pαβ,n is the n-th generation of particle.
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The cancellation is of the order

σ−8 =
(1
2

∑

αβ

(α− β)2cαcβ
)−4

.
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)−4
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The quantity σ is the diffusion of the solutions Fα:
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The cancellation is of the order

σ−8 =
(1
2

∑

αβ

(α− β)2cαcβ
)−4

.

The quantity σ is the diffusion of the solutions Fα:

as t →∞, u =
∑

α Fα behaves like

ut +

(∑
α

αcα

)
ux −

(
1

2

∑

αβ

(α− β)2cαcβ

)
uxx =

ut + λ̄ux − σ2uxx = 0.
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Decomposition in travelling profiles
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Decomposition in travelling profiles

Writing Q as

Q(t) =
∑

αβ

∫ ∫

R2

∣∣∣Fα
x (t, x)Fβ

x (t, x)
∣∣∣
∣∣∣∣∣−

F
β
t (t, x)

F
β
x (t, x)

−
(
−Fα

t (t, y)

Fα
x (t, y)

)∣∣∣∣∣dxdt.
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F
β
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F
β
x (t, x)

−
(
−Fα
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0
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R

∣∣∣Fα
x (t, x)Fβ

x (t, x)
∣∣∣
∣∣∣∣∣−

F
β
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F
β
x (t, x)
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(
−Fα
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Fα
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)∣∣∣∣∣dxdt.
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Decomposition in travelling profiles

Writing Q as

Q(t) =
∑

αβ

∫ ∫

R2

∣∣∣Fα
x (t, x)Fβ

x (t, x)
∣∣∣
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F
β
t (t, x)

F
β
x (t, x)

−
(
−Fα

t (t, y)

Fα
x (t, y)

)∣∣∣∣∣dxdt.

and the flux as

I =
∑

αβ

|α−β|
∫ +∞
0

∫

R

∣∣∣Fα
x (t, x)Fβ

x (t, x)
∣∣∣
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F
β
t (t, x)

F
β
x (t, x)

−
(
−Fα

t (t, x)

Fα
x (t, x)

)∣∣∣∣∣dxdt.

and noticing that σα = −Fα
t

Fα
x

is the level set speed,
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Decomposition in travelling profiles

Writing Q as

Q(t) =
∑

αβ

∫ ∫

R2

∣∣∣Fα
x (t, x)Fβ

x (t, x)
∣∣∣
∣∣∣∣∣−

F
β
t (t, x)

F
β
x (t, x)

−
(
−Fα

t (t, y)

Fα
x (t, y)

)∣∣∣∣∣dxdt.

and the flux as

I =
∑

αβ

|α−β|
∫ +∞
0

∫

R

∣∣∣Fα
x (t, x)Fβ

x (t, x)
∣∣∣
∣∣∣∣∣−

F
β
t (t, x)

F
β
x (t, x)

−
(
−Fα

t (t, x)

Fα
x (t, x)

)∣∣∣∣∣dxdt.

and noticing that σα = −Fα
t

Fα
x

is the level set speed,

we obtain an interpretation in terms of wave interactions of the

solution Fα.
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σα σβ|   −   | |F  ||F  ||      −     |α β α β
x x

σα σβ          |F  ||F  ||      −     |x y
α β

F

F
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β
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σα σβ|   −   | |F  ||F  ||      −     |α β α β
x x

σα σβ          |F  ||F  ||      −     |x y
α β

F

F

x

β

α

The interaction functional is the sum of the products of all waves

in Fα, Fβ multiplied by their speed.
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