
TOPOLOGICAL VECTOR SPACES

1. Topological vector spaces and local base

Definition 1.1. A topological vector space is a vector space over R or C with a topology τ such that
• every point is closed;
• the vector space operations are continuous.

This means that X \ {x} is open and the operations

(1.1) X ×X 3 (x, y) 7→ x + y ∈ X, F ×X 3 (k, x) 7→ kx ∈ X

are continuous, where F = R or F = C and X ×X and F ×X have the product topology.
Since the operations

(1.2) Tax = x + a Mλx = λx

are homeomorphism of X, then the topology is translation invariant. This means that a set E is open if
and only if E + a is open.

As a consequence, the topology τ is completely determined by the neighborhoods of 0. We define a
local base B of 0 by requiring that B ∈ B are open and every neighborhood of 0 contains a set in B.
Clearly the topology τ is generated by the sets

E =
⋃

α,β

(xα + Bβ), xα ∈ X,Bβ ∈ B,

i.e. by unions of translated sets belonging to the local base at 0.
In the following by local base B we denote the local base at 0.
We say that a set E in a topological vector space is bounded if for every neighborhood V of 0 there

corresponds a s ∈ F such that E ⊂ tV for all t > s.

2. Separation properties

Aim of this section is to prove that the compatibility of the topology with the vector operation implies
some good properties on the structure of the local base B.

We say:
• X is locally convex if there is a local base B whose members are convex, i.e.

(2.1) aB + (1− a)B ⊂ B ∀B ∈ B;

• X is locally bounded if 0 has a bounded neighborhood, i.e. there is A ∈ B such that

(2.2) ∀B ∈ B ∃s ∈ F : ∀t > s, A ⊂ tB.

One can check that this implies that the local base B can be chosen to contain only bounded
neighborhood of 0;

• X is locally compact if 0 has a neighborhood with compact closure. As before, this implies that
B can be generated by relatively compact open neighborhood of 0.

The first result is that the topological vector spaces are “normal” topological spaces.

Proposition 2.1. If K is compact, C closed, K ∩ C = ∅ then there is V neighborhood of 0 such that

(K + V ) ∩ (C + V ) = ∅.
Proof. If K = ∅, there nothing to prove. Otherwise, let x ∈ K: by the invariance with translation, we
can assume x = 0.

Then X \C is an open set of 0. Since addition is continuous, by 0 = 0+0+0, there is a neighborhood
U such that

3U ⊂ X \ C.
1
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By defining
Ũ = U ∩ (−U) ⊂ U,

we have that Ũ is open, symmetric and 3Ũ ⊂ X \ C. This means that

∅ =
{

3x, x ∈ Ũ
}
∩ C =

{
2x

}
∩

{
y − x, y ∈ C, x ∈ Ũ

}
⊃ Ũ ∩ (C + Ũ).

This concludes the proof for a single point.
Since K is compact, then repeating the above argument for all x ∈ K, we obtain symmetric open sets

Vx such that
(x + 2Vx) ∩ (C + Vx) = ∅.

The sets {Vx}x∈K are a covering of K: hence there is a finite number of points xi ∈ K, i = 1, . . . , n, such
that

K ⊂
n⋃

i=1

(xi + Vx).

Define the neighborhood V of 0 by

V =
n⋂

i=1

Vx,

Then

(K + V ) ∩ (C + V ) ⊂
( n⋃

i=1

(x + Vx + V )
)
∩ (C + V ) ⊂

n⋃

i=1

(
(x + 2Vx) ∩ (C + Vx)

)
= ∅.

This is the statement of the proposition. ¤

In particular, the closure of K + V does not intersect C. As corollary we have that every member of
B contains the closure of some other member of B.

By the assumption that every x ∈ X is closed, we conclude that

Theorem 2.2. A topological vector space is a Hausdorff space.

We next show that the local base B at 0 can be chosen balanced, i.e. the sets B ∈ B are balanced.
If we assume that X is locally convex, then it can be chosen balanced and convex. Note that from the
proof of Proposition 2.1 one can deduce that the local base is at least symmetric.

