1. TOPOLOGICAL SPACES

A topological space is a set S with a collection of subset $\tau \subset P(S)$ (called open sets) such that

- (1) $S, \emptyset \in \tau;$
- (2) if E_1, E_2 belong to τ , then $E_1 \cap E_2 \in \tau$;
- (3) if $E_{\alpha} \in \tau$ for all $\alpha \in A$, then $\cup_{\alpha} E_{\alpha} \in \tau$.

We recall below come definitions in topological spaces:

- A collection $\tau' \subset \tau \subset P(S)$ of subset of S is a *base* for the topology τ is every $E \in \tau$ is the union of members in τ' .
- A set E is closed if $S \setminus E$ is an open set.
- The closure \overline{E} of a set E is the smallest close set containing E, while its interior $\overset{\circ}{E}$ is the largest open set contained in E.
- A *neighborhood* of a point $p \in S$ is any open set containing p.
- The pair (S, τ) is an Hausdorff space (or separable space) if distinct points have disjoint neighborhood, i.e. for all x_1, x_2 in S with $x_1 \neq x_2$ there exists E_1, E_2 in τ so that

(1.1)
$$x_1 \in E_1, x_2 \in E_2, E_1 \cap E_2 = \emptyset.$$

• A map $f: S \mapsto T, (T, \tau), (S, \sigma)$ topological spaces, is *continuous* if

(1.2)
$$f^{-1}(E) \in \sigma \quad \forall E \in \tau.$$

- A family of open sets $E_{\alpha} \in \tau$, $\alpha \in A$, is a *covering* of the set E if $\bigcup_{\alpha} E_{\alpha} \supset E$.
- E is called *compact* if every covering $\{E_{\alpha}\}_{\alpha \in A}$ contains a finite covering $\{E_{\alpha_i}\}_i, i = 1, \ldots, n$.
- A subset is *relatively compact* if its closure is compact.
- A topological space is *locally compact* if each point has a relatively compact neighborhood.
- A family of sets $\{C_{\alpha}\}_{\alpha \in A}$ has the finite intersection property if for all finite subsets $\{\alpha_i\}_i \subset A$

(1.3)
$$\bigcap_{i} C_{\alpha_{i}} \neq \emptyset$$

If S is compact and the C_{α} are closed with the finite intersection property, then from (1.3) it follows that

(1.4)
$$\bigcap_{\alpha \in A} C_{\alpha} \neq \emptyset.$$

Conversely, if for all families of closed sets $\{C_{\alpha}\}_{\alpha} \subset \mathcal{P}(S)$ with the finite intersection property (1.4) holds, then S is compact.

Proposition 1.1. In a Hausdorff space, every compact set K is closed.

Proof. For any $x \in K$, $y \notin K$ there are disjoint neighborhood $E_y(x)$ of x, $E_x(y)$ of y. Since when x varies in K the open sets $E_y(x)$ are a covering of K, then we can extract a finite covering $E_y(x_i)$, with i = 1, ..., n. We thus have that the neighborhood

$$E(y) = \bigcap_{i=1}^{n} E_{x_i}(y)$$

is disjoint from K. The conclusion follows because

$$X \setminus K = \bigcup_{y} E(y).$$

2. Cartesian product of topological spaces

The Cartesian product $\prod_{\alpha} X_{\alpha}$ of topological spaces $(X_{\alpha}, \tau_{\alpha}), \alpha \in A$, is the set of function $f : A \to \bigcup_{\alpha} X_{\alpha}$, with $f(\alpha) \in X_{\alpha}$,

(2.1)
$$\prod_{\alpha \in A} X_{\alpha} = \left\{ f : A \mapsto \bigcup_{\alpha \in A} X_{\alpha}, f(\alpha) \in X_{\alpha} \ \forall \alpha \in A \right\}.$$

Define the projections $P_{\beta} : \prod_{\alpha} X_{\alpha} \mapsto X_{\beta}$ by

(2.2)
$$P_{\beta}(f) = f(\beta).$$

We define a set $E \in \prod_{\alpha} X_{\alpha}$ open if there is a finite number of indexes $\alpha_1, \ldots, \alpha_n$, and open sets $E_{\alpha_i} \in \tau_{\alpha_i}, i = 1, \ldots, n$, so that

(2.3)
$$E = \left\{ f : A \mapsto \bigcup_{\alpha \in A} X_{\alpha} \colon f(\alpha_i) \in E_{\alpha_i} \in \tau_{\alpha_i}, i = 1, \dots, n \right\}.$$

One can verify that these sets define a base of a topology, which is the weakest topology which makes continuous all maps P_{β} .

