S:defi

1. Definitions

An operator $\mathbf{M} : X \mapsto Y, X, Y$ Banach, is *compact* if $\mathbf{M}(B_X(0,1))$ is relatively compact, i.e. it has compact closure. We denote

E:kk (1.1)
$$\mathcal{K}(X,Y) = \left\{ \mathbf{M} \in \mathcal{L}(X,Y), \mathbf{M} \text{ compact} \right\}$$

the set of compact operators from X into Y Banach spaces.

P:closu Proposition 1.1. The set $\mathcal{K}(X,Y)$ is a closed subspace of $\mathcal{L}(x,y)$.

Proof. Clearly $\mathcal{K}(X, Y)$ is a linear subspace of $\mathcal{L}(X, Y)$. Let $\mathbf{M}_n \to \mathbf{M}$ in the operator norm, where \mathbf{M}_n is compact. Fixed $\epsilon > 0$, let n such that

$$\|\mathbf{M} - \mathbf{M}_n\|_{\mathcal{L}(X,Y)} \le \frac{\epsilon}{2}$$

Since $\mathbf{M}_n(B(0,1))$ is relatively compact, then it can be covered by a finite number of balls

$$B_Y(y_i, \epsilon/2)$$

of radius $\epsilon/2$. Then $\mathbf{M}(B_X(0,1))$ is covered by

 $\bigcup_i B_Y(y_i,\epsilon).$

As for degenerate maps, $\mathbf{M} \circ \mathbf{L}$ is compact if one is compact and the other continuous: thus $\mathcal{K}(X) = \mathcal{K}(X, X)$ is an ideal w.r.t. map composition.

We recall that a linear operator \mathbf{M} is *degenerate* if it has *finite rank*:

E:finite (1.2)

$$\dim(R_{\mathbf{M}}) < \infty.$$

Clearly such an operator is continuous if X is Banach, and thus it is compact. We thus have that

if \mathbf{M} is the limit of a sequence of finite rank operators \mathbf{M}_n , then it is compact.

In Hilbert spaces the converse is true:

L:hilbecomp Lemma 1.2. If Y is a Hilbert space, then every compact operator is the limit of a sequence of finite rank operators.

Proof. Consider a converging of $\overline{\mathbf{M}(B(0,1))}$ with balls of radius $\epsilon > 0$,

$$K = \bigcup_{i} B(y_i, \epsilon).$$

Let $S = \operatorname{span}\{y_i\}_i$, and consider the projector \mathbf{P}_S . This projection exists because Y is Hilbert.

Define the finite rank operator

$$\mathbf{M}_{\epsilon} = \mathbf{P}_{S} \circ \mathbf{M}.$$

By construction, if $x \in B_X(0,1)$, then there is y_i such that

$$\|\mathbf{M}x - y_i\| < \epsilon,$$

so that, since the operator norm of a projection in Hilbert spaces is 1 and $\mathbf{P}_S y_i = y_i$, we have

$$\|(\mathbf{P}_S \circ \mathbf{M})x - y_i\| < \epsilon$$

It follows that

$$\left\|\mathbf{M}x - \mathbf{M}_{\epsilon}x\right\| = \left\|\mathbf{M}x - (\mathbf{P}_{S} \circ \mathbf{M})x\right\| < 2\epsilon,$$

2. TRANSPOSE OF A LINEAR OPERATOR

Let X, Y be Banach spaces, with duals X^* , Y^* , respectively. Let $\mathbf{M}: X \mapsto Y$ be a bounded linear map. Define the transpose $\mathbf{M}^*: Y^* \mapsto X^*$ by

(2.1)E:tranp

S:adjoint

 $(\mathbf{M}^*\xi)x = \xi(\mathbf{M}x).$

Because of the estimate

 $|\xi(\mathbf{M}x)| \le \|\xi\|_{Y^*} \|\mathbf{M}\|_{\mathcal{L}(X,Y)} \|x\|,$

the right hand side is a linear functional over X, which we denote by $\mathbf{M}^* \xi$. Thus $\mathbf{M}^* : Y^* \mapsto X^*$ is well defined. It is clearly linear and by the above estimate

$$\|\mathbf{M}^*\|_{\mathcal{L}(Y^*,X^*)} \le \|\mathbf{M}\|_{\mathcal{L}(X,Y)}.$$