Theorem 2.3. If X is a vector space, then there is balanced local base. If X is locally convex, then there
is a balanced convex local base

Proof. The first part follows from the continuity of scalar multiplication. In fact, since

0 · 0 = 0,

so that for all V ∈ B, there is V1 ∈ B, δ > 0 such that

x ∈ V1, |α| < δ =⇒ αV1 ⊂ V.

Take now
W =

⋃

|α|<δ

αV1.

This is clearly open, contained in V and balanced by construction.
Assume now that X is locally convex, and let U be a convex neighborhood of 0. We first take the

balanced convex set
A =

⋂

|α|=1

αU.

This is clearly convex and not empty because 0 ∈ A.
Let now W be constructed as in the first part of the proof: W is a balanced neighborhood of 0

contained in U . Then for |α| = 1

α−1W ⊂ W =⇒ W ⊂ αW ⊂ αU,

This shows that W ⊂ A, i.e. W ⊂
◦
A, the interior of A.
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We prove now that
◦
A is convex. In fact, for all t ∈ [0, 1], the convexity of A and the fact that

◦
A ⊂ A

implies

t
◦
A + (1− t)

◦
A ⊂ A.

Since
◦
A is the largest open set in A, and t

◦
A + (1− t)

◦
A is open then we conclude

t
◦
A + (1− t)

◦
A ⊂

◦
A,

i.e.
◦
A is convex.

To end the proof, we have to show that
◦
A is balanced. By construction we have that for |β| ≤ 1

βA =
⋂

|α|=1

βαU =
⋂

|α|=1

α(|β|U).

Since U is convex and contain 0, then |β|U ⊂ U , i.e. for all |β| ≤ 1

βA ⊂ A.

It follows that for |β| ≤ 1

β
◦
A ⊂

◦
A.

The conclusion follows. ¤
We now show another consequence of the continuity of the linear operations.

Theorem 2.4. Let X be a topological vector space.
(1) If V is a neighborhood of 0, then

(2.3) X =
+∞⋃
n=1

nV ;

(2) every compact set is bounded;
(3) If V is bounded, i.e. X is locally bounded, then

(2.4)
{

1
n

V

}

n∈N
is a local base at 0.

The last point says that if X is locally bounded, then it has a countable base.

Proof. By continuity of the scalar product, for x fixed we have

lim
n→∞

1
n

x = 0,

so that for every V there is m, such that x/n ∈ V for n ≥ m. This proves (2.3).
The second statement is a consequence of finite covering property of compact sets. In fact, we can use

a balanced open neighborhood W of 0, so that from (2.3)

K ⊂
∞⋃

n=1

nW =⇒ K ⊂
N⋃

i=1

niW = max
i
{ni}W,

where is the last equality we used the fact that W is balanced. This proves the second point.
Finally, if V is bounded, then for all V ′ ∈ B there is m ∈ N such that

V ⊂ mV ′,

and hence m−1V ⊂ V ′. ¤
To end this section, we show how some linear operations on sets behave under the topology.

Proposition 2.5. If X is a topological vector space, then
(1) for every A ∈ X, Ā = ∩(A + V ), V ∈ B;
(2) Ā + B̄ ⊂ A + B;
(3) if Y subspace, then also Ȳ subspace;
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(4) if C convex/balanced/bounded, so is C̄;

(5) if C convex, so is
◦
C;

(6) if C balanced and 0 ∈
◦
C, so is

◦
C.

We prove only the first, the proof of the other points is left as exercise.

Proof. If x /∈ Ā, then there is V ∈ B such that x + V /∈ A, so that

x /∈
⋂

V ∈B
(A + V ).

Conversely, if x ∈ Ā, then x + V ∩A 6= ∅, so that

x ∈
⋂

V ∈B
(A + V ).

¤

3. Linear mappings

We now consider the linear maps M : X 7→ Y , where X, Y are topological vector spaces.
We say that M is bounded if for some V neighborhood of 0 the set MV is bounded in Y .
If Y = R or Y = C, we call M linear functional.

