
LINEAR SPACES

1. Definition and basic properties of linear spaces

Definition 1.1. A linear space X over a field F is a set whose elements are called vectors and where two
operations, addition and scalar multiplication, are defined:

(1) addition, denoted by +, such that to every pair x, y ∈ X there correspond a vector x + y ∈ X,
and

(1.1) x + y = y + x, x + (y + z) = (x + y) + z, x, y, z ∈ X;

(X, +) is a group, with neutral element denoted by 0 and inverse denoted by −, x + (−x) =
x− x = 0.

(2) scalar multiplication of x ∈ X by elements k ∈ F , denoted by kx ∈ X, and

(1.2) k(ax) = (ka)x, k(x + y) = kx + ky, (k + a)x = kx + ax, x, y ∈ X, k, a ∈ F.

Moreover 1x = x for all x ∈ X, 1 being the unit in F .

It follows from the definition that

0x = 0, (−1)x = −x.

Example 1.2. Several spaces of functional analysis have the structure of linear spaces on R (real vector
spaces), C (complex vector spaces):

• C(Ω), Ω open set in Rn.
• H(ω), holomorphic functions on ω open set of C.
• all solutions of a linear ODE or linear PDE.
• X = {x = (a1, a2, . . . ), ai ∈ R}.

In the linear spaces we can define several construction and concepts, based only on linearity.
Given S, T ⊂ X, define

(1.3) S + T =
{

x = y + z, y ∈ S, z ∈ T
}

, −S =
{

x = −y, y ∈ S
}

, kS =
{

x = ky, y ∈ S
}

.

If Z, U are linear spaces over the same field, then

(1.4) Z ⊕ U =
{

(z, u), z ∈ Z, u ∈ U
}

.

A subset Y ⊂ X is a linear subspace of X if Y is a itself a linear space, i.e.

aY + bY ⊂ Y, a, b ∈ F.

If S ⊂ X, the linear span of S is the intersection of all linear subspaces Yσ containing S, i.e. it is the
smallest linear subspace of X containing S. Given the points x1, . . . , xn, the element

x =
n∑

i=1

aixi, ai ∈ F,

is called linear combination of {x1, . . . , xn}.
If X is generated by the linear combination of a finite number of points, we say that it is finite

dimensional, otherwise it is infinite dimensional.

Proposition 1.3. The linear span of S is the the set of all linear combinations of elements of S.

Proof. Clearly the linear span is a vector space which contains S, and it is contained in all subspace Y
containing S. ¤
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If Y is a linear subspace of X, then

(1.5) x1 ≡ x2 if x1 − x2 ∈ Y

is an equivalence relation: in fact
(1) x ≡ x since x− x = 0 ∈ Y ;
(2) x ≡ y implies x− y ∈ Y , i.e. −(x− y) = y − x ∈ Y , i.e. y ≡ x;
(3) x ≡ y, y ≡ z implies x− y ∈ Y , y − z ∈ Y , i.e. (x− y) + (y − z) = x− z ∈ Y , i.e. x ≡ z.

Proposition 1.4. The quotient set X/Y made of the equivalence classes mod Y is a linear space (quotient
space).

Proof. Denote by [x] the equivalent class of x. Define addition + by [x] + [y] = [x + y] and scalar
multiplication by k[x] = [kx]. This definition does not depend on the particular representative chosen:
in fact, if x′ ≡ x, y′ ≡ y, then

[x′ + y′] =
{

z : z − x′ − y′ ∈ Y
}

=
{

z : z − x− y ∈ Y + (x′ − x) + (y′ − y)
}

=
{

z : z − x− y ∈ Y
}

= [x + y],

and similarly for the scalar product

[kx′] =
{

z : z − kx′ ∈ Y
}

=
{

z : z − kx ∈ Y + k(x′ − x)
}

=
{

z : z − kx ∈ Y
}

= [kx].

Then it is clear that + is commutative and associative, and the inverse of [x] is [−x] = −[x], and the
scalar product satisfies (1.2). Moreover 1[x] = [1x] = [x] ¤

For real vector spaces one can define the notion of convexity: if K ⊂ X, K is called convex if

(1.6) aK + (1− a)K ⊂ K, 0 ≤ a ≤ 1,

or equivalently ax + (1− a)y ∈ K. An immediate consequence is that if x1, . . . , xn ⊂ K, then all convex
combinations

(1.7) x =
n∑

i=1

aixi, ai > 0,

n∑

i=1

ai = 1,

belong to K.
For complex vector spaces, we can extend the definition of K ⊂ X convex if

(1.8) aK + (1− a)K ⊂ K, a ∈ R, 0 ≤ a ≤ 1.

or one can introduce the notion of balanced sets: we define K ⊂ X balanced if

(1.9) aK ⊂ K for all |a| ≤ 1.