P:adjprop **Proposition 2.1.** If $\mathbf{M} \in \mathcal{L}(X, Y)$, then

$$\|\mathbf{M}^*\|_{\mathcal{L}(Y^*,X^*)} = \|\mathbf{M}\|_{\mathcal{L}(X,Y)}.$$

Moreover,

(2.2)

(1)
$$N_{\mathbf{M}^*} = R_{\mathbf{M}}^{\perp};$$

(2)
$$N_{\mathbf{M}} = R_{\mathbf{M}^*}^{\perp};$$

(3)
$$(\mathbf{M} + \mathbf{N})^* = \mathbf{M}^* + \mathbf{N}^*$$

Proof. The equality (2.2) is an application of Hahn Banach theorem in the space Y. The other relations follow easily from (2.1).

We now prove that if \mathbf{M} is compact, then also its transpose is compact.

Theorem 2.2 (Schauder). The operator $\mathbf{M} \in \mathcal{K}(X, Y)$ if and only if $\mathbf{M}^* \in \mathcal{K}(Y^*, X^*)$.

Proof. Let ξ_n be a sequence in $B_{Y^*}(0,1)$, and $K = \overline{\mathbf{M}(B_X(0,1))}$. Consider the functions

$$\phi_n(y) = \xi_n y \in C(K), \quad \xi_n \in B_{Y^*}(0,1).$$

Clearly these functions are equicontinuous (they are Lipschitz continuous with modulus 1) and K is compact, so that there is a converging subsequence, which we denote again by ϕ_n .

Since ϕ_n is Cauchy, we have

$$\left|\xi_n(\mathbf{M}u) - \xi_m(\mathbf{M}u)\right| = \left|(\mathbf{M}^*\xi_n)u - (\mathbf{M}^*\xi_m)u\right| < \epsilon, \quad \forall u \in B_X(0,1), \ n, m \gg 1.$$

Hence $\mathbf{M}^* \xi_n$ is a Cauchy sequence in $\mathbf{M}^*(B_{Y^*}(0,1))$.

Conversely, if \mathbf{M}^* is compact, then \mathbf{M}^{**} is compact because of the first part of the proof. It is easy to see that if $\mathbf{J}_X : X \mapsto X^{**}, \, \mathbf{J}_Y : Y \mapsto Y^{**}$ are the canonical immersions, then

$$\mathbf{M}^{**}(\mathbf{J}_X x) = \mathbf{J}_Y(\mathbf{M} x)$$

Since $\mathbf{J}_X(B_X(0,1)) \subset B_{X^{**}}(0,1)$, then $\mathbf{M}^{**}(\mathbf{J}_X(B_X(0,1))) = \mathbf{J}_Y(\mathbf{M}(B_X(0,1)))$ is relatively compact in Y^{**} . Since the canonical immersion **J** is an isometry, then $\mathbf{M}(B_X(0,1))$ is relatively compact.

S:fredh

(3.1)

3. Fredholm's Alternative

This section is devoted to the proof of *Fredholm's alternative*:

If $\mathbf{M}: X \mapsto X$, X Banach, is compact, then

- either the equation $u \mathbf{M}u = v$ has a unique solution,
- or $u \mathbf{M}u = 0$ has n linearly independent solutions, and $u \mathbf{M}u = v$ has a solution if and only if v satisfies the linear conditions

$$v \in (R_{\mathbf{M}}^{\perp})^{\perp} = \left\{ \ell v = 0, \forall v \in R_{\mathbf{M}}^{\perp} \right\}$$

From **M** compact it follows that $R_{\mathbf{M}}^{\perp}$ is finite dimensional.