Theorem 2.1 (Tychonoff). The Cartesian product $X = \prod_{\alpha} X_{\alpha}$ of compact spaces X_{α} is compact.

Proof. Let $\{M_{\beta}\}_{\beta \in B}$ be a covering of X, and assume that there is not a finite subcovering $\{M_{\beta_i}\}_{i=1}^N$. Consider the closed sets

$$C_{\beta} = \left(\Pi_{\alpha} X_{\alpha} \right) \setminus M_{\beta}.$$

By assumption, every finite intersection of C_{β} is not empty, but $\cap_{\beta} C_{\beta} = \emptyset$.

Let now \mathcal{F} be the collection of all families $K = \{D_{\gamma}\}_{\gamma}$ of closed sets with the finite intersection property and containing $\{C_{\beta}\}_{\beta}$, ordered by inclusion. If $\{K_{\eta}\}_{\eta}$ is a totally ordered sequence in \mathcal{F} , then the upper bound is given by their union $\cup_{\eta} K_{\eta}$. Thus by Zorn's lemma there is a maximal collection of closed sets

$$\{D_{\gamma}\}_{\gamma\in\Gamma}\supset\{C_{\beta}\}_{\beta\in B}$$

so that if $D \in \Pi_{\alpha} X_{\alpha}$ is closed and $D \notin \{D_{\gamma}\}_{\gamma}$, then $\{D, \{D_{\gamma}\}_{\gamma}\}$ does not have the finite intersection property.

Consider now the sets

$$D_{\alpha,\gamma} = P_{\alpha}D_{\gamma} = \Big\{f(\alpha) : f \in D_{\gamma}\Big\}.$$

Since X_{α} is compact for all $\alpha \in A$ and the family $\{\overline{D_{\alpha,\gamma}}\}_{\gamma}$ has the finite intersection property, then

$$\bigcap_{\gamma \in \Gamma} \overline{D_{\alpha,\gamma}} \neq \emptyset$$

Choose $x_{\alpha} \in \cap_{\gamma} \overline{D_{\alpha,\gamma}}$, define \overline{f} by

$$\bar{f}(\alpha) = x_{\alpha}$$

and let $E_{\bar{f}}$ be an open neighborhood of \bar{f} of the form

$$E_{\bar{f}} = \left\{ f : A \mapsto \bigcup_{\alpha \in A} X_{\alpha} \colon f(\alpha_i) \in E_{\bar{f},\alpha_i} \in \tau_{\alpha_i} \text{ with } \bar{f}(\alpha_i) \in E_{\bar{f},\alpha_i}, i = 1, \dots, n \right\}.$$

If $E_{\bar{f}} \cap D_{\bar{\gamma}} = \emptyset$ for some $\bar{\gamma}$, then

$$D_{\bar{f}} = \prod_{\alpha} X_{\alpha} \setminus E_{\bar{f}} \supset D_{\bar{f}}$$

is a closed set such that $\{D_{\bar{f}}, \{D_{\gamma}\}_{\gamma}\}$ has the finite intersection property:

$$D_{\bar{f}} \cap D_{\gamma_1} \cap \dots \cap D_{\gamma_n} \supset D_{\bar{\gamma}} \cap D_{\gamma_1} \cap \dots \cap D_{\gamma_n} \neq \emptyset.$$

Thus $D_{\bar{f}} \in \{D_{\gamma}\}_{\gamma}$.

Consider then the sets

$$D_{\bar{f},\alpha_i} = \left\{ f \in \Pi_{\alpha} X_{\alpha} : f(\alpha_i) \in X_{\alpha_i} \setminus E_{\bar{f},\alpha_i} \right\}.$$

If none of the $D_{\bar{f},\alpha_i}$ belongs in the family $\{D_{\gamma}\}_{\gamma}$, then there exists closed sets $D_1, \ldots, D_n \in \{D_{\gamma}\}_{\gamma}$ so that

$$D_{\bar{f},\alpha_i} \cap D_i = \emptyset.$$

But since $D_{\bar{f}} = \bigcup_i D_{\bar{f},\alpha_i}$ it follows that

$$D_{\bar{f}} \cap D_1 \cap \dots \cap D_n = \emptyset,$$

contradicting the fact that $\{D_{\gamma}\}_{\gamma}$ has the finite intersection property. Thus some $D_{\alpha_i} \in \{D_{\gamma}\}_{\gamma}$, but this contradicts the construction of \bar{f} .