If S ⊂ X, then the convex hull of S is the intersection of all convex set containing S. It can be
characterized equivalently as the smallest convex set containing S or the set of all convex combination of
elements of S.

Proof. Clearly each convex sets containing S must contain its convex hull. Conversely the convex hull is
a convex set containing S. ¤

A convex set E ⊂ K, K convex, is called extreme set if E 6= ∅ and if (y + z)/2 ∈ E, then y, z ∈ E.
Also in finite dimension one can construct convex sets without extreme points.

2. Linear maps

If X U are two linear spaces, a mapping M : X 7→ U is a linear map iff

(2.1) M(x + y) = Mx + My, M(kx) = kMx.

An isomorphism of linear spaces is a map M which is one to one and onto.
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Proposition 2.1. If M : X 7→ U linear map, K ⊂ U convex, E ⊂ K extreme set, then

M−1(E) =
{

x ∈ X : M ∈ E
}

,

when non empty, is an extreme subset of M−1(K).

Proof. Clearly M−1(K) is a convex set: in fact if M(x),M(y) ∈ K, then

M(λx + (1− λ)y) = λMx + (1− λ)My ∈ K,

since K is convex.
Let x ∈ M−1(E), and assume that there exists y, z ∈ M−1(K) such that x = (y + z)/2. Then

Mx = M
(

y + z

2

)
=

1
2

(
My + Mz

)
,

so that My,Mz ∈ E, because E is extremal. ¤

Remark 2.2. In particular, if U = R and denoting the linear operator by `, if H ⊂ X convex, then the
extreme subset are Hmax = maxx∈H `x, Hmin = minx∈H `x. Thus if `−1(Hmax) 6= ∅, then this is an
extreme subset, and the same for `−1Hmin.

One can find examples of maps so that the image of extremal set are not extremal, also in finite
dimension.

Since we can define

(2.2) (M + N)x = Mx + Nx, (kM)x = kMx,

then the set of linear maps of X into U , denoted as L(X,U), is a linear space. If M : X → U ,
N : U → W , the composition NM : X → W is

NMx = N(Mx).

This ”product” is distributive, i.e. if P : X 7→ U , Q : Z 7→ X are linear maps,

N(M + P)x = NMx + NPx, (M + P)Qx = MQx + PQx.

If we have a third linear space Z ans a linear operator P : W 7→ Z, then by associativity of composition
of maps

(PN)Mx = P(NM)x.

A map M : X 7→ U is invertible if it maps X one to one and onto U , its inverse is denoted by M−1

and
M−1M = I ∈ L(X,X), MM−1 = I ∈ L(U,U).

The nullspace NM of M is the set

(2.3) NM =
{

x ∈ X : Mx = 0
}

,

the range RM is

(2.4) RM =
{

u ∈ U : ∃x ∈ X,Mx = u
}

.

Clearly both are linear subspaces, and M : X 7→ U is invertible iff NM = {0}, RM = U . Moreover,
M : X/NM 7→ RM is one to one and onto.

Composition of invertible maps is invertible, but the opposite is false in general, see exercises.
We now consider maps of X into itself, i.e. M ∈ L(X, X). We can define in this case the j-th power

Mj , with null space Nj = NMj . Clearly Nj ⊂ Nj+1, because if Mjx = 0 then

Mj+1x = M(Mjx) = M0 = 0.

Let Y be a linear subspace of X, and assume that Y is invariant for M,

MY ⊂ Y.

Then the operator L : X/Y 7→ X/Y defined by

L[x] = [Mx]
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is a linear operator. In fact, if x1 ≡ x2, then x2 = x1 + y, y ∈ Y , and

Mx1 ≡ Mx2

because Y is invariant. The linearity follows easily. Similar definitions can be naturally done in the case

(2.5) L : X/Y1 7→ X/Y2, L[x]Y1 = [Mx]Y2 , [x]Yi
∈ X/Yi,

Y1, Y2 linear subspace of X, Y1 invariant for M and Y1 ⊂ Y2.
In the following we will denote L simply as M. Similarly we denote with M the restriction of M from

Y to Y .
Given a vector space X, we say that X has finite dimension if there is a finite number of elements xi,

i = 1, . . . , n, such that X is the linear span of {x1, . . . , xn}:

(2.6) X =
{∑

i

aixi : ai ∈ F, xi ∈ X, i = 1, . . . , n

}
.

In this case we define the dimension of X, dim(X), as the minimal number of elements needed so that
(2.6) holds.

Proposition 2.3. We have

(2.7) dim
(
Nj/Nj−1

)
≥ dim

(
Nj+1/Nj

)
.

