
BANACH STEINHAUS, OPEN MAPPING AND CLOSED GRAPH THEOREMS

In this lecture we study which consequences follows from the completeness of a metrizable vector space.
The basic tool is Baire’s lemma:

Lemma 0.1. If X is a complete metric space, Xn closed sets with empty interior, then ∪nXn has empty
interior.

1. The Banach Steinhaus theorem

If X, Y are topological vector spaces, {Mν}ν a family of linear operators,

Mν : X 7→ Y.

We say that {Mν}ν is equicontinuous if

(1.1) ∀W ⊂ Y neighborhood of 0 ∃V ⊂ X neighborhood of 0 ∈ X : MνV ⊂ W ∀ν.

We recall that if X is metrizable, then M : X 7→ Y bounded is equivalent to M continuous.

Theorem 1.1. If the family {Mν}ν from X to Y is equicontinuous then it is equibounded, i.e. for all
E ⊂ X bounded there is F ⊂ Y bounded such that

(1.2) MνE ⊂ F ∀ν.

Proof. For W ⊂ Y open neighborhood, let V as in the assumptions of equicontinuity. If E is bounded,
there is t such that E ⊂ tV . Hence

MνE ⊂ Mν(tV ) ⊂ tW,

i.e. MνE is bounded by tW independently on ν. Thus

F =
⋃
ν

MνE

is bounded. ¤

In particular the orbits

(1.3) Γ(x) =
{
Mνx

}
ν

are bounded sets in Y for all x ∈ X if {Mν}ν is equicontinuous. If X, Y are normed spaces, then

(1.4) {Mν}ν equibounded ⇐⇒ ∃C : ‖Mνx‖Y ≤ C‖x‖X ∀x ∈ X.

If X is a complete metrizable topological vector space, i.e. an F -space, then the boundedness of
the sets Γ(x) implies that the family {Mν}ν is equicontinuous, hence equibounded. This is the Banach
Steinhaus theorem, also known as the uniform boundedness principle: in fact from a local boundedness
we recover a uniform estimate.

Theorem 1.2 (Banach-Steinhaus). If {Mν}ν is a family of continuous linear operator from the F -space
X to the topological vector space Y such that

(1.5) Γ(x) =
{
Mνx

}
ν

is bounded in Y for all x ∈ X, then {Mν}ν is equicontinuous, hence equibounded.

If X, Y are normed spaces, and X Banach, then the condition is that

(1.6) ∀x ∈ X ∃Cx : ‖Mνx‖Y ≤ Cx‖x‖ ∀ν.

while the condition (1.4) is that Cx can be chosen independently on x ∈ X: the family {Mν}ν is
equicontinuous.
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Proof. The proof is based on the principle of uniform boundedness in complete metric spaces.
Take balanced neighborhoods W , W1 of 0 in Y such that W̄1 + W̄1 ⊂ W , and define the sets

An =
{

x ∈ X : Mνx ∈ nW̄1 ∀ν
}

=
⋂
ν

nM−1
ν (W̄1).

By construction the sets An are closed, and due to pointwise boundedness
⋃

n∈N
An = X.

Hence, since X is metric complete, some An̄ has not empty interior, i.e. there is V ⊂ X open neighborhood
of 0 and x̄ ∈ X such that

x̄ + V ⊂ An̄, MνV ⊂ n̄W̄1 −Mν x̄ ⊂ n̄(W̄1 + W̄1) ⊂ n̄W ∀ν.

It follows that Mν(V/n̄) ⊂ W . ¤

Let X, Y be two normed spaces, and L(X,Y ) be the vector space of the continuous linear operator
M : X 7→ Y . We can make it into a normed space by defining

(1.7) ‖M‖L(X,Y ) = sup
‖x‖X≤1

‖Tx‖Y .

This is the strong topology. One can check that if Y is a Banach space, then L(X, Y ) is a Banach space
even if Xis not. In particular the dual space X∗ is Banach.

The topology of pointwise convergence on L(X, Y ) is the weakest topology such that all applications

(1.8) x 7→ Mx

are continuous.
If X is Banach, then as a corollary of the uniform boundedness principle we have

Corollary 1.3. If {Mn}n∈N is a family of continuous operators for X Banach to Y normed, such that
Mnx converges to Mx for all x ∈ X, then M is a linear bounded operator and

(1.9) ‖M‖L(X,Y ) ≤ lim inf
n→∞

‖Mn‖L(X,Y ).

