
WEAK TOPOLOGIES

1. The weak topology of a topological vector space

Let X be a topological vector space over the field F , F = R or F = C. For definiteness we assume
F = C.

We recall that the dual space X∗ of X is

(1.1) X∗ =
{

` : X 7→ C, ` continuous
}

.

The function

(1.2) p`(x) = |`x|
with ` continuous is a continuous seminorm on X. If we assume that the family of seminorms

(1.3) P =
{

p` : ` ∈ X∗
}

is separating, then the topology generated by P makes X into a locally convex topological vector space.
We denote the topology generated by P by σ(X,X∗).

Remark 1.1. If X is locally convex, for example a Fréchet space, normed or Banach space, then P is
separating by the Hahn-Banach theorem.

Lemma 1.2. The weak topology σ(X, X∗) is the weakest topology such that each map

(1.4) ` : X 7→ C, ` ∈ X∗,

is continuous.
A sequence xn converges to x in σ(X, X∗) if and only if for all ` ∈ X∗

(1.5) lim
n→∞

`xn = `x.

A set E is bounded w.r.t. σ(X,X∗) if and only if `(E) is bounded in C.
If X is infinite dimensional, then each element of a local base B contains an infinite dimensional

subspace, hence σ(X, X∗) is not locally bounded.

The proof is left as an exercise.
Let τ be the original vector topology of X. Clearly σ(X, X∗) ⊂ τ . We thus say that
• the sequence xn converges strongly to x and we write

(1.6) xn → x if xn converges to x in the original topology τ .

• the sequence xn converges weakly to x and we write

(1.7) xn ⇀ x if xn converges to x in the topology σ(X, X∗).

Similarly we will speak about strong neighborhood, strongly closed, strongly bounded..., and weak neigh-
borhood, weakly closed, weakly bounded....

A simple consequence of the fact that σ(X,X∗) ⊂ τ is that

(1.8) xn → x =⇒ xn ⇀ x,

i.e. every strongly convergent sequence is weakly convergent.
Moreover, if xn ⇀ x, then the orbits

Γ(`) =
{
`xn

}
n∈N

are bounded. It follows from uniform boundedness principle that
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Proposition 1.3. If X is a normed space, so that X∗ is Banach, then

(1.9) xn ⇀ x =⇒ ‖xn‖ bounded.

Moreover

(1.10) ‖x‖ ≤ lim inf
n→∞

‖xn‖.

The same proof shows that if E is weakly bounded and X is a normed space, then E is strongly
bounded.

Proof. In fact, from Banach Steinhaus theorem we have that the sequence ‖xn‖ is uniformly bounded.
Moreover,

|`xn| ≤ ‖`‖X∗‖xn‖,
and since `xn → `x,

|`x| ≤ ‖`‖`∗ lim inf
n→∞

‖xn‖.
It follows (1.10) by Hahn Banach. ¤

For infinite dimensional normed spaces, the weak topology σ(X, X∗) is always weaker than the strong
topology generated by the norm.

Example 1.4. Let us prove that the weak closure of S(0, 1) = {‖x‖ = 1} is BX(0, 1) = {‖x‖ ≤ 1}. If V
is a weak neighborhood of 0, then

V =
{

x : |`ix| < ε, i = 1, . . . , n
}

, `i ∈ X∗.

Since X is infinite dimensional, then there is

0 6= y ∈
n⋂

i=1

N`i ,

so that

x + ty ∈ x + V ∀t ∈ C.

Since for some g(t) = ‖x + ty‖ is strongly continuous and

g(x) < 1, lim
t→∞

g(t) = +∞,

then there is t̄ such that

g(t̄) = 1 =⇒ x + t̄y ∈ S(0, 1).

Thus the weak closure of S(0, 1) contains BX(0, 1). By means of the Hahn Banach separation theorem,
if x /∈ BX(0, 1), then there is a linear functional ` separating x and BX(0, 1):

‖`‖X∗ = 1, <(`x) > 1.