Thus \bar{f} is in the closure of all D_{γ} , and since these sets are closed it follows $\bar{f} \in D_{\gamma}$ for all γ . In particular

$$\bigcap_{\beta \in B} C_{\beta} \supset \bigcap_{\gamma \in \Gamma} D_{\gamma} \supset \{\bar{f}\}.$$

Thus $\Pi_{\alpha} X_{\alpha}$ is compact.

We say that a topological space is *normal* if for any two disjoint closed sets F_1 , F_2 there exists disjoint neighborhood G_1 , G_2 . Clearly a normal topological space in which each point is closed is Hausdorff separable.

Theorem 2.2 (Urysohn's Lemma). Let A, B disjoint closed sets in a normal space X. Then there exists a real valued continuous function f(t) on X such that

$$0 \le f \le 1, \quad f|_A \equiv 1, \ f|_B \equiv 0.$$

Proof. By assumption there are $\overset{\circ}{A}$, $\overset{\circ}{B}$ disjoint neighborhood of A, B, and define

$$A_{1/2} = \overline{\stackrel{\frown}{A}}, \quad B_{1/2} = \overline{\stackrel{\frown}{B}}$$

Then $B_{1/2}$ is disjoint from A, because it is contained in $X \setminus \overset{\circ}{A}_{1/2}$. Similarly $A_{1/2}$ is contained in $X \setminus \overset{\circ}{B}_{1/2}$. We can thus write

$$A \subset \overset{\circ}{A}_{1/2} \subset A_{1/2} \subset X \setminus \overset{\circ}{B}_{1/2} \subset X \setminus \overset{\circ}{B}, \ B \subset \overset{\circ}{B}_{1/2} \subset X \setminus \overset{\circ}{A}_{1/2} \subset X \setminus \overset{\circ}{A}.$$

We can repeat the procedure with the sets $A, X \setminus \overset{\circ}{A}$ obtaining $A_{3/4}$ and $B_{3/4}$, and also with $B, X \setminus \overset{\circ}{B}$, obtaining $A_{1/4}, B_{1/4}$. Note that by construction we have

$$X \setminus \overset{\circ}{B}_{3/4} \subset A_{1/2} \subset X \setminus \overset{\circ}{B}_{1/2}, \quad X \setminus \overset{\circ}{A}_{1/2} \subset B_{3/4} \subset X \setminus \overset{\circ}{A}_{3/4}.$$

Proceeding with this construction, for all number of the form $x = 2^{-n}k$, with $k \in \{1, 3, 2^n - 1\}$, there are closed sets $A_{k2^{-n}}$, $B_{k2^{-n}}$ such that for $k2^{-n} < k'2^{-n'}$

$$A = A_1, \quad B = B_0, \quad A_{k'2^{-n'}} \subset A_{k2^{-n}}, \ B_{k,2^{-n}} \subset B_{k'2^{-n'}},$$

and

$$\backslash \overset{\circ}{B}_{k'2^{-n'}} \subset A_{k2^{-n}} \subset X \setminus \overset{\circ}{B}_{k2^{-n}}, \quad X \setminus \overset{\circ}{A}_{k2^{-n}} \subset B_{k'2^{-n'}} \subset X \setminus \overset{\circ}{A}_{k'2^{-n'}}.$$

X

$$\phi(x) = \sup \left\{ k2^{-n} \colon x \in A_{k2^{-n}} \right\}, \quad \psi(x) = \inf \left\{ k2^{-n} \colon x \in B_{k2^{-n}} \right\}.$$

Clearly if $x \notin A_{k2^{-n}}$, then $x \in B_{k'2^{-n'}}$ for $k2^{-n} < k'2^{-n'}$, so that one see that if $\phi(x) < k2^{-n}$ then $\psi(x) \le k2^{-n}$. Similarly, if $x \notin B_{k'2^{-n'}}$, then $x \in A_{k2^{-n}}$ for $k2^{-n} < k'2^{-n'}$, so that $\psi(x) > k'2^{-n'}$ implies $\phi(x) \ge k'2^{-n'}$. Then these functions coincides.