Proposition 3.1. The map M : X → Y is continuous iff it is continuous in 0. Moreover, if M is a
linear functional, then each of the following is equivalent:

(1) M : X 7→ F is continuous;
(2) the null space of M is closed;
(3) NM = X or it is not dense in X;
(4) M is bounded in some neighborhood of 0.

Proof. The first part follows directly from

M−1(y + U) = M−1y + M−1U ⊃ M−1y + V,

where V is the neighborhood of 0 ∈ X such that for U neighborhood of 0 ∈ Y

M(V ) ⊂ U.

Assume that M is continuous from X into Y . Since

NM = M−1({0}),
it follows that 1 ⇒ 2.

If the null space is closed, then either is X or is not dense in X, so that 2 ⇒ 3.
In the step 3 ⇒ 4 we use the fact that M is a linear functional. If NM = X then clearly Mx = 0 for

all x so that M is bounded. We thus assume that NM is not dense. Then its complement X \NM is not
empty and has not empty interior. Thus for some x ∈ X there exists V neighborhood of 0 such that

(x + V ) ∩NM = ∅.
Thus since V can be taken balanced, MV can be either bounded or

∀n, ε ∈ N
∣∣∣∣
1
n
MV

∣∣∣∣ =
∣∣M(n−1V )

∣∣ ≥ ε.

Since V is balanced, so is MV , and then MV = F , where F = R of F = C. In this case, there is a y ∈ V
such that My + Mx = 0, but this contradict the assumption. This proves that 3 ⇒ 4.

Finally, if M is bounded in some neighborhood V of 0, then for all open neighborhood U ⊂ Y of 0
there is n ∈ N such that

U ⊃ 1
n
MV = M(n−1V ).

Since n−1V is open, then M is continuous at 0, i.e. 4 ⇒ 1. ¤
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Note that in the proof of the theorem we used the assumption of M being a linear functional only
when proving 3 ⇒ 4. Clearly this implication is not true ever for maps from R2 into itself.

However the essential part of the above theorem can be extended to maps from X into Rn or Cn, by
noticing that each component ei ·M : X 7→ F is a linear functional.

We observe that a continuous functional M : X 7→ Y is uniformly continuous in the following sense:

for all U neighborhood of 0 ∈ Y there is a V neighborhood of 0 ∈ X such that

(3.1) M(x + V ) ⊂ Mx + U.

This depends on the translation invariance of the local base B.

4. Finite dimensional spaces

We see here that the topology of Cn (or Rn) is the only topology compatible with the linear operations
on finite dimensional spaces.

Lemma 4.1. If X is a linear space over R or C and has linear dimension n, then every invertible linear
map M from Rn or Cn into X is an homeomorphism.

Proof. Denote with en the standard base in Rn or Cn. Clearly from the linearity and invertibility of M

X = span
{
x1, . . . , xn

}
= span

{
Me1, . . . ,Men

}
.

Moreover M is continuous because every component

Mi : (α1, . . . , αn) 7→ x = αixi

is continuous.
Thus {

x =
n∑

i=1

αixi :
n∑

i=1

|αi|2 = 1
}

= M(S(0, 1)) = M
{

(α1, . . . , αn) :
n∑

i=1

|αi|2 = 1
}

is compact. Since 0 /∈ M(S(0, 1)), then there is a balanced neighborhood V of 0 such that V ∩M(S(0, 1)) =
∅. In particular M−1(V ) is balanced, hence connected, thus

M−1(V ) ⊂ B(0, 1) =
{

(α1, . . . , αn) :
∑

|αn|2 < 1
}

.

This implies that each component M−1
i of M−1 is bounded, hence by Proposition 3.1 it is continuous, so

that also M−1 is continuous. ¤
Proposition 4.2. If Y ⊂ X is a finite dimensional linear subspace of X, then Y is closed.

Proof. If {x1, . . . , xn} is a vector base for Y , we can introduce the homeomorphism from Rn or Cn to Y
with the induced topology

M(α1, . . . , αn) =
n∑

i=1

αixi.