The weakly open set {x : <(`x) > 1} is thus an open neighborhood of x with empty intersetion with
BX(0, 1). Thus the weak closure of S(0, 1) is contained in BX(0, 1). Hence the conclusion follows.

Similarly, one can show that BX(0, 1) = {‖x‖ < 1} has empty interior for σ(X, X∗). In particular it
is not open.

Despite these facts, there are sets whose weak closure is equivalent to strong closure. In some sense,
the next result is the formalization of the above example.

Theorem 1.5. If K ⊂ X is convex and X locally convex, then it is weakly closed if and only if is it
strongly closed.

In Example, in fact, 1.4 the weak closure of BX(0, 1) is again BX(0, 1).
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Proof. Since σ(X, X∗) ⊂ τ , then if K is weakly closed it is strongly closed.
Conversely, if K is strongly closed and convex, let x0 ∈ X \K. Then by the Hahn-Banach theorem

(for complex vector spaces) there is some ` ∈ X∗ such that

sup
x∈K

<(`x) ≤ γ1 < γ2 ≤ <(`x0).

Hence the neighborhood of x0

x0 + V = x0 +
{

x : |`x| ≤ <(`x0)− γ2

}

has empty intersection with K. ¤
In particular, in a topological vector space the closure of convex sets is convex. Hence we have

Corollary 1.6. If X is a metrizable locally convex topological vector space, and xn ⇀ x, then there exists
a sequence of convex combinations

yi =
∑

finite

αi,nxn, αi,n ≥ 0,
∑

n

αi,n = 1

which converges to x strongly.

Proof. Let H be the convex hull of {xn}n, and K its weak closure. Then we have that x ∈ K, and by
theorem 1.5 it follows that x is also in the strong closure of H. Since X is metrizable, this means that
there is some sequence yi converging to x. ¤

2. The weak* topology

On the dual space X∗, the family of seminorms

(2.1) P∗ =
{

px : x ∈ X
}

is separating by definition, hence generating a topology which makes X∗ a locally convex topological
vector space. We denote this topology by σ(X∗, X).

We have the “dual” result of Lemma 1.2:

Lemma 2.1. The weak topology σ(X∗, X) is the weakest topology such that each map

(2.2) x : X∗ 7→ C, x ∈ X,

is continuous.
A sequence `n converges to ` in σ(X∗, X) if and only if for all x ∈ X

(2.3) lim
n→∞

`nx = `x.

A set E ⊂ X∗ is bounded w.r.t. σ(X∗, X) if and only if{
`x, ` ∈ E

}

is bounded in C.
If X∗ is infinite dimensional, then each element of a local base B contains an infinite dimensional

subspace, hence σ(X∗, X) is not locally bounded.

A priori, one can look at the second dual Y of the locally convex topological vector space (X, σ(X∗, X)),
i.e.

(2.4) Y =
{

λ : X∗ 7→ C, ` continuous w.r.t. σ(X∗, X)
}

.

By construction, it follows that
X ⊂ Y,

i.e. X can be embedded into Y .
It turns out that X = Y , i.e. the dual of (X∗, σ(X∗, X)) can be identified with X.

Theorem 2.2. If λ : X∗ 7→ C is linear and continuous w.r.t. σ(X∗, X), then there exists x ∈ X such
that

(2.5) λ(`) = `x ∀` ∈ X∗.
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Proof. By definition of continuity w.r.t. σ(X∗, X), for all ε > 0 there are δ > 0 and x1, . . . , xn such that

λ
{

` : |`xi| ≤ δ, i = 1, . . . , n
}
⊂ (−ε, ε).

In particular, if ` is such that `xi = 0 for all i, then λ` = 0. This show that

Nλ ⊃
n⋂

i=1

Nxi
.

Consider the linear mapping T : X∗ 7→ Cn+1 defined by

T (`) =
(

λ` `x1 . . . `xn

)
.