Another important consequence is that

Corollary 1.4. Let X be a normed space, and B ⊂ X be such that

(1.10) ∀` ∈ X∗ `B ⊂ C is bounded.

Then B is bounded.
Conversely, if X is Banach and B′ ⊂ X∗ is such that

(1.11) ∀x ∈ X
{
`x, ` ∈ B′} ⊂ C is bounded,

then B′ is bounded.

Proof. Since every application{
Tx : X∗ 7→ C : Tx(`) = `x, x ∈ B

}
⊂ L(X∗,C)

is pointwise bounded and X∗ is Banach, then there is C such that

|`x| ≤ C‖`‖X∗ ∀x ∈ B.

By the Hahn-Banach theorem we have that for all x ∈ X there is a linear functional ` such that

`x = ‖x‖,
so that we conclude ‖x‖ ≤ C for all x ∈ B.

For the second part, we use the family{
T` : X 7→ C : T`(x) = `x, ` ∈ B′

}
⊂ L(X,C).

As before there is some constant C such that

|`x| ≤ C‖x‖X ∀` ∈ B′.
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By definition of norm ‖ · ‖X∗ , it follows that

sup
`∈B′

‖`‖X∗ ≤ C.

¤

2. The open mapping theorem

Suppose f : X 7→ Y , X, Y topological spaces.
We say that f is open at x ∈ X if f(V ) contains an open neighborhood of f(x) ∈ Y for all V

neighborhood of x. The map f is an open mapping if it is open at each x ∈ X, i.e. f(V ) is open for all
V open.

For linear mapping M : X 7→ Y , X, Y F -spaces, we have that M is open if and only if M(X) = Y .
The “only if” part follows form the observation that if a linear subspace M of Y contains an open set,

then M = Y . The other part is stated in the next theorem:

Theorem 2.1 (open mapping). Let M : X 7→ Y be a linear continuous operator, where X, Y are
F -spaces, and assume that M(X) = Y . Then M is an open mapping.

Proof. Since X, Y are F -spaces, then we can choose the local bases

Vr,n =
{
x : dX(x, 0) < 2−nr

}
, r > 0, Wm =

{
y : dY (y, 0) < 2−m

}
.

Since X = ∪iiVr,n, then

Y = M(X) =
∞⋃

i=1

M(iVr,n).

Hence some
M(iVr,n) = iM(Vr,n)

has not empty interior, in particular M(Vr,n) has not empty interior for all n ∈ N:

∃m(n) : Wm(n) ⊂ M(Vr,n).

Since M is continuous, m(n) →∞ as n → 0.
Since X, Y are F -spaces, then for all y ∈ Wm(1) ⊂ M(Vr,1) there is a point x1 in V1 such that

dY (Mx1, y) ≤ m(2).

Since we have Wm(2) ⊂ M(Vr,2), then we can find a point x2 such that

dY (M(x1 + x2), y) ≤ m(3).

Proceding, at step n̄ we find points x1 ∈ Vr,1, x2 ∈ Vr,1,...,xn̄ ∈ Vn̄ such that

dY

(
M

( n̄∑

i=1

xi

)
, y

)
≤ m(n̄ + 1).

Due to the choice of xi, the sequence
n̄∑

i=1

xi → x̄,

and since M is continuous Mx̄ = y. Moreover

d(x̄, 0) = d

(+∞∑

i=1

xi, 0
)
≤

+∞∑

i=1

d(xi, 0) < r,

so that x̄ ∈ V0,r. ¤

As an application, we have

Corollary 2.2. If M : X 7→ Y is continuous and one to one, then M−1 is continuous. If X, Y are
Banach spaces, this means that there are constant c, C such that

(2.1) c‖x‖X ≤ ‖Mx‖Y ≤ C‖x‖X , c, C > 0.
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In particular, if X has two norms ‖ · ‖1, ‖ · ‖2 such that both (X, ‖ · ‖1), (X, ‖ · ‖2) are Banach spaces,
then the two norms are equivalent, i.e.

(2.2) c‖x‖X ≤ ‖Mx‖Y ≤ C‖x‖X , c, C > 0.