By construction

$$\phi^{-1}([b,1]) = \bigcap_{k2^{-n} \le b} A_{k2^{-n}}, \quad \phi^{-1}([0,a]) = \bigcap_{k2^{-n} \ge a} B_{k2^{-n}},$$

are closed sets. Hence for 0 < a < b < 1,

$$\phi^{-1}((a,b)) = X \setminus \left(\phi^{-1}([0,a]) \cup \phi^{-1}([b,1])\right)$$

is open. Similarly one can treat the cases a = 0 or b = 1.

The converse of the above theorem is straightforward.

3. Metric spaces

The set X is a *metric space* if there is function distance $d: X \times X \mapsto \mathbb{R}$ such that

(1) $d(x,y) \ge 0$, d(x,y) = 0 if and only if x = y;

- (2) d(x,y) = d(y,x);
- (3) $d(x,y) \le d(x,z) + d(z,y).$

We say that a topology τ is generated by the metric d if a base of open sets is given by the open balls $B_r(x) = \{y; d(x, y) < r\}.$

A sequence $\{x_n\}_{n\in\mathbb{N}}$ in the metric space (X, d) is *convergent* to $\bar{x} \in X$ if

(3.1)
$$\forall \epsilon > 0 \text{ there is } n(\epsilon) \text{ such that if } n > n(\epsilon) \implies d(x_n, \bar{x}) < \epsilon.$$

The limit, if it exists, is unique. We write in this case

(3.2)
$$\lim_{n \to \infty} x_n = \bar{x}.$$

A sequence $\{x_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence if

(3.3)
$$\forall \epsilon > 0 \text{ there is } n(\epsilon) \text{ such that if } n, m > n(\epsilon) \implies d(x_n, x_m) < \epsilon$$

We say that metric space is *complete* if every Cauchy sequence is convergent, i.e. if $\{x_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence there is a \bar{x} such that

$$\lim_{n \to \infty} x_n = \bar{x}.$$

In complete metric spaces we can prove the following lemma:

Lemma 3.1 (Baire). If X is a complete metric space, X_n closed sets with empty interior, then $\bigcup_n X_n$ has empty interior.

We can rewrite the lemma as

If O_n are dense open sets in a complete metric space X, then $\cap_n O_n$ is dense.

Proof. Let $O_n = X \setminus X_n$ open and dense. Take $x \in X$, and its neighborhood B(x, r). By the assumption that the O_n are open and dense, then $O_1 \cap B(x, r) \supset B(x_1, r_1)$ for some $x_1, r_1 > 0$. We can choose $r_1 < r/2$.

Since O_2 is dense, there is a ball $B(x_2, r_2) \subset O_2 \cap B(x_1, r_1)$. We can choose $r_2 \leq r_1/2 < r/4$. Going on we obtain a sequence of x_n , r_n such that

$$B(x_n, r_n) \subset O_n \cap B(x, r), \quad B(x_n, r_n) \subset O_m, \ \forall m \le n.$$

and $r_n \leq r_{n-1}/2 < 2^{-n}r$.

The points x_n are a Cauchy sequence: for $m \leq m$

$$d(x_n, x_m) \le \sum_{i=0}^{n-m-1} d(x_{m+i+1}, x_{m+i}) < \sum_{i=1}^{n-m-1} 2^{-m-i}r = (2^{1-m} - 2^{1-n})r.$$

Since X is complete there is a limit \bar{x} . By construction \bar{x} is in all O_n and in the neighborhood B(x,r) of x.

Some terminology: if S is a topological space, a set $A \subset S$ is said to be of *first category* if it is the countable union of nowhere dense closed subset. The other sets are of *second category*. In particular we have that *complete metric spaces are of second category*.

Proposition 3.2 (uniform boundedness principle). In a complete metric space X, if $f_{\nu} : X \mapsto \mathbb{R}, \nu \in \Upsilon$ are a collection of continuous pointwise bounded functions,

$$|f_{\nu}(x)| \leq M(x), \quad \forall \nu \in \Upsilon$$

then $|f_{\nu}|$ are uniformly bounded by some constant M in some non empty open set $O \subset X$.

4

Proof. Define the closed sets

$$C_n = \bigcap_{\nu \in \Upsilon} f_{\nu}^{-1}([-n,n]).$$

Then we have that $\bigcup_n C_n = X$, because of local boundedness. Then by Baire's Lemma we conclude that some C_N has non empty interior: there is open set $O \subset C_N$, i.e.

$$|f_{\nu}(x)| \le N \quad \forall x \in O, \nu \in \Upsilon.$$

4. Contraction principle

Let (X, d) be a complete metric space. A function $T: X \mapsto X$ is said to be a contraction mapping if there is a constant $q, 0 \le q < 1$, such that

$$d(Tx, Ty) \le q \cdot d(x, y)$$

for all $x, y \in X$.