By the assumption, T (X∗) is a subspace of Cn+1 and the point (1, 0, . . . , 0) is not in T (X∗). Then there
are α = (α1, . . . , αn+1) ∈ Cn+1 such that

α · T (X∗) =
{

α1λ` +
n+1∑

i=2

αi`xi−1, ` ∈ X∗
}

= 0 < <α1.

It follows that α1 6= 0 and

λ` =
n∑

i=1

αi+1

α1
`xi.

¤

If X is in particular a normed space, then we know that X∗ is a Banach space. Hence, if τ is the
vector topology of X∗ generated by the norm ‖ · ‖X∗ , σ(X∗, X) ⊂ τ . We thus say that

• the sequence `n converges strongly to ` and we write

(2.6) `n → ` if ‖`n − `‖X∗ → 0.

• the sequence `n converges weakly star to ` and we write

(2.7) `n ⇀∗ ` if `n converges to ` in the topology σ(X∗, X).

Similarly we will speak about strong neighborhood, strongly closed, strongly bounded... in (X∗, ‖ · ‖X∗),
and weak* neighborhood, weakly* closed, weakly* bounded in (X∗, σ(X∗, X))....

We observe also that we have the weak topology σ(X∗, X∗∗).
It follows from Uniform boundedness principle that

Proposition 2.3. If X is a Banach space, then

(2.8) `n ⇀∗ ` =⇒ ‖`n‖ bounded.

Moreover

(2.9) ‖`‖ ≤ lim inf
n→∞

‖`n‖.

Finally, if E ⊂ X∗ is bounded w.r.t. σ(X∗, X), then E is strongly bounded.

3. The Banach-Alaoglu theorem

Let V be a neighborhoof of 0 ∈ X. Define the polar of V as

(3.1) K =
{

` ∈ X∗ : |`x| ≤ 1 ∀x ∈ V
}

.

We have the following fundamental result:

Theorem 3.1 (Banach-Alaoglu). The polar K of any neighborhood V of 0 is compact in the weak*
topology σ(X∗, X).
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Proof. Since each V local neighborhood is absorbing, then there is a γ(x) ∈ C such that

x ∈ γ(x)V.

Hence it follows that
|`x| ≤ γ(x) x ∈ X, ` ∈ K.

Consider the topological space

(3.2) P = Πx∈X

{
α ∈ C : |α| ≤ γ(x)

}
,

with the product topology σ. By Tychonoff’s theorem (P, σ) is compact.
By construction, the elements of P are functions f : X 7→ C (not necessarily linear) such that

|f(x)| ≤ γ(x).

In particular, the set K is the subset of P made of the linear functions.
We first show that K is a closed subset of P w.r.t. the topology σ. This follows from the fact that if

f0 is in the σ closure K̄ of K, then for scalars α, β and point x, y ∈ X one has that
{
|f(αx + βy)− f0(αx + βy)| < ε, |f(x)− f0(x)| < ε, |f(y)− f0(y)| < ε

}
∩K 6= ∅.

Take thus ` in the intersection, so that
∣∣∣f0(αx + βy)− αf0(x)− βf0(y)

∣∣∣ =
∣∣∣∣
(
f0(αx + βy)− f(αx + βy)

)
+ α

(
f(x)− f0(x)

)
+

(
f(y)− f0(y)

)∣∣∣∣
< (1 + |α|+ |β|)ε.

Since ε is arbitrary, f0 is linear. Moreover, since |f0(x)| ≤ γ(x), then for x ∈ V

|f0(x)| ≤ 1.

It follows that we have two topologies on K:

• the weak* topology σ(X∗, X) inherited by X∗;
• the product topology σ inherited by P . Since K is closed in (P, σ), then (K,σ) is compact.

To conclude, we need only to show that the two topologies coincide. This follows because the bases of
the two topologies are generated by the sets

Vσ(X∗,X) =
{∣∣`xi − `0xi

∣∣ < ε, i = 1, . . . , n

}
,

Vσ =
{∣∣f(xi)− f0(xi)

∣∣ < ε, i = 1, . . . , n

}
.

