LINEAR SPACES

1. Definition and basic properties of Linear spaces

Definition 1.1. A linear space X over a field F is a set whose elements are called vectors and where two operations, addition and scalar multiplication, are defined:
(1) addition, denoted by + , such that to every pair $x, y \in X$ there correspond a vector $x+y \in X$, and

$$
\begin{equation*}
x+y=y+x, \quad x+(y+z)=(x+y)+z, \quad x, y, z \in X ; \tag{1.1}
\end{equation*}
$$

$(X,+)$ is a group, with neutral element denoted by 0 and inverse denoted by,$- x+(-x)=$ $x-x=0$.
(2) scalar multiplication of $x \in X$ by elements $k \in F$, denoted by $k x \in X$, and

$$
\begin{equation*}
k(a x)=(k a) x, \quad k(x+y)=k x+k y, \quad(k+a) x=k x+a x, \quad x, y \in X, k, a \in F . \tag{1.2}
\end{equation*}
$$

Moreover $1 x=x$ for all $x \in X, 1$ being the unit in F.
It follows from the definition that

$$
0 x=0, \quad(-1) x=-x .
$$

Example 1.2. Several spaces of functional analysis have the structure of linear spaces on \mathbb{R} (real vector spaces), \mathbb{C} (complex vector spaces):

- $C(\Omega), \Omega$ open set in \mathbb{R}^{n}.
- $H(\omega)$, holomorphic functions on ω open set of \mathbb{C}.
- all solutions of a linear ODE or linear PDE.
- $X=\left\{x=\left(a_{1}, a_{2}, \ldots\right), a_{i} \in \mathbb{R}\right\}$.

In the linear spaces we can define several construction and concepts, based only on linearity.
Given $S, T \subset X$, define

$$
\begin{equation*}
S+T=\{x=y+z, y \in S, z \in T\}, \quad-S=\{x=-y, y \in S\}, \quad k S=\{x=k y, y \in S\} \tag{1.3}
\end{equation*}
$$

If Z, U are linear spaces over the same field, then

$$
\begin{equation*}
Z \oplus U=\{(z, u), z \in Z, u \in U\} \tag{1.4}
\end{equation*}
$$

A subset $Y \subset X$ is a linear subspace of X if Y is a itself a linear space, i.e.

$$
a Y+b Y \subset Y, \quad a, b \in F
$$

If $S \subset X$, the linear span of S is the intersection of all linear subspaces Y_{σ} containing S, i.e. it is the smallest linear subspace of X containing S. Given the points x_{1}, \ldots, x_{n}, the element

$$
x=\sum_{i=1}^{n} a_{i} x_{i}, \quad a_{i} \in F,
$$

is called linear combination of $\left\{x_{1}, \ldots, x_{n}\right\}$.
If X is generated by the linear combination of a finite number of points, we say that it is finite dimensional, otherwise it is infinite dimensional.

Proposition 1.3. The linear span of S is the the set of all linear combinations of elements of S.
Proof. Clearly the linear span is a vector space which contains S, and it is contained in all subspace Y containing S.

If Y is a linear subspace of X, then

$$
\begin{equation*}
x_{1} \equiv x_{2} \text { if } x_{1}-x_{2} \in Y \tag{1.5}
\end{equation*}
$$

is an equivalence relation: in fact
(1) $x \equiv x$ since $x-x=0 \in Y$;
(2) $x \equiv y$ implies $x-y \in Y$, i.e. $-(x-y)=y-x \in Y$, i.e. $y \equiv x$;
(3) $x \equiv y, y \equiv z$ implies $x-y \in Y, y-z \in Y$, i.e. $(x-y)+(y-z)=x-z \in Y$, i.e. $x \equiv z$.

Proposition 1.4. The quotient set X / Y made of the equivalence classes $\bmod Y$ is a linear space (quotient space).

Proof. Denote by $[x]$ the equivalent class of x. Define addition + by $[x]+[y]=[x+y]$ and scalar multiplication by $k[x]=[k x]$. This definition does not depend on the particular representative chosen: in fact, if $x^{\prime} \equiv x, y^{\prime} \equiv y$, then

$$
\begin{aligned}
{\left[x^{\prime}+y^{\prime}\right] } & =\left\{z: z-x^{\prime}-y^{\prime} \in Y\right\}=\left\{z: z-x-y \in Y+\left(x^{\prime}-x\right)+\left(y^{\prime}-y\right)\right\} \\
& =\{z: z-x-y \in Y\}=[x+y]
\end{aligned}
$$

and similarly for the scalar product

$$
\left[k x^{\prime}\right]=\left\{z: z-k x^{\prime} \in Y\right\}=\left\{z: z-k x \in Y+k\left(x^{\prime}-x\right)\right\}=\{z: z-k x \in Y\}=[k x]
$$