We prove in fact the following theorem:

Theorem 3.1. If $\mathbf{M}: X \mapsto X$, X Banach, is compact, then T:fredh

- (1) $N_{\mathbf{I}-\mathbf{M}}$ has finite dimension;
- (2) $R_{\mathbf{I}-\mathbf{M}}$ is closed and $R_{\mathbf{I}-\mathbf{M}} = N_{\mathbf{I}-\mathbf{M}^*}^{\perp}$;

T:comptrap

E:norm13

 $\mathbf{2}$

- (3) $N_{\mathbf{I}-\mathbf{M}} = 0$ is equivalent to $R_{\mathbf{I}-\mathbf{M}} = X$;
- (4) the dimension of N_{I-M} is equal to the dimension of N_{I-M^*} .

In particular, the index of the operator I - M, M compact, is 0:

$$\operatorname{ind}(\mathbf{I} - \mathbf{M}) = \dim N_{\mathbf{I} - \mathbf{M}} - \dim R_{\mathbf{I} - \mathbf{M}} = 0.$$

Proof. Point (1) follows from the observation that

$$N_{\mathbf{I}-\mathbf{M}} = \mathbf{M}(N_{\mathbf{I}-\mathbf{M}}),$$

and since **M** is compact, the space N_{I-M} is locally compact, hence finite dimensional.

Let $u_n - \mathbf{M}u_n = y_n \to y$. Since $N_{\mathbf{I}-\mathbf{M}}$ has finite dimension, there is $v_n \in N_{\mathbf{I}-\mathbf{M}}$ which minimize

$$||u_n - v_n|| = \inf_{v \in N_{\mathbf{I}-\mathbf{M}}} ||u_n - v||.$$

and $(u_n - v_n) - \mathbf{M}(u_n - v_n) = y_n$. By dividing the above equation by $||u_n - v_n||$, one sees that if $||u_n - v_n|| \to \infty$, then the sequence $w_n = (u_n - v_n)/||u_n - v_n||$ satisfies

$$w_n + \mathbf{M}w_n \to 0, \quad \|w_n\| = 1$$

Since **M** is compact, then we can extract a subsequence $\mathbf{M}w_n \to w$, so that $w + \mathbf{M}w = 0$, but ||w|| = 1, This is a contradiction, because $w \notin N_{\mathbf{I}-\mathbf{M}}$.

It follows that $||u_n - v_n||$ remains bounded. Thus up to subsequences we have that $u_n - v_n$ converges. This prove that R_{I-M} is closed.

Since for a closed subspace Y, the Hahn Banach theorem implies $(Y^{\perp})^{\perp} = Y$, then (2) follows. To prove (3), assume that $N_{\mathbf{I}-\mathbf{M}} = \{0\}$, and $R_{\mathbf{I}-\mathbf{M}} = X_1 \neq X$, then for $v \in R_{\mathbf{I}-\mathbf{M}}$

$$\mathbf{M}v = \mathbf{M}(\mathbf{I} - \mathbf{M})x = (\mathbf{I} - \mathbf{M})\mathbf{M}x \subset X_1, \quad X_1 \text{ closed.}$$

The operator $\mathbf{M} \in \mathcal{K}(X_1)$, so that we can consider again $X_2 = (\mathbf{I} - \mathbf{M})(X_1) = (\mathbf{I} - \mathbf{M})^2(X) \subsetneq X_1$, because $\mathbf{I} - \mathbf{M}$ is injective and $X_1 = (\mathbf{I} - \mathbf{M})(X)$.

Proceeding in this way we find a sequence of subspaces $X_n = (\mathbf{I} - \mathbf{M})^n(X)$, and thus we can find points $x_n \in X_{n-1}$ such that

$$||x_n - y|| \ge \frac{1}{2}, \quad y \in X_n.$$

We have for $n \leq m$

$$\mathbf{M}(x_n - x_m) = u_n - u_m + (\mathbf{I} - \mathbf{M})u_m - (\mathbf{I} - \mathbf{M})u_n = u_n - y_{nm}, \quad y_{nm} \in X_n$$

Hence $\|\mathbf{M}(x_n - x_m)\| \ge 1/2$, but this contradicts the assumption **M** compact.

Conversely, if $R_{\mathbf{I}-\mathbf{M}} = X$, then we have $N_{\mathbf{I}-\mathbf{M}^*} = \{0\}$, and thus using the first part $R_{\mathbf{I}-\mathbf{M}^*} = X^*$. Using again Proposition 2.1, we conclude $N_{\mathbf{I}-\mathbf{M}} = \{0\}$. This concludes (3).