There is thus a one to one correspondence among local bases, hence the two topologies coincide. ¤

The application of Theorem 3.1 to normed space gives

Corollary 3.2. If X is a normed space, then the unit ball in X∗
{

` ∈ X∗, ‖`‖X∗ ≤ 1
}

is compact in the weak* topology σ(X∗, X).

We recall that in general in a compact sets there are sequences without converging subsequences. It
is thus important the next result.

We say that X is separable if there is a countable dense subset of X.

Theorem 3.3. If X is separable, and K ⊂ X∗ is weakly* compact, then K is metrizable in the weak*
topology.

As a consequence, each sequence in K ⊂ X∗ has a converging subsequence.
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Proof. Let {xn}n∈N be a dense subset of X, and define the distance

(3.3) d(`, `′) =
+∞∑
n=1

2−n min
{
1, |`xn − `′xn|

}
, `, `′ ∈ X∗.

One can check that since `, `′ ∈ X∗, this is actually a distance.
We first show that the d-topology is contained in the σ(X∗, X) topology. In fact, if we consider the

neighborhood

V =
{
|(`− `′)xn| < ε, n = 1, . . . , k

}
,

then

d(`, `′) ≤ ε + 2−k+1.

Since ε is arbitrarily small and k arbitrarily large, then the topology generated by d is weaker than
σ(X∗, X).

To prove the opposite, we need to use that K is weak* compact. We first show some uniform continuity
of ` ∈ K: if yi ∈ X converges to 0, then for all ε there is N such that

|`yi| < ε, ∀i > N, ` ∈ K.

In fact, if this does not hold, then the family of open sets

Vi =
{

` : |`yi| < ε
}

covers X∗, hence covers K, but it is not possible to extract a finite covering.
As a consequence, we have that if `i → ` in the d topology, i.e.

`ixn → `xn ∀xn,

then ∣∣`ix− `jx
∣∣ ≤

∣∣`i(x− xn)
∣∣ +

∣∣`j(x− xn)
∣∣ +

∣∣`ixn − `jxn

∣∣ ≤ ε,

if we choose xn sufficiently close to x (use uniform continuity) and then i, j À 1 (use d convergence).
Thus ˜̀ can be extended by continuity to all x ∈ X, and from the definition of weak convergence it follows
˜̀∈ K. Hence K is d closed. Since the d-topology is weaker than the σ(X∗, X) topology, K is d-compact.

From the form of the local base of σ(X∗, X), it follows that we have to prove that for all x ∈ X fixed
{
`′ ∈ K : d(`′, `) < r

} ⊂ K ∩ {∣∣(`′ − `)x
∣∣ < ε

}
.

if r > 0 is sufficiently small. We prove it by contradiction.
If such an r > 0 does not exists, then for all m ∈ N there is `m ∈ K such that

∣∣(`m − `)xn

∣∣ <
1
m

, n = 1, . . . ,m,

but ∣∣(`m − `)x
∣∣ ≥ ε.

It follows that `m has a converging subsequence in the d-topology ((K, d) is a metric space), so that we
can assume that there is {`i}i∈N such that

lim
i→∞

`ixn = `xn ∀xn.

Since ` is continuous and in K, we can write
∣∣`x− `mx

∣∣ ≤ ∣∣`x− `xn

∣∣ +
∣∣`mx− `mxn

∣∣ +
∣∣`xn − `mxn

∣∣ < 3ε′,

with ε′ arbitrary (use uniform continuity), and we have a contradiction. ¤

We remark that (X∗, σ(X∗, X)) is never metrizable, unless X has a countable vector base.
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4. The Krein-Milman theorem

If K is convex set in a linear space X, we recall that E is an extreme subset of K if E is convex and

x, y ∈ K such that
x + y

2
∈ E =⇒ x, y ∈ E.

In particular, an extreme point is an extreme set consisting of only one point.
In Rn we have the following theorem:

Theorem 4.1 (Carathéodory). Every compact subset K of Rn has extreme points, and every point of
K can be written as a convex combination of n + 1 extreme points.