Clearly M is continuous also into X.
Let now p ∈ Ȳ , and consider a neighborhood V of 0 disjoint from M(S(0, 1)). For some t > 0, p

belongs to the closure of
Y ∩ (tV ) ⊂ M(tB) ⊂ M(tB̄).

Since tB̄ is compact, then it is compact and then closed in X. Thus

p ∈ M(tB̄) = M(tB̄) ⊂ Y.

¤
This shows that there only one topology in Rn or Cn compatible with the linear operations: it is the

standard topology generated by the balls

B(x, r) =
{

x ∈ Rn or Cn,

n∑

i=1

|xi|2 < r2

}
.

Theorem 4.3. Every locally compact topological vector space X has finite dimension.



6 TOPOLOGICAL VECTOR SPACES

Proof. If X has a neighborhood V which is compact, then by the finite covering property

V ⊂ (x1 + V/2) ∪ · · · ∪ (xn + V/2).

Let Y be the vector space generated by (x1, . . . , xn). The previous formula reads as

V ⊂ Y + V/2.

Moreover Y is closed. By linearity, we have also

V/2 ⊂ Y + V/4,

so that it follows
V ⊂ Y + V/4.

Thus proceding we have

V ⊂
( ∞⋂

i=1

(Y + 2−nV )
)

= Ȳ = Y,

because V/2n is a local base (V being compact is bounded), Y closed and we have used Proposition 2.5.
Since X = ∪nnV ⊂ Y , X is finite dimensional. ¤

5. Metrization

The topological vector space X is metrizable if its topology is generated by some metric d. In this case
we say that:

• X is an F -space if it is generated by a complete invariant metric d. This means that

d(x + z, y + z) = d(x, y);

• X is a Fréchet space if it is a locally convex F -space;
A norm ‖ · ‖ : X 7→ R is defined by
(1) ‖x‖ ≥ 0, ‖x‖ = 0 iff x = 0;
(2) ‖λx‖ = |λ|‖x‖;
(3) ‖x + y‖ ≤ ‖x‖+ ‖y‖

It is easy to see that d(x, y) = ‖x− y‖ is a translation invariant distance, and that the base

B(0, n−1) =
{

x : ‖x‖ ≤ n−1
}

is a convex balanced base. We thus can consider two more topological vector spaces:
• X is normable if there is a norm which generate a metric compatible with the topology;
• X is Banach if it is normable and the metric generated by the norm is complete.

A Banach space X is then a Fréchet space.
There are several conditions on general topological spaces which state that the topology is generated

by a metric d : X ×X 7→ R+. One of the basic requirement is that every point x has a countable base of
neighborhoods, because the sets

B(x, n−1) =
{

y : d(x, y) ≤ n−1
}

is a local base for the topology generated by the metric.
While the above conditions is in general only necessary for general topological spaces, for topological

vector spaces it is also sufficient.

Theorem 5.1. If X is a topological vector space with a countable base, then there is a metric d such that
(1) d is compatible with τ ;
(2) the open balls of 0 are balanced;
(3) d is translation invariant, i.e. d(x + z, y + z) = d(x, y).

If X is locally convex, then d can be chosen to have the open balls convex.

The technical part in the proof is to construct a metric which satisfies the triangle inequality.
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Proof. By assumption there is a numerable base Vn. By using the continuity of the vector operations,
we can assume that the base is balanced and

4Vn ⊂ Vn−1.

If the space is locally convex, then this base is convex, as shown in Theorem 2.3.
Let D be the set of rational numbers with

r =
∞∑

n=1

cn(r)2−n, cn(r) ∈ {0, 1}, 0 ≤ r < 1,

with cn 6= 0 only for a finite number of n.
Define the function A : D ∪ [1,+∞) 7→ P (X) as

A(r) =

{∑∞
n=0 cn(r)Vn r ∈ D

X r ≥ 1

Since the sets Vn are balanced and open, then A(r) is open and balanced. If the space is locally convex,
then A(r) is convex.

