
HAHN-BANACH THEOREM

1. The Hahn-Banach theorem and extensions

We assume that the real vector space X has a function p : X 7→ R such that

(1.1) p(ax) = ap(x), a ≥ 0, p(x + y) ≤ p(x) + p(y).

Theorem 1.1 (Hahn-Banach). Let Y be a subspace of X on which there is ` such that

(1.2) `y ≤ p(y) ∀y ∈ Y,

where p is given by (1.1). Then ` can be extended to all X in such a way that the above relation holds,
i.e. there is a ˜̀ : X 7→ R such that

(1.3) ˜̀|Y = `, `x ≤ p(x) ∀x ∈ X.

Proof. The proof is done in two steps: we first show how to extend ` on a direction x not contained in
Y , and then use Zorn’s lemma to prove that there is a maximal extension.

If z /∈ Y , then to extend ` to Y ⊕ {Rx} we have to choose `z such that

`(αz + y) = α`x + `y ≤ p(αz + y) ∀α ∈ R, y ∈ Y.

Due to the fact that Y is a subspace, by dividing for α if α > 0 and for −α for negative α, we have that
`x must satisfy

`y − p(y − x) ≤ `x ≤ p(y + x)− `y, y ∈ Y.

Thus we should choose `x by

sup
y∈Y

{
`y − p(y − x)

} ≤ `x ≤ inf
y∈Y

{
p(y + x)− `y

}
.

This is possible since by subadditivity (1.1) for y, y′ ∈ R
`(y + y′) ≤ p(y + y′) ≤ p(y + x) + p(y′ − x).

Thus we can extend ` to Y ⊕ {Rx} such that `(y + αx) ≤ p(y + αx).
To apply Zorn’s lemma, consider all extensions of ` to linear spaces Z containing Y as a subspace and

such that `z ≤ p(z). We give a partial order this set by inclusion, i.e. (Z, `) ≤ (Z ′, `′) if Z ⊂ Z ′ and
`′|Z = `.

Clearly every totally ordered subset {(Zα, `α)}α∈A has an upper bound, given by taking the element

Z =
⋃

α∈A

Zα, `
∣∣
Zα

= `α.

By Zorn’s lemma there exists a maximal element {Z̃, ˜̀}.
If Z̃ ( X, then there is an element x ∈ X \ Z, so that by repeating the analysis of the first part of

the proof it follows that (Z̃, ˜̀) can be extended. This is a contradiction, hence Z̃ = X, and ˜̀ : X 7→ R
satisfies

`x ≤ p(x) ∀x ∈ X.

¤
Note that

(1.4) −`x ≤ p(−x) =⇒ −p(−x) ≤ `x ≤ p(x).

We now consider two extension of the above theorem. The important part of the theorem is that
we can extend a linear functional (this is trivial by using again Zorn’s lemma) in such a way that some
requirements are respected, namely

`x ≤ p(x).
One can thus ask the question if in some cases we can extend a linear functional respecting more condi-
tions.
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Theorem 1.2 (Agnew-Morse). Let X be a real vector space and let A = {Aν}ν a collection of commuting
linear operators:

(1.5) Aν : X 7→ X, AνAµ = AµAν .

Assume that p : X 7→ R is positively homogeneous, subadditive as in (1.1) and

(1.6) p(Aνx) = p(x).

Let Y be a subspace of X, invariant for every Aν , and assume that on Y there is linear functional
` : Y 7→ R such that

(1.7) `(y) ≤ p(y), `(Aνy) = `y.

Then ` can be extended to the whole X in such a way ` is invariant w.r.t. A and dominated by p:

(1.8) `(Aνx) = `x, `x ≤ p(x) ∀ ∈ X.

Proof. The first step is to extend the family A is such a way the identity I belongs to A and

(1.9) A,B ∈ A =⇒ AB ∈ A.

Clearly this extension do not change the assumptions on Y , `, p.
We thus define the new positive homogeneous function g : X 7→ R by

(1.10) g(x) = inf
{

p(Cx), C =
∑

i

aiAi,
∑

i

ai = 1, ai > 0,Ai ∈ A
}

.

Using basic computations, one can show that g satisfies

(1.11) g(x) ≤ p(x), g(αx) = αg(x) α > 0, g(x + y) ≤ g(x) + g(y).

The advantage of g w.r.t. p is that g is invariant w.r.t. convex combinations.
If C is a convex combination of Ai ∈ A, then

CY ⊂ Y, `(Cy) = `y ≤ p(Cy).