For locally convex topological vector spaces on R, one can prove a generalization of the above result:

Theorem 4.2 (Krein-Milman). If K ⊂ X is convex and compact, X locally convex topological vector
space over R, then

(1) K has at least one extreme point;
(2) K is the closure of the convex hull of its extreme points,

(4.1) K =
{ ∑

finite

tixαi : ti ≥ 0,
∑

i

ti = 1, xαi extreme point of K

}
.

Proof. We first prove that every non empty closed extreme subset of K has an extreme point.
In fact, fixed F , let {Fα}α∈A be the set of closed nonempty extreme subset of F . We partially order

it by inclusion

Fα ≤ Fα′ if Fα ⊃ Fα′ .

Since F is a closed subset of K, then it is compact, so that the finite intersection property holds:
⋂

β

Fαβ
= ∅ =⇒ ∃(α1, . . . , αn) finite :

⋂

i

Fαi = ∅.

In particular, it follows that every sequence of totally ordered Fα has a upper bound, which is the
intersection of all Fα. This is not empty because of the finite intersection property, and one can check
that it is an extreme subset of F .

By Zorn’s lemma there is at least a maximal element F̄ .
Assume that F̄ consists of more that 1 element. Since X is locally convex, its dual separates points,

so that there is ` such that

min
{
`x, x ∈ F

}
< max

{
`x, x ∈ F

}
= γ.

Thus the set `−1(γ)∩ F̄ is an extremal subset of F̄ and it is strictly contained in F̄ . Hence F̄ consists of
a single point.

We now prove that the convex hull of the extremal points of K (which is not empty because of the
first part of the proof) is dense in K. We assume by contradiction that there is x ∈ K such that

x /∈
{ ∑

finite

tixαi : ti ≥ 0,
∑

i

ti = 1, xαi extreme point of K

}
= Ke.

By the Hahn-Banach theorem there is thus a linear continuous functional which separates x and Ke

strictly, i.e.

`x ≤ γ1 < γ2 = min
{
`y : y ∈ Ke

}
.

Then the set {
x ∈ K : `x = min

{
`x : x ∈ K

}}

is a closed non empty extreme subset of K. By the previous part it has an extreme point, but this yields
a contradiction. ¤
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5. Dual of Banach spaces and reflexive spaces

A particular case is when X is normed: in this case X∗ is a Banach space with norm

(5.1) ‖`‖X∗ = sup
‖x‖=1

|`x|.

One can introduce the second dual of X, i.e. the dual of X∗, denoted by X∗∗.
Clearly, there is a canonical immersion J of X into X∗∗, defined by

(5.2) J : X 7→ X∗∗, (Jx)` = `x, ‖Jx‖X∗∗ = ‖x‖X .

Since J : X 7→ X∗∗ is continuous, it follows that J(X) is a closed subspace of X∗∗. In particular, either
J(X) = X∗∗ or it is not dense.

For the weak* topology σ(X∗∗, X∗) we have that the image of the unitary ball

J(BX(0, 1)) = J
{
x : ‖x‖≤1

}

is dense in BX∗∗(0, 1). We will use the following lemma:

Lemma 5.1 (Helly). Let X be a Banach space, `i ∈ X∗, i = 1, . . . , n, n linear functionals in X∗, and
αi ∈ C, i = 1, . . . , n, n scalars. Then the following properties are equivalent:

(1) for all ε > 0 there is xε, ‖xε‖ < 1 such that

(5.3)
∣∣`ixε − αi

∣∣ ≤ ε i = 1, . . . , n;

(2) for all β1, . . . , βn ∈ C

(5.4)
∣∣∣∣

n∑

i=1

βiαi

∣∣∣∣ ≤
∥∥∥∥

n∑

i=1

βi`i

∥∥∥∥
X∗

.

