
TOPOLOGICAL SPACES

1. Topological spaces

A topological space is a set S with a collection of subset τ ⊂ P (S) (called open sets) such that
(1) S, ∅ ∈ τ ;
(2) if E1, E2 belong to τ , then E1 ∩ E2 ∈ τ ;
(3) if Eα ∈ τ for all α ∈ A, then ∪αEα ∈ τ .

We recall below come definitions in topological spaces:
• A collection τ ′ ⊂ τ ⊂ P (S) of subset of S is a base for the topology τ is every E ∈ τ is the union

of members in τ ′.
• A set E is closed if S \ E is an open set.

• The closure Ē of a set E is the smallest close set containing E, while its interior
◦
E is the largest

open set contained in E.
• A neighborhood of a point p ∈ S is any open set containing p.
• The pair (S, τ) is an Hausdorff space (or separable space) if distinct points have disjoint neigh-

borhood, i.e. for all x1, x2 in S with x1 6= x2 there exists E1, E2 in τ so that

(1.1) x1 ∈ E1, x2 ∈ E2, E1 ∩ E2 = ∅.
• A map f : S 7→ T , (T, τ), (S, σ) topological spaces, is continuous if

(1.2) f−1(E) ∈ σ ∀E ∈ τ.
• A family of open sets Eα ∈ τ , α ∈ A, is a covering of the set E if ∪αEα ⊃ E.
• E is called compact if every covering {Eα}α∈A contains a finite covering {Eαi}i, i = 1, . . . , n..
• A subset is relatively compact if its closure is compact.
• A topological space is locally compact if each point has a relatively compact neighborhood.
• A family of sets {Cα}α∈A has the finite intersection property if for all finite subsets {αi}i ⊂ A

(1.3)
⋂

i

Cαi 6= ∅.

If S is compact and the Cα are closed with the finite intersection property, then from (1.3) it follows
that

(1.4)
⋂

α∈A

Cα 6= ∅.

Conversely, if for all families of closed sets {Cα}α ⊂ P(S) with the finite intersection property (1.4) holds,
then S is compact.

Proposition 1.1. In a Hausdorff space, every compact set K is closed.

Proof. For any x ∈ K, y /∈ K there are disjoint neighborhood Ey(x) of x, Ex(y) of y. Since when x
varies in K the open sets Ey(x) are a covering of K, then we can extract a finite covering Ey(xi), with
i = 1, . . . , n. We thus have that the neighborhood

E(y) =
n⋂

i=1

Exi(y)

is disjoint from K. The conclusion follows because

X \K =
⋃
y

E(y).
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2. Cartesian product of topological spaces

The Cartesian product
∏

αXα of topological spaces (Xα, τα), α ∈ A, is the set of function f : A →
∪αXα, with f(α) ∈ Xα,

(2.1)
∏

α∈A

Xα =
{
f : A 7→

⋃

α∈A

Xα, f(α) ∈ Xα ∀α ∈ A
}
.

Define the projections Pβ :
∏

αXα 7→ Xβ by

(2.2) Pβ(f) = f(β).

We define a set E ∈ ∏
αXα open if there is a finite number of indexes α1, . . . , αn, and open sets

Eαi ∈ ταi , i = 1, . . . , n, so that

(2.3) E =
{
f : A 7→

⋃

α∈A

Xα : f(αi) ∈ Eαi
∈ ταi

, i = 1, . . . , n
}
.

One can verify that these sets define a base of a topology, which is the weakest topology which makes
continuous all maps Pβ .

Theorem 2.1 (Tychonoff). The Cartesian product X = ΠαXα of compact spaces Xα is compact.

Proof. Let {Mβ}β∈B be a covering of X, and assume that there is not a finite subcovering {Mβi}N
i=1.

Consider the closed sets
Cβ =

(
ΠαXα

) \Mβ .

By assumption, every finite intersection of Cβ is not empty, but ∩βCβ = ∅.
Let now F be the collection of all families K = {Dγ}γ of closed sets with the finite intersection

property and containing {Cβ}β , ordered by inclusion. If {Kη}η is a totally ordered sequence in F , then
the upper bound is given by their union ∪ηKη. Thus by Zorn’s lemma there is a maximal collection of
closed sets

{Dγ}γ∈Γ ⊃ {Cβ}β∈B

so that if D ∈ ΠαXα is closed and D /∈ {Dγ}γ , then {D, {Dγ}γ} does not have the finite intersection
property.