We have that

A(r) + A(s) =
∞∑

n=0

(cn(r) + cn(s))Vn =
∞∑

n=0

cn(r + s)Vn

if r + s < 1 and cn(r + s) = cn(r) + cn(s), and

A(r) + A(s) ⊂ A(r + x) = X

in the case r + s ≥ 1.
If for some n > 1 cn(r + s) 6= cn(r) + cn(s), then it is easy to verify that at the smallest n one has

cn(r + s) = 1, cn(r) = cn(s) = 0. Thus in this case we have

A(r) ⊂
n−1∑
m=1

cm(r)Vm + 2Vn+1, A(s) ⊂
n−1∑
m=1

cm(s)Vm + 2Vn+1,

so that

A(r) + A(s) ⊂
n−1∑
m=1

cm(r + s)Vm + 4Vn+1 ⊂ A(r + s),

because of the assumptions on Vn.
Let now

f(x) = inf{r : x ∈ A(r)},
and define the distance by

d(x, y) = f(x− y).
Then clearly by construction d ≥ 0 and d(x, y) = 0 iff x = y. Moreover d is invariant and symmetric
(the set are balanced). If the space is locally convex, the open balls are convex. The triangle inequality
follows by proving that

f(x + y) ≤ f(x) + f(y),
only in the case the right hand side is less than 1. Let r, s be such that

f(x) < r, f(y) < s, r + s < f(x) + f(y) + ε

Then x ∈ A(r), y ∈ A(s) ans hence x + y ∈ A(r + s), so that

f(x + y) ≤ r + s ≤ f(x) + f(y) + ε.

Since ε is arbitrary, the conclusion follows. ¤
In metric spaces we can speak about Cauchy sequences. However, even if X is only a topological vector

space with local base B, we can define {xn}n∈N a Cauchy sequence if

(5.1) ∀V ∈ B, ∃N such that n,m > N =⇒ xn − xm ∈ V.

Clearly different local bases generate the same Cauchy sequences.
In particular, if X is metrizable with invariant metric d, then its “metric” Cauchy sequences coincides

with the “topological” Cauchy sequences. Thus if two invariant metrics d1, d2 on X induce the same
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topology, then they have the same Cauchy sequences. The invariance of the metric is fundamental,
otherwise one can generates diverging sequences which are Cauchy for some non translation invariant
metric d.

In particular the translation invariant metric d1 is complete if and only if the translation invariant
metric d2 is complete.

For the translation invariant metric constructed in the theorem, if n ≤ k < n + 1, then

(5.2) d(nx, 0) ≤ d(kx, 0) ≤ (n + 1)d(x, 0).

The first inequality follows from the fact that the balls B(x, r) = {x : d(x, 0) < r} are balanced, while
the second from the translation invariance.

If the metric is a norm, we recall that

‖αx‖ = |α|‖x‖.

6. Boundedness and continuity

We recall an equivalent definition of bounded sets E ⊂ X:

the set E ⊂ X is bounded if and only if for all αn → 0 in F , and every sequence xn ∈ E,

(6.1) lim
n→∞

αnxn = 0.

We leave the proof as an exercise.
We say that M : X 7→ Y is bounded if it maps bounded sets in bounded sets.

Proposition 6.1. We have the following implications:

(1) If M is continuous, then is bounded.
(2) If M is bounded, then for all sequences xn → 0 the set {Mxn}n∈N is bounded.
(3) If X is metrizable and for all xn → 0 the set {Mxn}n∈N is bounded, then Mxn → 0.
(4) If X is metrizable and Mxn → 0 for all xn → 0, then M is continuous.

Proof. The first implication follows from continuity and the previous characterization of boundedness: if
fact, if E ⊂ X is bounded, and U ⊂ Y is a neighborhood of 0, then M−1(U) = V is a neighborhood of
0 ∈ X. Hence for some s, t ≥ s, E ⊂ tV , and

M(E) ⊂ M(tV ) = tU.

The second implication from the fact that {xn} → 0 is bounded. In fact, xn → 0 implies that for all
V there is N such that for n > N we have xn ∈ V . Then it remains to find α such that the finite set
α{x1, . . . , xN} ⊂ V . This follows from continuity of the scalar product.