Note the opposite inequality w.r.t. Nj ⊂ Nj+1.

Proof. In fact, if [z] ∈ Nj+1/Nj , then z = x + Nj , where Mj+1x = 0. Thus

Mz = Mx + MNj ⊂ y + Nj−1,

where Mjy = 0. We have proved that Mz ∈ Nj/Nj−1.
We prove now that M : Nj+1/Nj 7→ Nj/Nj−1 is injective. In fact, if M([z1] − [z2]) = 0 in Nj/Nj−1,

with [z1], [z2] ∈ Nj+1/Nj , then M(z1 − z2) ∈ Nj−1, i.e. z1 − z2 ∈ Nj , or [z1] = [z2]. Thus M maps
Nj+1/Nj one to one into Nj/Nj−1. ¤

In particular, if for some j it happens Nj = Nj+1, then Nj = Nk for all k ≥ j.

Proposition 2.4. If M : Y 7→ Y and M : X/Y 7→ X/Y are invertible, then M : X 7→ X is invertible.

Proof. We first show that M is injective. In fact, if Mz = 0, then M[z] = 0, and from M : X/Y 7→ X/Y
invertible it follows that z ∈ Y , and from M : Y 7→ Y invertible it follows z = 0.

Next, to prove surjectivity, we look for Mx0 = u0. We can solve the above equation modulo Y , i.e.
there is x1 ∈ X such that Mx1 = u0 + z, z ∈ Y . From the first condition there is y ∈ Y such that
My = z, so that x0 = x1 − y. ¤

Note that in general if M is invertible and Y is invariant, M : Y 7→ Y , M : X/Y 7→ X/Y need not to
be invertible, see exercises.

3. Index of a linear map

A linear map is called degenerate if its range is finite dimensional,

(3.1) dim(RM) < ∞.

If A : X 7→ U is degenerate, and L : Z 7→ X, R : U 7→ V are linear maps, then

AL, RA

are degenerate. Moreover the set of degenerate maps from X to U is a linear subspace of L(X, U). For
the special case of maps from X into itself, the space of degenerate maps forms an ideal with respect to
the composition of maps.

We say that M : X 7→ U , L : U 7→ X are pseudoinverse iff

(3.2) LM = I + G, ML = I + G,

with G degenerate (from X to X or U 7→ U , respectively).
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Note that if M, L are pseudoinverse, then adding degenerate maps we obtain again pseudoinverse
maps. In fact, if A : X 7→ U is degenerate, then

L(M + A) = I + G + LA = I + G′,

with G′ degenerate. Similarly for L.
Moreover if M, L and A, B are couple of pseudoinverse maps, then the pseudinverse of AM is LB:

in fact
LBAM = L(I + G)M = LM + G′ = I + G′′.

We define the codimension of the linear subspace R ⊂ U by

(3.3) codimR = dim(U/R).

Proposition 3.1. A linear map M : X 7→ U has a pseudoinverse iff

(3.4) dim NM < ∞, codimRM < ∞.

Proof. For the ”only if” part, let L : U 7→ X be a pseudoinverse of X. If x ∈ NM, then

LMx = x + Gx = 0,

i.e. x ∈ RG which is finite dimensional. Similarly, if y ∈ RML = RI+G, then y ∈ RM, since RL ⊂ X.
This implies that RM ⊃ RI+G. It follows that

codimRM ≤ codimRI+G.

Since for x ∈ NG, then (I + G)x = x, then NG ⊂ RI+G, so that

codimRI+G ≤ codimNG.

Since G : X/NG 7→ RG is one to one, then codimNG = dim RG, in particular is finite dimensional. This
concludes the ”only if” part.

For the if part, we recall first Zorn’s Lemma.

Let A be a partially ordered set, i.e. there is an order relation ≤, defined for some pairs of elements
a, b ∈ A which is

• transitive:
a ≤ b, b ≤ c =⇒ a ≤ c;

• reflexive:
a ≤ a ∀a ∈ A;

• antisymmetric:
a ≤ b, b ≤ a =⇒ a = b.

A subset B of A is totally ordered if for all a, b ∈ B either a ≤ b or b ≤ a. An element u ∈ A is an upper
bound of a subset B ⊂ A if b ≤ u for all b in the subset B. A element m is maximal if every element a of
the set A such that a ≤ m or m ≤ a, satisfies a ≤ m.

Lemma 3.2 (Zorn’s Lemma). If every totally ordered subset of a partially ordered set has an upper
bound, then the partially ordered set has a maximal element.

By Zorn’s lemma for any subspace N of X there is a complementary (not unique!) subspace such that
X = N ⊕ Y , i.e. every x ∈ X can be written as

x = n + y, n ∈ N, y ∈ Y.