Consider now the sets
Dα,γ = PαDγ =

{
f(α) : f ∈ Dγ

}
.

Since Xα is compact for all α ∈ A and the family {Dα,γ}γ has the finite intersection property, then
⋂

γ∈Γ

Dα,γ 6= ∅.

Choose xα ∈ ∩γDα,γ , define f̄ by
f̄(α) = xα,

and let Ef̄ be an open neighborhood of f̄ of the form

Ef̄ =
{
f : A 7→

⋃

α∈A

Xα : f(αi) ∈ Ef̄ ,αi
∈ ταi with f̄(αi) ∈ Ef̄ ,αi

, i = 1, . . . , n
}
.

If Ef̄ ∩Dγ̄ = ∅ for some γ̄, then
Df̄ = ΠαXα \ Ef̄ ⊃ Dγ̄

is a closed set such that {Df̄ , {Dγ}γ} has the finite intersection property:

Df̄ ∩Dγ1 ∩ · · · ∩Dγn ⊃ Dγ̄ ∩Dγ1 ∩ · · · ∩Dγn 6= ∅.
Thus Df̄ ∈ {Dγ}γ .

Consider then the sets
Df̄ ,αi

=
{
f ∈ ΠαXα : f(αi) ∈ Xαi \ Ef̄ ,αi

}
.

If none of the Df̄ ,αi
belongs in the family {Dγ}γ , then there exists closed sets D1, . . . , Dn ∈ {Dγ}γ so

that
Df̄ ,αi

∩Di = ∅.
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But since Df̄ = ∪iDf̄ ,αi
it follows that

Df̄ ∩D1 ∩ · · · ∩Dn = ∅,
contradicting the fact that {Dγ}γ has the finite intersection property. Thus some Dαi

∈ {Dγ}γ , but this
contradicts the construction of f̄ .

Thus f̄ is in the closure of all Dγ , and since these sets are closed it follows f̄ ∈ Dγ for all γ. In
particular ⋂

β∈B

Cβ ⊃
⋂

γ∈Γ

Dγ ⊃ {f̄}.

Thus ΠαXα is compact. ¤

We say that a topological space is normal if for any two disjoint closed sets F1, F2 there exists disjoint
neighborhood G1, G2. Clearly a normal topological space in which each point is closed is Hausdorff
separable.

Theorem 2.2 (Urysohn’s Lemma). Let A, B disjoint closed sets in a normal space X. Then there exists
a real valued continuous function f(t) on X such that

0 ≤ f ≤ 1, f |A ≡ 1, f |B ≡ 0.

Proof. By assumption there are
◦
A,

◦
B disjoint neighborhood of A, B, and define

A1/2 =
◦
A, B1/2 =

◦
B

Then B1/2 is disjoint from A, because it is contained in X \
◦
A1/2. Similarly A1/2 is contained in X \

◦
B1/2.

We can thus write

A ⊂
◦
A1/2 ⊂ A1/2 ⊂ X \

◦
B1/2 ⊂ X \

◦
B, B ⊂

◦
B1/2 ⊂ X \

◦
A1/2 ⊂ X \

◦
A.

We can repeat the procedure with the sets A, X \
◦
A obtaining A3/4 and B3/4, and also with B, X \

◦
B,

obtaining A1/4, B1/4. Note that by construction we have

X \
◦
B3/4 ⊂ A1/2 ⊂ X \

◦
B1/2, X \

◦
A1/2 ⊂ B3/4 ⊂ X \

◦
A3/4.

Proceding with this construction, for all number of the form x = 2−nk, with k ∈ {1, 3, 2n − 1}, there
are closed sets Ak2−n , Bk2−n such that for k2−n < k′2−n′

A = A1, B = B0, Ak′2−n′ ⊂ Ak2−n , Bk,2−n ⊂ Bk′2−n′ ,

and

X \
◦
Bk′2−n′ ⊂ Ak2−n ⊂ X \

◦
Bk2−n , X \

◦
Ak2−n ⊂ Bk′2−n′ ⊂ X \

◦
Ak′2−n′ .