The third one from the fact that if xn → 0, then for the invariant metric d

dn = d(xn, 0) → 0.

and thus also [1/
√

dn]xn → 0, where [·] is the integer part. In fact, by using the translation invariance of
d and (5.2),

d
(
[1/

√
dn]xn, 0) ≤ [1/

√
dn]d(xn, 0) → 0.

We conclude by

Mxn =
1

[1/
√

dn]
M

(
[1/

√
dn]xn]

) → 0.

because of boundedness of {[1/
√

dn]xn}n∈N.
Finally, if M not continuous, then there is W neighborhood of 0 ∈ Y such that M−1W does not

contains any neighborhood U of 0 ∈ X. Since X has a local countable base {Vn}n∈N, it follows that for
any Vn there is an xn /∈ M−1W . By construction xn → 0, but Mxn 9 0. ¤



TOPOLOGICAL VECTOR SPACES 9

7. An example: Lp(0, 1) with p ∈ (0, 1)

The elements of Lp(0, 1), p ∈ (0, 1) are the measurable functions such that

∆p(f) =
∫ 1

0

|f(t)|pdt < ∞.

Since we have the inequality
(a + b)p ≤ ap + bp, ∀p ∈ (0, 1),

we have
∆(f + g) ≤ ∆(f) + ∆(g).

Hence
d(f, g) = ∆(f − g)

is an invariant distance. By repeating the argument used to prove completeness in the case p ≥ 1, one
can prove that (Lp, d) is a complete metric space.

We thus have that (Lp, d) is an F -space.
We now prove that in (Lp, d) there are no open convex sets other than ∅, X.
In fact, if V 6= ∅ is open and convex, with 0 ∈ V , then it contains some open balls B(0, r). Let now

f ∈ Lp, and divide the interval (0, 1) into n segments (xi, xi+1), i = 0, . . . , n − 1, with x0 = 0, xn = 1,
such that ∫ xi+1

xi

|f(y)|pdy =
1
n

∫ 1

0

|f(y)|pdy =
1
n

∆(f).

Define now
gi(x) = nfi(x)χ{x ∈ (xi, xi+1)}, i = 0, . . . , n− 1, ∆(gi) = np−1∆(f).

so that

f =
1
n

n−1∑

i=0

gi.

Since for n sufficiently large g ∈ B(0, r), then f ∈ V , i.e. V = Lp.
Assume now that M : Lp 7→ Y is continuous and Y is locally convex. Then for U convex neighborhood

of 0 ∈ Y

M−1(U) convex and open =⇒ M−1(U) = Lp,

or equivalently M = 0. In particular the only continuous functional on Lp is 0.
This example shows that the lack of local convexity can imply that the set of the continuous linear

functional is extremely small.

8. Seminorm and local convexity

A seminorm on a vector space X is a real valued function p : X 7→ R such that
(1) p(x + y) ≤ p(x) + p(y) for all x, y ∈ X;
(2) p(αx) = |α|p(x) for all x ∈ X, α ∈ F .

We note first that
p(0) = p(0x) = 0, 0 = p(x− x) ≤ 2p(x),

i.e. the seminorm is positive. Moreover

p(x) ≤ p(x− y) + p(y) =⇒ |p(x)− p(y)| ≤ p(x− y).

If p(x) = 0 implies x = 0, then the seminorm is actually a norm.
A family of seminorms is said to be separating if for each x 6= 0 there is p such that p(x) 6= 0.
There is a standard way to construct seminorms on a vector space X.
Let now A be a balanced convex set. We say that A is absorbing if

(8.1) ∀x ∈ X ∃t > 0 such that x ∈ tA,

i.e. x ∈ tA for t sufficiently large. Define the Minkowski functional µA(x) as

(8.2) µA(x) = inf{t : x ∈ tA}.



10 TOPOLOGICAL VECTOR SPACES

Using the fact that A is balanced and convex, it follows that µA is a seminorm, and conversely if p is
a seminorm, {x : p(x) < 1} is balanced convex absorbing and generates the seminorm. There is thus a
correspondence among balanced convex absorbing sets and seminorms.