Proof. The first implication follows by
∣∣∣∣

n∑

i=1

βiαi

∣∣∣∣ =
∣∣∣∣

n∑

i=1

βi

(
αi − `ixε

)∣∣∣∣ +
∣∣∣∣

n∑

i=1

βi`ixε

∣∣∣∣

≤ ε

n∑

i=1

|βi|+
∥∥∥∥

n∑

i=1

βi`i

∥∥∥∥
X∗

,

since ‖xε‖X ≤ 1.
Conversely, if (1) does not hold, then this means that the closure of the set

(`1, . . . , `n)
{
x : ‖x‖ ≤ 1

} ∈ Cn

does not contains (α1, . . . , αn). Thus there is (β1, . . . , βn) ∈ Cn such that

max<
{ n∑

i=1

βi`ix, ‖x‖ ≤ 1
}

< <
{ n∑

i=1

βiαi

}
≤

∣∣∣∣
n∑

i=1

βiαi

∣∣∣∣.

Since {‖x‖ ≤ 1} is balanced, it follows that (2) is false. ¤

We can now prove

Proposition 5.2 (Goldstine). If X is a Banach space, then J(BX(0, 1)) is dense in BX∗∗(0, 1) for the
weak* topology.

Proof. If ξ ∈ X∗∗, take a neighborhood of the form

V =
{

η ∈ X∗ :
∣∣(η − ξ)`i

∣∣ < ε, `i ∈ X∗, i = 1, . . . , n
}

.

We need only to find x ∈ X such that ∣∣`ix− ξ`i

∣∣ < ε.

Since ‖ξ‖X∗∗ ≤ 1, then ∣∣∣∣
n∑

i=1

βi

(
ξ`i

)∣∣∣∣ ≤
∥∥∥∥

n∑

i=1

βi`i

∥∥∥∥
X∗

,

so that for Lemma 5.1 it follows that there is an xε ∈ X which belongs to V . ¤
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A Banach space X is reflexive if J(X) = X∗∗.
It is important to observe that in the previous definition the canonical immersion J is used: even for

particular non reflexive spaces one can find continuous linear surjection form X into X∗∗.
We prove the following main result:

Theorem 5.3 (Kakutani). The Banach space X is reflexive if and only if

BX(0, 1) =
{

x ∈ X : ‖x‖X ≤ 1
}

is compact for the weak topology σ(X,X∗).

Proof. If X is reflexive, then J : X 7→ X∗∗ is continuous, injective and surjective. Hence J−1 is linear
and continuous w.r.t. the strong topologies of X and X∗∗. Actually both J, J−1 are isometries.

It is clear that
J
{

x : |`x| < ε
}

=
{

η : |η`| < ε
}

,

so that the topology J−1(σ(X∗∗, X∗)) coincides with the topology σ(X, X∗). Since BX∗∗(0, 1) is weak*
compact, so is BX(0, 1).

Conversely, if BX(0, 1) is compact, then J(BX(0, 1)) is closed, and by Proposition 5.2 it coincide with
the whole BX∗∗(0, 1). ¤

In general, if X is Banach separable, the dual space X∗ is not. However the converse is true.

Theorem 5.4. If X is a Banach space and X∗ is separable, then X is separable.

Proof. Let {`n}n∈N be a dense countable set in X∗. Let xn ∈ X, ‖xn‖X ≤ 1, be a point where

|`nxn| ≥ 1
2
‖`n‖X∗ ,

and consider the countable set

Q =
{ ∑

finite

αixi : αi belongs to a countable dense subset of C
}

.

Clearly Q is countable and dense in the vector space L generated by {xn}n∈N, so that it remains to prove
that L is dense in X.

If L is not dense, then there is a non null continuous functional ¯̀ such that
¯̀ 6= 0 ¯̀xn = 0 ∀n ∈ N.

Since `n is dense, there is n̄ such that ‖¯̀− `n̄‖ < ε, so that
1
2
‖`n̄‖X∗ ≤ |`n̄xn̄| ≤

∣∣(¯̀− `n̄)xn̄

∣∣ + |¯̀xn̄| ≤ ε.