Since $\mathbf{M} \in \mathcal{K}(X)$, then $\mathbf{M}^* \in \mathcal{K}(X^*)$, so that both kernels have finite dimension. Assume that $d = \dim N_{\mathbf{I}-\mathbf{M}} < d^* = \dim N_{\mathbf{I}-\mathbf{M}^*}$. Since $N_{\mathbf{I}-\mathbf{M}}$ is finite dimensional, then there is a continuous projector from X into $N_{\mathbf{I}-\mathbf{M}}$.

Using the fact that $R_{\mathbf{I}-\mathbf{M}}$ has finite codimension, there is a continuous projector on a linear complement E of $R_{\mathbf{I}-\mathbf{M}}$. By assumption, there is $\Lambda : N_{\mathbf{I}-\mathbf{M}} \mapsto E$ which is injective but not surjective. Define

$$\mathbf{S} = \mathbf{M} + \mathbf{\Lambda} \circ P_{N_{\mathbf{I}}-\mathbf{M}}.$$

Then $\mathbf{S} \in \mathcal{K}(X)$, because $\mathbf{\Lambda}$ has finite rank. Moreover $N_{\mathbf{I}-\mathbf{S}} = \{0\}$. From point (3) it follows that $R_{\mathbf{I}-\mathbf{S}} = X$, but this contradict the fact that \mathbf{S} is not surjective. We have thus proved that $d^* \leq d$.

Using the above result, it follows that for \mathbf{M}^*

$$\dim N_{\mathbf{I}-\mathbf{M}^{**}} \leq \dim N_{\mathbf{I}-\mathbf{M}^*} \leq \dim N_{\mathbf{I}-\mathbf{M}}.$$

Since $N_{\mathbf{I}-\mathbf{M}^{**}} \supset \mathbf{J}(N_{\mathbf{I}-\mathbf{M}})$, we have proved (4).

4. Spectral analysis

If $\mathbf{M} \in \mathcal{L}(X)$, then the resolvent set of \mathbf{M} is

$$\rho(\mathbf{M}) = \Big\{ \lambda \in \mathbb{C} : (\lambda \mathbf{I} - \mathbf{M})^{-1} \in \mathcal{L}(X) \Big\}.$$

The *spectrum* of \mathbf{M} is

(4.2) $\sigma(\mathbf{M}) = \mathbb{C} \setminus \rho(\mathbf{M}) = \begin{cases} \lambda \in \mathbb{C} : \begin{cases} \lambda \mathbf{I} - \mathbf{M} & \text{not injective} \\ \lambda \mathbf{I} - \mathbf{M} & \text{injective but not surjective} \\ \lambda \mathbf{I} - \mathbf{M} & \text{injective, surjective but with not continuous inverse} \end{cases}$

For bounded operators the last case cannot occur, because of the open mapping theorem.

The values λ such that the first case holds are the *eigenvalues* of **M**. The space $N_{\lambda \mathbf{I}-\mathbf{M}} \neq \{0\}$ is the eigenspace associated to λ , and its elements are the eigenvectors of **M**.

Proposition 4.1. If $\mathbf{M} \in \mathcal{L}(X)$, then

$$\sigma(\mathbf{M}) \subset \{ |\lambda| \le \|\mathbf{M}\|_{\mathcal{L}(X)} \}.$$

Proof. The proof follows from the fact that the series

$$\sum_{n=0}^{+\infty} \frac{1}{\lambda^{n+1}} \mathbf{M}^n$$

converges strongly and it is the inverse of $\lambda \mathbf{I} - \mathbf{M}$.

For compact operators the spectrum has a precise form.

Theorem 4.2. Let $\mathbf{M} \in \mathcal{K}(X)$, with X infinite dimensional Banach. Then

•
$$0 \in \sigma(\mathbf{M});$$

- $\lambda \in \sigma(\mathbf{M}) \setminus \{0\}$ is an eigenvalue;
- $\sigma(\mathbf{M}) \setminus \{0\}$ is either empty, or finite, or it is a sequence of eigenvalues converging to 0.