Thus on Y we have also that `(y) ≤ g(y).
We now apply Hahn-Banach theorem to obtain that there is some extension ˜̀ : X 7→ R such that

˜̀x ≤ g(x).

To prove that from the above inequality it follows that ˜̀(Ax) = ˜̀x, A ∈ A, we consider the particular
linear combination

Cn =
1
n

n∑

i=0

Ai, Cn(I−A) =
1
n

(I−An).

By the definition of g it follows

g((I−A)x) ≤ p(Cn(I−A)x) =
1
n

p((I−An)x).

We finally have

`x− `(Ax) = `((I−A)x) ≤ g((I−A)x) ≤ 1
n

p(x−Anx) ≤ p(x) + p(−x)
n

→ 0.

Computing the same expression for −x, we conclude the proof. ¤

We now extend the theorem to complex valued spaces.

Theorem 1.3. If X is a complex vector space, and p is subadditive and

p(ax) = |a|p(x), a ∈ C,

and ` : Y 7→ C linear such that |`(y)| ≤ p(y) for y ∈ Y . Then there is an extension l̃ : X 7→ C such that

(1.12) |`x| ≤ p(x) x ∈ X.
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Proof. The idea in this proof is to split the functional in two parts, which are real linear functionals.
Let

`y = `1y + i`2y, `1, `2 : Y 7→ R.

Clearly `1, `2 are real, and they satisfy `1(iy) = `2(y).
Conversely, if `1 : X 7→ R is a linear functional, then

(1.13) `x = `1x− i`1(ix)

is a complex valued linear functional.
We can extend `1 by means of the real Hahn-Banach theorem, and define ` : X 7→ C by (1.13), and

we have for some α = α(x) on the unitary disk

|`(x)| = `(αx) = `1(αx) ≤ p(αx) = p(x).

¤

2. An example: Banach limits

Let B be the space of all bounded real sequences over N. Define the function

(2.1) p(x) = lim sup
n→∞

xn.

One can easily check that p is positively homogeneous and subadditive. Let Y be the subspace of the
sequence having limit.

If we consider the left translation

(2.2) A(x1, x2, x3, . . . ) = (x2, x3, x4, . . . ),

it is clear that p, Y are invariant w.r.t. A.
We thus conclude that there is an extension LIM : B 7→ R of the operator lim : Y 7→ R such that
(1) if the sequence x converges, then

LIMx = lim x;

(2) LIM is invariant w.r.t. left translation;
(3) it holds

lim inf
n→∞

xn ≤ LIMx ≤ lim sup
n→∞

xn.

The last part follows from (1.4).

3. Applications and geometrical interpretations

3.1. Extension of linear functionals. A particular class of subadditive and homogeneous functions p
are the seminorms. We recall that if X is a locally convex topological vector space, then there exists a
separating family of continuous seminorms P, and conversely if we have a separating family of seminorms
P then we can generate a topology such that every p ∈ P is continuous.

The continuity of p ∈ P implies in particular that the set V = {p(x) < 1} is open, and p coincides with
the Minkowski functional µV . Conversely, if V is balanced, convex and open, then µV is a continuous
seminorm and V = {µV < 1}.

We can restate Theorem 1.3 in terms of seminorms:

Theorem 3.1. Assume ` : M 7→ C is a linear functional over a subspace of X such that for a seminorm
p

(3.1) |`(x)| ≤ p(x).

Then ` can be extended to the whole X in such a way that (3.1) holds.

Clearly the linear functional ` satisfying (3.1) is continuous, and conversely if f is continuous then
(3.1) holds. We can thus say that ` can be extended in such a way it remains continuous.

If the space X is normed, in particular, we have the implication (in the sense that there is an extension
of `)

(3.2) |`x| ≤ α‖x‖ ∀x ∈ M =⇒ |`x| ≤ α‖x‖ ∀x ∈ X.
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Moreover, by taking the linear subspace Cx0, with x0 ∈ X fixed, and

`(αx0) = α‖x0‖,
we have

Corollary 3.2. For every x0 fixed in the normed space X, there is a continuous functional `0 such that

`x0 = ‖x0‖, |`x| ≤ ‖x‖ ∀x ∈ X.

Given a linear functional ` 6= 0, we define hyperplane in X the set

(3.3) Hα =
{

x ∈ X : `x = α
}

,

with α fixed in C. For real vector spaces, the two sets {`x < c} and {`x < c}, c ∈ R, are the two half
spaces.

We recall that

Proposition 3.3. The functional ` is continuous if and only if Hα is closed.