Thus ‖`n̄‖ ≤ 2ε, which implies that ¯̀= 0. ¤
We next prove that

Proposition 5.5. If M ⊂ X is a closed subspace of a reflexive space, then M is reflexive.

Proof. The proof follows by proving that the topology σ(M, M∗) coincide with the topology M∩σ(X, X∗),
and BM (0, 1) is closed for σ(X, X∗) (closed for strong topology and convex). ¤

As a corollary, we have that

X separable and reflexive ⇐⇒ X∗ separable and reflexive.

Proof. Clearly if X is reflexive, the unit ball BX∗(0, 1) is compact for the topology σ(X∗, X∗∗) because
of Banach-Alaoglu theorem 3.1 and the fact that σ(X∗, X∗∗) = σ(X∗, X). Moreover if X is reflexive and
separable, then X∗∗ is separable, hence by Theorem 5.4 X∗ is separable.

Conversely, if X∗ is reflexive, then X∗∗ is reflexive, so that M(X) is reflexive by Proposition 5.5, hence
X is reflexive. Moreover, we know from Theorem 5.4 that X is separable, if X∗ is separable. ¤

For these spaces,
{xn}n∈N bounded =⇒ ∃{xni}i∈N convergent,

with xn ∈ X or X∗.
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5.1. Uniformly convex Banach spaces. We say that X Banach space is uniformly convex if for all
ε > 0 there exists δ > 0 such that

(5.5) ‖x‖X , ‖x′‖X ≤ 1,

∥∥∥∥
x + y

2

∥∥∥∥ ≥ 1− δ =⇒ ‖x− x′‖ < ε.

For these spaces we have:

Theorem 5.6 (Milman). If X is a uniformly convex Banach space, then X is reflexive.

Proof. Let ξ ∈ X∗∗, ‖ξ‖X∗∗ = 1. We want to prove that for all ε > 0 there is x ∈ X, ‖x‖ ≤ 1 such that∥∥ξ − Jx
∥∥

X∗∗ < ε.

Since J(X) is strongly closed (J is an isometry), then J is surjective.
Let ` ∈ X∗ be such that

‖`‖X∗ = 1, ξ` > 1− δ,

where δ is the constant chosen by the uniform convexity estimate corresponding to ε, and consider the
neighborhood of ξ of the form

V =
{

η ∈ X∗∗ :
∣∣(ξ − η)`| < δ/2

}
.

By Proposition 5.2, it follows that there is some x ∈ BX such that Jx ∈ V .
Assume that ξ /∈ Jx + εBX∗∗ . Then we obtain a new neighborhood of ξ for the weak* topology which

does not contains x. With the same procedure, we can find a new x̂ in this new neighborhood.
Thus we have ∣∣`x− ξ`

∣∣ ≤ δ

2
,

∣∣`x̂− ξ`
∣∣ ≤ δ

2
.

Adding we obtain
2|ξ`| ≤ |`(x + x̂)|+ δ ≤ ‖x + x̂‖+ δ.

Then ‖(x + x̂)/2‖ ≥ (1− δ), so that ‖x + x̂‖ < ε, which is a contradiction. ¤

6. Exercises

(1) Let E ⊂ X, X Banach space, be a compact subset for the weak topology σ(X, X∗). Show that
E is bounded for the strong topology.

(2) Let u, v be two continuous functions from T topological space into X Banach space with the
weak topology. Prove that
• the map u + v is continuous;
• if a : T 7→ C is continuous, then a(x)u(x) is continuous.

(3) Prove that the topology σ(X, X∗) is not metrizable if X is an infinite dimensional normed space
(show that σ(X, X∗) does not have any countable local base, because X∗ is metric complete and
thus its vector base is not countable).