Define now
φ(x) = sup

{
k2−n : x ∈ Ak2−n

}
, ψ(x) = inf

{
k2−n : x ∈ Bk2−n

}
.

Clearly if x /∈ Ak2−n , then x ∈ Bk′2−n′ for k2−n < k′2−n′ , so that one see that if φ(x) < k2−n then
ψ(x) ≤ k2−n. Similarly, if x /∈ Bk′2−n′ , then x ∈ Ak2−n for k2−n < k′2−n′ , so that ψ(x) > k′2−n′ implies
φ(x) ≥ k′2−n′ . Then these functions coincides.

By construction
φ−1([b, 1]) =

⋂

k2−n≤b

Ak2−n , φ−1([0, a]) =
⋂

k2−n≥a

Bk2−n ,

are closed sets. Hence for 0 < a < b < 1,

φ−1((a, b)) = X \
(
φ−1([0, a]) ∪ φ−1([b, 1])

)

is open. Similarly one can treat the cases a = 0 or b = 1. ¤

The converse of the above theorem is straightforward.
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3. Metric spaces

The set X is a metric space if there is function distance d : X ×X 7→ R such that

(1) d(x, y) ≥ 0, d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x);
(3) d(x, y) ≤ d(x, z) + d(z, y).

We say that a topology τ is generated by the metric d if a base of open sets is given by the open balls
Br(x) = {y; d(x, y) < r}.

A sequence {xn}n∈N in the metric space (X, d) is convergent to x̄ ∈ X if

(3.1) ∀ε > 0 there is n(ε) such that if n > n(ε) =⇒ d(xn, x̄) < ε.

The limit, if it exists, is unique. We write in this case

(3.2) lim
n→∞

xn = x̄.

A sequence {xn}n∈N is a Cauchy sequence if

(3.3) ∀ε > 0 there is n(ε) such that if n,m > n(ε) =⇒ d(xn, xm) < ε.

We say that metric space is complete if every Cauchy sequence is convergent, i.e. if {xn}n∈N is a Cauchy
sequence there is a x̄ such that

lim
n→∞

xn = x̄.

In complete metric spaces we can prove the following lemma:

Lemma 3.1 (Baire). If X is a complete metric space, Xn closed sets with empty interior, then ∪nXn

has empty interior.

We can rewrite the lemma as

If On are dense open sets in a complete metric space X, then ∩nOn is dense.

Proof. Let On = X \Xn open and dense. Take x ∈ X, and its neighborhood B(x, r). By the assumption
that the On are open and dense, then O1 ∩ B(x, r) ⊃ B(x1, r1) for some x1, r1 > 0. We can choose
r1 < r/2.

Since O2 is dense, there is a ball B(x2, r2) ⊂ O2 ∩B(x1, r1). We can choose r2 ≤ r1/2 < r/4.
Going on we obtain a sequence of xn, rn such that

B(xn, rn) ⊂ On ∩B(x, r), B(xn, rn) ⊂ Om, ∀m ≤ n.

and rn ≤ rn−1/2 < 2−nr.
The points xn are a Cauchy sequence: for m ≤ m

d(xn, xm) ≤
n−m−1∑

i=0

d(xm+i+1, xm+i) <
n−m−1∑

i=1

2−m−ir =
(
21−m − 21−n

)
r.

Since X is complete there is a limit x̄. By construction x̄ is in all On and in the neighborhood B(x, r) of
x. ¤

Some terminology: if S is a topological space, a set A ⊂ S is said to be of first category if it is the
countable union of nowhere dense closed subset. The other sets are of second category. In particular we
have that complete metric spaces are of second category.

Proposition 3.2 (uniform boundedness principle). In a complete metric space X, if fν : X 7→ R, ν ∈ Υ
are a collection of continuous pointwise bounded functions,

|fν(x)| ≤M(x), ∀ν ∈ Υ,

then |fν | are uniformly bounded by some constant M in some non empty open set O ⊂ X.
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Proof. Define the closed sets
Cn =

⋂

ν∈Υ

f−1
ν ([−n, n]).