Proof. If ` is continuous, then it is closed.
Conversely, if H is closed and not equal to X, then there is an open x0 + V , with V balanced convex

neighborhood of 0, such that
H ∩ (x0 + V ) = ∅.

By translation an replacing `x with `(x−x0), we can assume x0 = 0, and thus we have that for all x ∈ V

`x 6= α.

Since V is balanced, an ` is linear then we have also for all γ ≤ 1

γ(`x) 6= α.

Then we obtain |`x| ≤ α for all x ∈ V . Thus

|β|
|α|V ⊂ `−1{|β| < ε}.

¤

Remark 3.4. It is important to observe here that the seminorm p does not need to be one of the seminorms
generating the topology. For example, we can use the following procedure.

A point x0 ∈ S ⊂ X is called interior if for all y ∈ X there is t > 0 such that x0 + ty ∈ S. If K is a
convex set with an interior point let us assume 0, then the gauge of K is

pK(x) = inf
{
a : x/a ∈ K

}
.

Proposition 3.5. The function pK(x) is well defined, positively homogeneous and subadditive. Moreover
for all x ∈ K, pK(x) ≤ 1, and pK(x) < 1 only if x is in the interior of K. The converse is also true,
given the function p.

As an application,

Theorem 3.6. Let K ⊂ X be a convex subset such that all points in K are interior. Then for all
y ∈ X \K there is `, c such that

`y = c, `x < c, x ∈ K.

Proof. Assume that 0 is an interior point of K, and take the gauge pK . Consider the one dimensional
space Ry, and set `y = 1. Since y /∈ K, then pK(y) ≥ 1, so that we can extend ` to X in such a way that
`x ≤ pK(x). Thus `|K < 1, and by construction `y = 1. ¤

In this case, however, one cannot say that the extension of a continuous linear functional is continuous.
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3.2. Geometric versions. We consider in this section real topological vector spaces. As in the extension
of Hahn-Banach theorem to complex spaces, if the vector space is complex, in the statement of the next
results one has to replace the value of the functional with its real part.

Theorem 3.7. Let A, B disjoint nonempty convex subset of the topological vector space X, and assume
A has not empty interior and B closed. Then there is a continuous functional ` such that

(3.4) sup
x∈A

{`x} ≤ γ ≤ inf
x∈B

{`x}.

Geometrically we can say that the hyperplane {`x = γ} separates the sets A, B. Since we have only
the large inequality, we say that ` separates in broad sense.

Proof. If we fix a0 ∈
◦
A, b0 ∈ B, then the set

C =
◦
A−B + (b0 − a0)

contains an open convex neighborhood of 0. Let µC be the Minkowski functional of C, so that

C = {µC < 1}.
Since A ∩B = ∅, then x0 = b0 − a0 /∈ C, so that µC(x0) ≥ 1.

Define on the one dimensional subspace Rx0 the linear functional

`(αx) = α ≤ µV (αx0).

Hence, by the Hahn-Banach theorem, there is a continuous functional ` : X 7→ R such that

|`x| ≤ µC(x), `x0 = 1.

If a ∈
◦
A, b ∈ B, then we have

`(a− b) + 1 = `(a− b + x0) < 1,

so that
`a < `b, sup

a∈
◦
A

`a ≤ inf
b∈B

`b.

Thus we obtain the theorem, because ` is continuous. ¤

If A is instead compact, and B closed, then we can separate A, B in the strict sense.

Theorem 3.8. Let A, B closed convex sets in X locally convex, and A compact. Then there is a
continuous functional ` and two constants γ1, γ2 ∈ R such that

(3.5) `a ≤ γ1 < γ2 < `b, a ∈ A, b ∈ B.

Proof. We recall that since A is compact and B closed there is a convex balanced neighborhood of 0 such
that

(A + V ) ∩ (B + V ) = ∅.
We then use Theorem 3.7 with A + V , obtaining that there is a continuous functional ` : X 7→ R such
that

sup
a∈A+V

`a = sup
a∈A

`a + sup
x∈V

`x ≤ inf
b∈B

`b.

If `V = {0}, then since X = ∪nnV we have ` = 0, which is a contradiction. Thus there is some κ > 0
such that

sup
a∈A

`a +
k

2
≤ inf

b∈B
`b− κ

2
.

The conclusion follows. ¤

An important and useful application is the following

Corollary 3.9. If M ⊂ X is a linear subspace and x0 /∈ M̄ , then there is a continuous functional ` such
that

(3.6) `M = {0}, `x0 = 1.
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Proof. We use Theorem 3.8 with A = {x0}, B = M̄ . We thus have that there is a continuous functional
` : X 7→ R and a constant κ > 0 such that

sup
x∈M̄

`x ≤ `x0 − κ.