Proof. The first point follows because \mathbf{M}^{-1} cannot exists, otherwise $\mathbf{M}^{-1} \circ \mathbf{M}(X) = X$ is compact. To prove point (2), we just use the (3) implication of Theorem 3.1, which gives a contradiction if $N_{\lambda \mathbf{I}-\mathbf{M}} = \{0\}.$

To prove the last point, we consider a sequence $\lambda_n \in \sigma(\mathbf{M}) \setminus \{0\}$. converging to some λ . For all eigenvalues λ_n , let $e_n \in N_{\lambda_n \mathbf{I} - \mathbf{M}}$ with norm 1. It is easy to verify that $N_{\lambda_n \mathbf{I} - \mathbf{M}} \cap N_{\lambda_m \mathbf{I} - \mathbf{M}} = \{0\}$ if $n \neq m$, so that all e_n are different.

Define

$$E_n = \operatorname{span}\Big\{e_1, e_2, \dots, e_n\Big\},\,$$

and consider $u_n \in E_n$ such that $||u_n|| = 1$, $||u_n - y|| \ge 1/2$ for $y \in E_{n-1}$. We have for m < n

$$\left\|\frac{1}{\lambda_n}\mathbf{M}u_n - \frac{1}{\lambda_m}\mathbf{M}u_m\right\| = \left\|u_n - u_m + \frac{1}{\lambda_n}(\lambda u_n\mathbf{I} - \mathbf{M})u_n - \frac{1}{\lambda_m}(\lambda_m\mathbf{I} - \mathbf{M})u_n\right\| \ge \frac{1}{2}$$

since

$$\frac{1}{\lambda_n}(\lambda u_n \mathbf{I} - \mathbf{M})u_n \in E_{n-1}.$$

Since $\mathbf{M}u_n$ has a converging subsequence, then $\lambda_n \to 0$. This shows that the set $\sigma(\mathbf{M}) \cap \{|\lambda| \ge 1/n\}$ has at most a finite number of eigenvalues.

5. Spectral decomposition of compact self adjoint operators

We say that $\mathbf{M} \in \mathcal{L}(H)$, H Hilbert space is self adjoint if

$$\mathbf{j} \quad (5.1) \quad (\mathbf{M}x, y) = (x, \mathbf{M}y), \quad \forall x, y \in H.$$

Proposition 5.1. Let $\mathbf{M} \in \mathcal{L}(H)$ be self adjoint, and define

$$\underbrace{\texttt{E:minmax}}_{\|u\|=1}(\texttt{M}u,u), \quad M = \sup_{\|u\|=1}(\texttt{M}u,u), \quad M = \sup_{\|u\|=1}(\texttt{M}u,u)$$

Then $\sigma(\mathbf{M}) \subset [m, M], m, M \in \sigma(\mathbf{M}).$

E:solve

 \Box

E:selfad

S:sefladj1

E:contr

4

(4.1)

(4.3)

S:spect

E:resolv

E:spectr

Proof. If $\lambda \in \mathbb{C} \setminus \mathbb{R}$ or $\lambda > M$, then

$$(\lambda \mathbf{I} - \mathbf{M})u, u) = \lambda ||u||^2 - (\mathbf{M}u, u) \neq 0,$$

since $(\mathbf{M}u, u) \in \mathbb{R}$. Moreover, $(\lambda \mathbf{I} - \mathbf{M})(H)$ is a subspace of H, which is closed because from the above relation

$$(|\lambda - M| + \Im \lambda) ||u|| \le ||(\lambda \mathbf{I} - \mathbf{M})u||.$$

The same argument implies that $(\lambda \mathbf{I} - \mathbf{M})(H) = H$. This proves that $\sigma(\mathbf{M}) \subset (-\infty, M)$.

$$|(Mu - \mathbf{M}u, v)| \le |(Mu - \mathbf{M}u, u)|^{1/2} |(Mv - \mathbf{M}v, v)|^{1/2}$$

If u_n , $||u_n|| = 1$, is a maximizing sequence $(\mathbf{M}u, u) \to M$, it follows that $(M\mathbf{I} - \mathbf{M})u_n$ converges to 0. If now $M \in \rho(\mathbf{M})$, then

$$u_n = (M\mathbf{I} - \mathbf{M})^{-1}(M\mathbf{I} - \mathbf{M})u_n \to 0,$$

which contradicts $||u_n|| = 1$.