In fact, let A be the set of subspaces Y of X such that N ∩ Y = {0}, ordered by inclusion. The set A
is clearly partially ordered, and if {Yα}α is a totally ordered subset of A, then ∪αYα is an upper bound.
Thus there is a maximal element Y .

Assume now that there is an x /∈ N +Y . Then Y ′ = Y +span{x} is again in A, Y ( Y ′, contradicting
that Y is maximal. Thus for every x = n + y, and since Y ∩N = {0}, the decomposition is unique.

We can thus define the projection of x onto N by Px = n. Note that if N has finite codimension then
dim Y = codimN . In fact, the map

X/Y 3 [x] = [n + y] = [n] 7→ n ∈ N

is surjective and injective.



6 LINEAR SPACES

Decompose now
X = NM ⊕ Y, U = RM ⊕ V.

From the fact that M : X/NM 7→ RM one to one and onto, then M : Y 7→ RM is invertible: one in fact
can again use the identification

X/NN 3 [x] = [y] 7→ y ∈ Y,

so that
z ∈ RM =⇒ ∃![x] ∈ X/NM : M[x] = z =⇒ ∃!y ∈ Y : My = z.

Denote its inverse by M−1. Define now K = M−1PRM
. Clearly

KM =

{
I on Y

0 on NM

= I−PNM
, MK =

{
I on RM

0 on V
= I−PV .

By constructions the projections have finite dimensional range. ¤

We now introduce the index of a linear map with pseudoinverse:

(3.5) indM = dim NM − codimRM.

Theorem 3.3 (Stability of the index). If M : X 7→ U , L : U 7→ W are linear maps with pseudoinverse,
then

(3.6) indLM = indL + indM.

Proof. By considering the linear spaces X/NM, RL, we reduce to prove that

indLM = dim NL − codimRM,

with M one to one and L onto.
Decompose U = RM + Y , RM ∩ Y = {0} such that

(3.7) NL = (NL ∩RM) + (NL ∩ Y ).

This can be done using again Zorn’s Lemma, or just by finite dimensional arguments. In fact, we consider
NL ∩RM ⊂ NL. Then, we decompose first (we are in finite dimension)

NL = (NL ∩RM) + Ỹ , RM ∩ Ỹ = {0}.
Then we find a maximal subspace Y containing Ỹ and such that RM ∩ Y = {0}. As in the proof of
Proposition 3.1 one concludes that U = RM + Y , and (3.7) holds.

Since L is surjective, then the only points which are not mapped by L are the points in Y , or

W = (LY ) + RLM.

The number of different points in Y which are mapped by L are exactly Y/(Y ∩NL).
Since M is injective, then NLM are the points of X which are mapped by M into NL, i.e. NL ∩RM.
We conclude

dim NLM − codimRLM = dim(NL ∩RM)− dim(Y/(Y ∩NL))

= dim(NL ∩RM)− codim(RM) + dim(Y ∩NL)

= dim(NL)− codim(RM).

¤

4. Exercises

(1) On the one dimensional vector space C, consider the convex set C = {z = t, t ∈ [0, 1]} and the
point z̄ = i/2. Clearly there are not linear map M(z) = αz such that supC |M(z)| ≤ |M(z̄)|.
Show that instead this happens when C is considered with the linear structure of the real vector
space R2.

(2) Prove by means that the axioms on linear spaces that:
• every intersection and union of balanced sets is balanced;
• every intersection of convex sets is convex;
• A is convex iff sA + tA = (s + t)A for all s, t > 0.
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(3) Consider the linear space

X =
{

x = (a1, a2, . . . ), ai ∈ R
}

.

Define the linear maps R, L (right and left shift respectively) as

R(a1, a2, . . . ) = (0, a1, a2, . . . ), L(a1, a2, . . . ) = (a2, a3, . . . ).

• Prove that LR is invertible, but RL not.
• Show that are pseudoinverse of each other.
• Compute the null spaces, ranges and index and verify the index theorem.

(4) Prove that if L1, L2 are pseudinverse of M, then L1 − L2 is degenerate.
(5) Consider X as the space of bounded function on R, and let Sx(t) = x(t − 1) (right shift of 1).

Let Y be the subspace of functions which vanishes on x < 0.
• Prove that Y is invariant, but S is not invertible on either Y or X/Y .
• Compute the null space on X/Y .

(6) In the vector space C([0, 1],R) find the extremal subsets of

B =
{

u ∈ C([0, 1],R) : |u(x)| ≤ 1
}

.

(7) Let M ∈ L(X, Y ) be a linear map. Show that

dim
(
X/NM

)
= dim RM.

In particular, if Y = R or C, then dim(X/NM) = 1.