3. Closed graph theorem

If f : X 7→ Y , then the graph of f is the set

G(f) =
{

(x, y) ∈ X × Y : y = f(x)
}

.

Proposition 3.1. If X is a topological space and Y is topological Hausdorff separable, f : X 7→ Y
continuous, then G(f) is closed.

Proof. Let (x0, y0) ∈ (X × Y ) \ G(f). Then y0 and f(x0) have disjoint neighborhood W0, W1. Since f is
continuous, then there is an open neighborhood V0 of x0 such that

f(V0) ⊂ W0.

Hence for all x ∈ V0 f(x) /∈ W1, so that (V0 ×W1) ∩ G(f) = ∅. ¤

As we know, topological vector spaces are separable, so that the graph of continuous linear mappings
is closed. If the spaces are metric complete, then we can prove the converse.

Theorem 3.2 (closed graph). If M : X 7→ Y is a linear mapping between F -spaces, and G(M) is closed,
then M is continuous.

Proof. The space X × Y is a vector space, which becomes an F space with the distance

dX×Y

(
(x0, y0), (x1, y1)

)
= dX(x0, x1) + dY (y0, y1).

Since M is linear, then G(M) is a linear space, and from the closure is an F space with the same
distance.

Consider the two projections

π1 : G 7→ X
(x,Mx) 7→ x

,
π2 : X × Y 7→ Y

(x, y) 7→ y

By constructions both projections are continuous, and π1 is 1 to 1 and onto. Then by Corollary 2.2 π−1
1

is continuous, and since
Mx =

(
π2 ◦ π−1

1

)
x,

then M is continuous. ¤

A standard way to prove that graph of M is closed for F spaces is to check that

(3.1) (xn,Mxn) → (x, y) =⇒ Mx = y.

4. Exercises

(1) Prove that if the family Mν : X 7→ Y is equibounded and X is metrizable, then it is equicontin-
uous.

(2) Prove that if X is an F -space, Y topological vector space, and the sequence {Mn}n∈N of contin-
uous linear operator satisfies

∀x ∈ X {Mnx}n∈M converges to Mx,

then M is continuous.
(3) Let X be the topological vector space generated by a countable Hamel base {en}n∈N, i.e.

x =
∑

finite

αnen, αn ∈ C.

Show that X is the countable union of closed sets with empty interior. In particular no F -spaces
can have countable Hamel base.
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(4) Let X, Y , Z Banach spaces, and consider a continuous map

B : X × Y 7→ Z,

such that (bilinearity)

B
(
α0x0 + α1x1, y

)
= α0B(x0, y) + α1B(x1, y),

B
(
x, β0y0 + β1x1

)
= β0B(x, y0) + β1B(x, y1).

Show that there is M > 0 such that

‖B(x, y)‖Z ≤ M‖x‖X‖y‖Y .

(5) Let X be a Banach space, A, B closed vector spaces such that A ∩B = {0}, X = A + B. Prove
that every x can be uniquely decomposed as

x = PAx + PBx, PAx ∈ A,PBx ∈ B,

and that PA, PB are continuous.
(6) Consider a sequence of operators Mn in L(X, Y ), with X, Y Banach, and assume that Mnx

converges to Mx for all x ∈ X. Show that

xn → x =⇒ Mnxn → Mx.

(7) Let X, Y be Banach spaces, and assume that the sequence of operators Mn ∈ L(X, Y ) satisfies

∀` ∈ Y ∗ `(Mnx) → `(Mx).

Is M ∈ L(X,Y ), i.e. linear and continuous?
(8) Using the closed graph theorem, show that if M : X 7→ X∗, X Banach, satisfies

(Mx)x ≥ 0 ∀x ∈ X,

then it is continuous.
(9) Prove that if M : X 7→ X∗, X Banach, satisfies

(Mx)y = (My)x ∀x ∈ X,

then it is continuous.
(10) Let X, Y be two Banach spaces, and M ∈ L(X, Y ). Assume

RM closed and dim NM < ∞.

Assume that on X we have another norm | · |, such that

|x| ≤ M‖x‖X ∀x ∈ X.

Show that for some constant C

‖x‖X ≤ C
(
‖Tx‖Y + |x|

)
.