Replacing M with -M, we obtain the other part of (1).

In particular, if $\sigma(\mathbf{M}) = \{0\}$, then $(\mathbf{M}u, u) = 0$, and $\mathbf{M}u = 0$.

For $\lambda = M$, then we have as in the proof of Schwartz inequality that

T:deco Theorem 5.2. If $\mathbf{M} \in \mathcal{K}(H)$, H Hilbert, is self adjoint, then there exists an Hilbert base generated by eigenvector of \mathbf{M} .

Proof. The result follows if we can prove that

$$H = N_{\mathbf{M}} \cup \bigcup_{\lambda_n \neq 0} N_{\lambda_n \mathbf{I} - \mathbf{M}}.$$

In fact, the orthonormal base is just the union of the orthonormal bases of each eigenspace. Moreover, as in the finite dimensional space, one sees that the eigenvalue of \mathbf{M} are real, and the spaces $N_{\lambda_n \mathbf{I}-\mathbf{M}}$ are orthogonals each other.

To prove that the vector space Y generated by $N_{\mathbf{M}}$ and $\{N_{\lambda_n \mathbf{I}-\mathbf{M}}\}_n$ is dense in H, we first observe that Y is invariant for \mathbf{M} , so that $\mathbf{M}(Y^{\perp}) \subset Y^{\perp}$, because \mathbf{M} is self adjoint.

The operator $\mathbf{M}|_{Y^{\perp}}$ is self adjoint and compact, and by construction $\sigma(\mathbf{M}|_{Y^{\perp}}) = \{0\}$. It follows $\mathbf{M}|_{Y^{\perp}} = 0$ and $Y^{\perp} \subset N_{\mathbf{M}}$.

6. Exercises

- (1) Let $\mathbf{M}: X \mapsto Y$, X Banach, Y reflexive. Show that if $x_n \rightharpoonup x$, then $\mathbf{M}x_n \rightharpoonup \mathbf{M}x$.
- (2) Define the *adjoint* of $\mathbf{M} : H \mapsto H$, H Hilbert space, by

$$(x, \mathbf{M}^* y) = (\mathbf{M} x, y).$$

- Prove that Proposition 2.1 holds for the adjoint operator.
- (3) Prove that if $Y \subset X$, X Banach, is a subspace, then $\overline{Y} = (Y^{\perp})^{\perp}$.
- (4) On ℓ^{∞} , consider the linear operator

$$\mathbf{S}u(n) = u(n+1).$$

Compute the spectrum of **S** (consider the functions λ^n).

(5) Consider the Hilbert space ℓ^2 and a sequence of real numbers $x_n \to 0$. Define

$$\mathbf{M}u(n) = x_n u(n).$$

Show that T is compact and find its spectrum.

- (6) Find the eigenvalues and eigenvectors of the orthogonal projection \mathbf{P}_M on M subspace of H Hilbert. Is \mathbf{P}_M compact?
- (7) Fixed $g(t,s) \in C^1([0,1]^2,\mathbb{C})$, consider the linear operator

$$\mathbf{M}: C([0,1],\mathbb{C}) \mapsto C([0,1],\mathbb{C}), \quad \mathbf{M}u(t) = \int_0^1 g(t,s)u(s)ds.$$

Discuss its spectrum.

(8) Let H be a separable Hilbert space, $K \subset \mathbb{C}$ a compact set in \mathbb{C} , $\{\lambda_n\}_n$ a countable dense sequence in K.

S:exerc1

5

• Show that there is a unique bounded linear operator $\mathbf{M} \in \mathcal{L}(H)$ such that

$\mathbf{M}e_n = \lambda_n e_n.$

- Show that σ(**M** = K, but the eigenvalues of **M** are {λ_n}_n.
 Prove that for λ ∈ K \ {λ_n}_n, then R_{λ**I**-**M**} is dense in H.