Let X be a vector space, and assume there is a family P of separating seminorms. We can introduce
an invariant topology τ on X by defining the local base B at 0:
(8.3)

∀ finite collection on seminorms p1, . . . , pm ∈ P, ∀n ∈ N =⇒ B({pi}, n) =
m⋂

i=1

{
x : pi(x) <

1
n

}
∈ B.

Theorem 8.1. The topology generated by the family of separating seminorms P makes X into a locally
convex topological vector space.

Proof. Clearly the sets B given by (8.3) are convex and balanced, so that it remains to show that every
point is closed and the linear operations are continuous.

Since P is separating, then for all x 6= 0 there is px such that px(x) = δ > 0. Thus the neighborhood
of x

x + p−1
x ([0, δ/2))

does not contains 0. Then X \ {0} is open.
To prove that addition is continuous, if V = B({pi}, n) is a neighborhood of x + y of the form (8.3),

then from the subadditivity of the seminorms it follows that

B({pi}, 2n) + B({pi}, 2n) ⊂ B({pi}, n)

so that
(x + B({pi}, 2n)) + (y + B({pi}, 2n)) ⊂ x + y + B({pi}, n).

Similarly, for the point αx one has

(|α|+ ε)B({pi}, n(|α|+ ε)) ⊂ B({pi}, n),

so that (
α + (−ε, ε)

)(
x + B({pi}, n(|α|+ ε))

)
⊂ αx + B({pi}, n).

¤

With the above topology, it is easy to verify the following fact:

(1) every seminorm p ∈ P is continuous;
(2) a set E ∈ X is bounded if and only if p(E) is bounded for all p ∈ P.

Note that there can be different families of separating seminorms, generating different topologies.
We now show in some sense the converse of the above result: if we have a locally convex topology,

then there exists a family of continuous seminorms which generates the topology by (8.3).

Theorem 8.2. Let X be a locally convex topological space, with balanced convex base B. For all V ∈ B
consider the Minkowski functional µV . Then

(1) for all V ∈ B
V =

{
x : µV (x) < 1

}
;

(2) {µV : V ∈ B} is a separating family of continuous seminorms on X.

Proof. If B is a local balanced convex base, then let P be the family of seminorms generated by µV ,
V ∈ B.

Clearly since x ∈ V implies x/t ∈ V for some t > 1, so that µV (x) < 1. Conversely, if x /∈ V , then
x/t ∈ V implies t ≥ 1, so that µv(x) ≥ 1. This proves 1.

If x 6= 0, then there is V such that x ∩ V = ∅, so that µV (x) ≥ 1.
By contruction these seminorms are continuous, and the topology generated by the local base given

in (8.3) is the same topology generated by B ¤
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One can easily check that the topology generated by (8.3) is the smaller topology such that each p is
continuous.

If the local base is countable, the family of seminorm can be chosen countable, P = {pn}n∈N. In this
case one can write an equivalent metric using the family {pn}n∈N, namely

(8.4) d(x, 0) = max
i

{
cipi(x)

1 + pi(x)

}
, ci → 0.

We finally give the necessary and sufficient condition such that topology of X is generated by a norm

Theorem 8.3. The topological vector space X is normable if and only if there is a bounded convex
neighborhood of 0.

Proof. If the norm ‖ · ‖ exists, then ‖x‖ < 1 is bounded.
On the other hand, if V is convex and bounded, its Minkowski functional µV is equal to 0 only for

x = 0, hence it is a norm. ¤

9. Two examples

9.1. The space C(Ω), Ω open in Rn. Let Ω open in Rn. Then Ω is the union of countable many
compact sets Kn ⊂ Kn+1. We define C(Ω) as the vector space of complex valued functions on Ω, with
the topology generated by the family of seminorms

(9.1) pn(f) = sup
{|f(x)|, x ∈ Kn

}
.

Since the family is countable, then C(Ω) is metrizable by

(9.2) d(f, g) = max
n

{
2−n‖f − g‖C(Kn)

1 + ‖f − g‖C(Kn)

}
.

Repeating the argument of completes on every compact set Kn, one can prove that C(Ω) is complete,
hence it is a Fréchet space.