(4) Let X be a Banach space, M ⊂ X be a subspace and `0 ∈ X∗. Show that there is m0,

m0 ∈ M⊥ =
{

` ∈ X∗ : `x = 0 ∀x ∈ M
}

such that
inf

`∈M⊥
‖`0 − `‖X∗ = ‖`0 −m0‖.

(5) Prove that if xn converges to x strongly in X Banach, `n converges to ` weakly in X∗, then
`nxn → `x. Show with an example that if `n converges only weakly, then `nen may not coincide.

(6) Show that in finite dimension the weak topology end the norm topology coincide.
(7) If X is a reflexive separable space, show that there are sequences converging weakly but not

converging strongly (use the result that if M ( X is a closed subspace, then there is a point x,
‖x‖ = 1 and ‖x− y‖ ≥ 1− δ for all δ > 0 and y ∈ M).

(8) Let X be a Banach space, and {xn}n∈N a sequence in X.
• Assume that xn ⇀ x, then show that

+∞⋂
n=1

conv
{
xn, xn+1, . . .

}
= {x}.
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• Assume X reflexive, and {xn}n∈N bounded. Prove that if
+∞⋂
n=1

conv
{
xn, xn+1, . . .

}
= {x},

then xn ⇀ x.
(9) Let X be a Banach space.

• Let {`n}n∈N be a sequence in X∗, and assume that `nx has limit for all x ∈ X. Prove that
there is a weak* limit `: `n ⇀∗ `.

• Assume X reflexive, {xn}n∈N sequence in X such that for all ` ∈ X∗ the sequence `xn has
limit. Show that xn converges weakly to some x ∈ X.

• Consider c0 and the sequence

un =
(

1, . . . , 1︸ ︷︷ ︸
n numbers

, 0, . . .
)
.

Knowing that the dual space of c0 is `1, show that the conclusion of the second point is false.
Hence c0 is not reflexive.

(10) Consider the space `1 with norm

‖u‖`1 =
∞∑

n=1

|u(n)|.

• Prove the the dual space of `1 is `∞.
• Show that `1 is separable, but `∞ is not.
• Construct in `∞ a bounded sequence which does not have any weakly convergent subse-

quence.
(11) Let X be a uniformly convex Banach space, and E ⊂ X a convex closed subset.

• Prove that for all x ∈ X there exists a unique point x0 such that

‖x− x0‖ = inf
y∈E

‖x− y‖.
Denote this projection by PEx.

• Show that PEx is strongly continuous.
(12) Let M : X → Y be a strongly continuous operator, X, Y Banach. Show that M is also continuous

from the weak topology of X into the weak topology of Y , and that the opposite holds.
(13) Let C be a closed subset of R, and consider the subset of `2 defined by

XC =
{

u : N 7→ R, ‖u‖`2 =
( ∞∑

n=1

|u(n)|2
)1/2

, u(n) ∈ C

}
.

• Show that XC is strongly closed.
• Show that if C is convex, then it is also weakly closed.
• Find an example of non weakly closed XC .

(14) Consider the space X = C([0, 1];R) with the sup norm, and the sets

B(0, 1) =
{

u : [0, 1] 7→ R, ‖u‖ ≤ 1
}

, B1(0, 1) =
{

u : [0, 1] 7→ R, ‖u‖ ≤ 1, ‖u′‖ ≤ 1
}

.

• Is B1(0, 1) a closed subset of B(0, 1)?
• Has B1(0, 1) compact closure in B(0, 1)?
• Is B(0, 1) closed and compact in X?

(15) Consider the normed space

X =
{

u ∈ C1([−1, 1];R), ‖u‖ = sup
t
|u(t)|

}
,

and the family of linear functionals

`nu =
1
n2

∫ 1/n

−1/n

sgn(t)u(t)dt.

• Show that for all u ∈ X the set {`nu}n∈N is bounded.
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• Prove that however `n is not bounded, i.e. there are un ∈ X, ‖un‖ = 1 and

Tnun →∞.

• Show that

K =
∞⋂

n=1

`−1
n (−1, 1)

is convex, balanced and absorbing, but it has empty interior.