Then we have that ∪nCn = X, because of local boundedness. Then by Baire’s Lemma we conclude that
some CN has non empty interior: there is open set O ⊂ CN , i.e.

|fν(x)| ≤ N ∀x ∈ O, ν ∈ Υ.

¤

4. Contraction principle

Let (X, d) be a complete metric space. A function T : X 7→ X is said to be a contraction mapping if
there is a constant q, 0 ≤ q < 1, such that

d(Tx, Ty) ≤ q · d(x, y)
for all x, y ∈ X.

Theorem 4.1. Every contraction has a unique fixed point.

The proof, based on the fact that the sequence {Tnx}n∈N is Cauchy, is left as an exercise.
There is an estimate to this fixed point that can be useful in applications. Let T be a contraction

mapping on (X, d) with constant q and unique fixed point x∗ ∈ X. For any x0 ∈ X, define recursively
the following sequence

xn = T (xn−1).
The following inequality holds:

d(x∗, xn) ≤ qn

1− q
d(x1, x0).

5. Exercises

(1) Prove that the topology on the product space ΠαXα introduced in Section 1 is a topology.
(2) Prove that if f : S 7→ T is continuous, S, T topological spaces, then f(K) is compact if K is

compact.
(3) Prove Alexandroff one point compactification of a locally compact space, i.e. if X is locally

compact, it can be continuously embedded into X̃ = X ∪ {y∞}, with y∞ /∈ X, such that X̃ is
compact.
(Add to the topology the open neighborhood of y∞ defined as {y∞} ∪ (X \ Ō), with O relatively
compact open subset of X.)

(4) A system of sets has the finite intersection property if every finite collection has a non empty
intersection. Prove that a topological space X is compact iff for every system of closed sets Mα,
α ∈ A with the finite intersection property, then

⋂

α∈A

Mα 6= ∅.

(5) Prove that if X is compact and Hausdorff, and {Cα}α is a maximal collection of closed sets with
finite intersection property, then

x1, x2 ∈
⋂
α

Cα =⇒ x1 = x2.

(6) Prove that in a compact metric space every sequence has at least one limit.
(7) Consider the space A = {f : [0, 1] 7→ [0, 1]} with the topology of the product space

[0, 1][0,1] = Πα∈[0,1][0, 1] =
{
f : [0, 1] 7→ [0, 1]

}
.

Find a sequence which is not convergent while A is compact. Deduce that A is not metrizable.
(8) Prove that a compact Hausdorff space X is normal.
(9) Prove that locally compact metric spaces are of second category.

(10) Let X be a metric space and {Kn}n∈N be a sequence of closed subsets of X such that Kn ⊂ Kn−1.
Prove that
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• if X is complete and diam(Kn) → 0, then ∩nKn contains a unique point;
• If one Kn is compact, then ∩nKn 6= ∅.

(11) Let X be a complete metric space and, for λ ∈ [0, 1], let Tλ : X 7→ X be such that

d(Tλx, Tλy) ≤ 1
2
d(x, y).

Denote with xλ the fixed point of Tλ. Prove that if for every x in a dense set we have

lim
λ→0

Tλ(x) = T0(x),

then xλ → x0.
(12) Let X be a complete metric space, and f : X 7→ X. Assume that for some k < 1

d(f(x), f(y)) ≤ kd(x, y) ∀x, y,∈ B̄(x̄, r) =
{
x : d(x, x̄) ≤ r

}
.

Prove that if d(x̄, f(x̄)) ≤ r(1− k), then f admits a unique fixed point in B̄(x̄, r).
(13) Prove that there is a unique continuous function φ : [0, 1] 7→ [0, 1] such that

φ(x) =
1
2

∫ 1

0

sin(x+ φ(y))dy x ∈ [0, 1].

(14) Let K ∈ C([0, 2];R) be positive and strictly decreasing, with K(0) = 1. Prove that for every
h ∈ C([0, 1];R) there is a unique solution u ∈ C([0, 1];R) to the equation

u(x) = h(x) +
∫ 1

0

K(x+ y)u(y)dy x ∈ [0, 1].