Theorem 4.1. Every contraction has a unique fixed point.

The proof, based on the fact that the sequence $\{T^nx\}_{n\in\mathbb{N}}$ is Cauchy, is left as an exercise.

There is an estimate to this fixed point that can be useful in applications. Let T be a contraction mapping on (X, d) with constant q and unique fixed point $x^* \in X$. For any $x_0 \in X$, define recursively the following sequence

$$x_n = T(x_{n-1}).$$

The following inequality holds:

$$d(x^*, x_n) \le \frac{q^n}{1-q} d(x_1, x_0).$$

5. Exercises

- (1) Prove that the topology on the product space $\Pi_{\alpha} X_{\alpha}$ introduced in Section 1 is a topology.
- (2) Prove that if $f: S \mapsto T$ is continuous, S, T topological spaces, then f(K) is compact if K is compact.
- (3) Prove Alexandroff one point compactification of a locally compact space, i.e. if X is locally compact, it can be continuously embedded into $\tilde{X} = X \cup \{y_{\infty}\}$, with $y_{\infty} \notin X$, such that \tilde{X} is compact.

(Add to the topology the open neighborhood of y_{∞} defined as $\{y_{\infty}\} \cup (X \setminus \overline{O})$, with O relatively compact open subset of X.)

(4) A system of sets has the finite intersection property if every finite collection has a non empty intersection. Prove that a topological space X is compact iff for every system of closed sets M_{α} , $\alpha \in A$ with the finite intersection property, then

$$\bigcap_{\alpha \in A} M_{\alpha} \neq \emptyset.$$

(5) Prove that if X is compact and Hausdorff, and $\{C_{\alpha}\}_{\alpha}$ is a maximal collection of closed sets with finite intersection property, then

$$x_1, x_2 \in \bigcap_{\alpha} C_{\alpha} \implies x_1 = x_2.$$

- (6) Prove that in a compact metric space every sequence has at least one limit.
- (7) Consider the space $A = \{f : [0,1] \mapsto [0,1]\}$ with the topology of the product space

$$[0,1]^{[0,1]} = \Pi_{\alpha \in [0,1]}[0,1] = \{f : [0,1] \mapsto [0,1]\}.$$

Find a sequence which is not convergent while A is compact. Deduce that A is not metrizable.

- (8) Prove that a compact Hausdorff space X is normal.
- (9) Prove that locally compact metric spaces are of second category.
- (10) Let X be a metric space and $\{K_n\}_{n\in\mathbb{N}}$ be a sequence of closed subsets of X such that $K_n \subset K_{n-1}$. Prove that

- if X is complete and diam $(K_n) \to 0$, then $\cap_n K_n$ contains a unique point;
- If one K_n is compact, then $\cap_n K_n \neq \emptyset$.
- (11) Let X be a complete metric space and, for $\lambda \in [0, 1]$, let $T_{\lambda} : X \mapsto X$ be such that

$$d(T_{\lambda}x, T_{\lambda}y) \le \frac{1}{2}d(x, y).$$

Denote with x_{λ} the fixed point of T_{λ} . Prove that if for every x in a dense set we have

$$\lim_{\lambda \to 0} T_{\lambda}(x) = T_0(x),$$

then $x_{\lambda} \to x_0$.

(12) Let X be a complete metric space, and $f: X \mapsto X$. Assume that for some k < 1

$$d(f(x), f(y)) \le k d(x, y) \quad \forall x, y, \in \bar{B}(\bar{x}, r) = \left\{ x \colon d(x, \bar{x}) \le r \right\}$$

Prove that if $d(\bar{x}, f(\bar{x})) \leq r(1-k)$, then f admits a unique fixed point in $\bar{B}(\bar{x}, r)$.

(13) Prove that there is a unique continuous function $\phi : [0,1] \mapsto [0,1]$ such that

$$\phi(x) = \frac{1}{2} \int_0^1 \sin(x + \phi(y)) dy \quad x \in [0, 1].$$

(14) Let $K \in C([0,2];\mathbb{R})$ be positive and strictly decreasing, with K(0) = 1. Prove that for every $h \in C([0,1];\mathbb{R})$ there is a unique solution $u \in C([0,1];\mathbb{R})$ to the equation

$$u(x) = h(x) + \int_0^1 K(x+y)u(y)dy \quad x \in [0,1].$$