Since every neighborhood of 0 generated by pn contains functions which are arbitrarily large, then
C(Ω) is not locally bounded, hence not normable.

9.2. The spaces C∞(Ω) and D. A complex valued function f is in C∞(Ω), Ω ⊂ Rn open, if Dαf ∈ C(Ω)
for all α ∈ Nn. As before Ω = ∪nKn, with Kn compact. We can define a countable family of seminorms
by

(9.3) pN (f) = max
{
|Dαf(x)|, x ∈ KN , |α| ≤ N

}
.

As in the previous example, C(Ω) is a Fréchet space, and it is not locally bounded, hence not normable.
The space DK is the subspace of C∞(Ω) generated by the functions whose support is contained in

some compact set K. Since the maps
Txf = f(x)

are continuous and
DK =

⋂

x/∈K

T−1
x (0),

then DK is closed. Hence is a Fréchet space.
As in the previous case, one can show that DK is not locally bounded, hence not normable.

10. Exercises

(1) We say that E ⊂ X, X metrizable, is d-bounded if there is n ∈ N such that

d(x, 0) ≤ n ∀x ∈ E.

Prove that in the metric introduced in 5.1, X is d-bounded.
(2) If p is a seminorm on X, prove that p−1(0) is a subspace of X.
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(3) Prove that if A ⊂ X is absorbing, then the sets

B =
{
x : µA(x) < 1

}
, C =

{
x : µA(x) ≤ 1

}

satisfy
B ⊂ A ⊂ C, µA = µB = µC .

(4) Let N ⊂ X be a closed subpace of the topological vector space X. Prove that the topology

V open ⇐⇒ V + N open

makes X/N a topological vector space.
(5) Let N ⊂ X be a closed subspace of the topological vector space X. Prove that

• if X is locally convex, so is X/N ;
• if X is locally bounded, so is X/N ;
• if X is locally metrizable, so is X/N ;
• if X is normable, so is X/N ;
• if X is complete, so is X/N .

(6) Prove that is p is a continuous seminorm on X and N = p−1(0), then X/N is a normed space.
(7) Let X = {f : [0, 1] 7→ R}, with the topology generated by the seminorms

px(f) = |f(x)|.
Show that the convergence of fn → f is the pointwise convergence.

(8) Prove that in Lp([0, 1]), the subspace with finite codimensions are dense in Lp.
(9) If f : [0, 1] 7→ C, then define for 0 < α ≤ 1

‖f‖α = |f(0)|+ sup
{ |f(x)− f(y)|

δα
, |x− y| ≤ δ, x, y ∈ [0, 1]

}
.

Prove that the space Lipα = {f : ‖f‖α < ∞} is a Banach space, and that

lipα =
{

f ∈ Lipα : lim
δ→0

sup
{ |f(x)− f(y)|

δα
, |x− y| ≤ δ, x, y ∈ [0, 1]

}
= 0

}

is a closed subspace of Lipα.
(10) Let I = [a, b] be a compact interval, h : I 7→ R a continuous function and X the set of all

continuous functions f : I 7→ R such that

‖f‖h = sup
x∈I

{
e

R x
a

h(t)dt|f(x)|
}

< ∞.

Prove that this is a norm on X equivalent to the usual sup norm.
(11) Let I = [0, 1] and X the set of functions f : I × R 7→ R such that

‖f‖ = sup
(t,x)∈I×R

{ |f(t, x)|
1 + |x|

}
< ∞.

Prove that X with the above norm is a Banach space.
(12) Let U be open subset of R, and fn ∈ C∞(Ω) be such that for all k ≥ 0

sup
x∈U

∣∣Dkfn(x)| ≤ Ck ∀n.

Prove that the sequence is compact in the Fréchet space C∞(Ω).
(13) Let Q : C∞(R) 7→ R be a linear functional such that Q(f) ≥ 0 for all f ∈ C∞, with f(0) = 0 and

{f ≥ 0} contains a neighborhood of x = 0. Prove that

Q(f) = af ′′(0) + bf ′(0) + cf(0),

with a, b, c ∈ R constant.