Since M̄ is a linear subspace, then if `M 6= {0} we have

sup
x∈M̄

`x = +∞,

so that we have
sup
x∈M̄

`x = 0, `x0 ≥ κ > 0.

The functional (1/κ)` : X 7→ R satisfies (3.6). ¤

4. Dual space of a locally convex topological vector space

We define the dual space X∗ of a topological vector space X as

(4.1) X∗ =
{

` : X 7→ F, ` continuous
}

, F = R or C.

The function

(4.2) p`(x) = |`x|
with ` continuous is a continuous seminorm on X. Conversely, on X∗ the function

(4.3) px(`) = |`x|
is a seminorm on X∗.

By construction, if ` 6= 0, then there is some x ∈ X such that `x 6= 0, so that the family of seminorms

(4.4) P∗ =
{

px : x ∈ X
}

is separating, hence generating a topology which makes X∗ a locally convex topological vector space.
Conversely, in general the family

(4.5) P =
{

p` : ` ∈ X∗
}

is not separating, as for example in Lp, 0 < p < 1.
For locally convex topological vector spaces X, we have the following result

Theorem 4.1. If X is locally convex, then P is separating.

Proof. We need only to apply Theorem 3.8 to the sets {0} and {x} for all x ∈ X fixed. ¤

Thus the family of continuous seminorm P generates a topology, which in general is weaker than the
original topology of X.

5. Exercises

(1) Prove that the Banach limit can be extended in such a way it is invariant w.r.t. the Cesaro means
operator, i.e.

C(x1, x2, . . . ) =
(

x1,
x1 + x2

2
,
x1 + x2 + x3

3
, . . .

)
.

(2) In the space X = {f : [0, 1] 7→ C, f uniformly bounded} with the product topology, consider
K = {|f | ≤ 1}.
• Show that K is convex and absorbing, but the gauge of K is not continuous.
• Deduce that the functionals constructed in Theorem 3.6 are not continuous.

(3) Prove that if E is a Banach space, H = {`x = α} an hyperplane, either H is closed or dense in
E.
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(4) Using the fact that the dual of

`2 =
{

a = (an)n∈N : ‖a‖22 =
∞∑

n=1

|an|2 < ∞
}

is again `2, consider the two subspaces

L1 = C
(

1 0 0 . . .
)
,

L2 = span
{(

1 2 0 0 . . .
)
,
(

0 1 2 0 . . .
)
,
(

0 0 1 2 . . .
)
, . . .

}
.

Show that L1 ⊕ L2 is dense in `2.
(5) Consider the operator T : `2 7→ `2 defined by

T
(
{an}n∈N

)
=

{
an

n

}

n∈N
.

Show that T`2 is dense in `2 but it is not all `2, and it has empty interior.
(6) Consider the Banach space

`1 =
{

a = {an}n∈N : ‖a‖1 =
∞∑

n=1

|an| < ∞
}

,

and the two subspaces

X =
{

a ∈ `1 : a2n = 0 ∀n ≥ 1
}

, Y =
{

a ∈ `1 : a2n =
a2n−1

2n
∀n ≥ 1

}
.

• Show that X, Y are closed, and that X ⊕ Y = `1.
• Find c ∈ `1 such that c /∈ X ⊕ Y .
• Let now Z = X − c, so that Z ∩ Y = ∅. Deduce that there are not continuous hyperplane

separating Z and Y .
(7) If X is a normed space, define the duality map as

(5.1) x 7→ F (x) =
{

` ∈ X∗ : ‖`‖X∗ = ‖x‖X , `x = ‖x‖2X
}

.

Use Hahn-Banach theorem to show that F (x) 6= ∅.
(8) A normed space is strictly convex if

(5.2) x 6= y =⇒
∥∥∥∥

x + y

2

∥∥∥∥
X

<
1
2
(‖x‖+ ‖y‖).

Show that is this case F (x) ⊂ X∗ reduces to a single point.
(9) Consider the Banach space

X =
{

u ∈ C([0, 1],R) : u(0) = 0
}

, ‖u‖X = max
t∈[0,1]

|u(t)|.

and the linear functional

`u =
∫ 1

0

u(t)dt.

Show that ‖`‖X∗ = 1, bur there are no u ∈ X such that ‖u‖X = 1 and `u = 1.