Then it is clear that + is commutative and associative, and the inverse of $[x]$ is $[-x]=-[x]$, and the scalar product satisfies (1.2). Moreover $1[x]=[1 x]=[x]$

For real vector spaces one can define the notion of convexity: if $K \subset X, K$ is called convex if

$$
\begin{equation*}
a K+(1-a) K \subset K, \quad 0 \leq a \leq 1 \tag{1.6}
\end{equation*}
$$

or equivalently $a x+(1-a) y \in K$. An immediate consequence is that if $x_{1}, \ldots, x_{n} \subset K$, then all convex combinations

$$
\begin{equation*}
x=\sum_{i=1}^{n} a_{i} x_{i}, \quad a_{i}>0, \sum_{i=1}^{n} a_{i}=1 \tag{1.7}
\end{equation*}
$$

belong to K.
For complex vector spaces, we can extend the definition of $K \subset X$ convex if

$$
\begin{equation*}
a K+(1-a) K \subset K, \quad a \in \mathbb{R}, \quad 0 \leq a \leq 1 \tag{1.8}
\end{equation*}
$$

or one can introduce the notion of balanced sets: we define $K \subset X$ balanced if

$$
\begin{equation*}
a K \subset K \text { for all }|a| \leq 1 \tag{1.9}
\end{equation*}
$$

If $S \subset X$, then the convex hull of S is the intersection of all convex set containing S. It can be characterized equivalently as the smallest convex set containing S or the set of all convex combination of elements of S.

Proof. Clearly each convex sets containing S must contain its convex hull. Conversely the convex hull is a convex set containing S.

A convex set $E \subset K, K$ convex, is called extreme set if $E \neq \emptyset$ and if $(y+z) / 2 \in E$, then $y, z \in E$. Also in finite dimension one can construct convex sets without extreme points.

2. Linear maps

If $X U$ are two linear spaces, a mapping $\mathbf{M}: X \mapsto U$ is a linear map iff

$$
\begin{equation*}
\mathbf{M}(x+y)=\mathbf{M} x+\mathbf{M} y, \quad \mathbf{M}(k x)=k \mathbf{M} x \tag{2.1}
\end{equation*}
$$

An isomorphism of linear spaces is a map \mathbf{M} which is one to one and onto.

Proposition 2.1. If $\mathbf{M}: X \mapsto U$ linear map, $K \subset U$ convex, $E \subset K$ extreme set, then

$$
\mathbf{M}^{-1}(E)=\{x \in X: \mathbf{M} \in E\}
$$

when non empty, is an extreme subset of $\mathbf{M}^{-1}(K)$.
Proof. Clearly $\mathbf{M}^{-1}(K)$ is a convex set: in fact if $\mathbf{M}(x), \mathbf{M}(y) \in K$, then

$$
\mathbf{M}(\lambda x+(1-\lambda) y)=\lambda \mathbf{M} x+(1-\lambda) \mathbf{M} y \in K
$$

since K is convex.
Let $x \in \mathbf{M}^{-1}(E)$, and assume that there exists $y, z \in \mathbf{M}^{-1}(K)$ such that $x=(y+z) / 2$. Then

$$
\mathbf{M} x=\mathbf{M}\left(\frac{y+z}{2}\right)=\frac{1}{2}(\mathbf{M} y+\mathbf{M} z)
$$

so that $\mathbf{M} y, \mathbf{M} z \in E$, because E is extremal.
Remark 2.2. In particular, if $U=\mathbb{R}$ and denoting the linear operator by ℓ, if $H \subset X$ convex, then the extreme subset are $H_{\max }=\max _{x \in H} \ell x, H_{\min }=\min _{x \in H} \ell x$. Thus if $\ell^{-1}\left(H_{\max }\right) \neq \emptyset$, then this is an extreme subset, and the same for $\ell^{-1} H_{\text {min }}$.

One can find examples of maps so that the image of extremal set are not extremal, also in finite dimension.

Since we can define

$$
\begin{equation*}
(\mathbf{M}+\mathbf{N}) x=\mathbf{M} x+\mathbf{N} x, \quad(k \mathbf{M}) x=k \mathbf{M} x \tag{2.2}
\end{equation*}
$$

then the set of linear maps of X into U, denoted as $L(X, U)$, is a linear space. If $\mathbf{M}: X \rightarrow U$, $\mathbf{N}: U \rightarrow W$, the composition $\mathbf{N M}: X \rightarrow W$ is

$$
\mathbf{N M} x=\mathbf{N}(\mathbf{M} x) .
$$

This "product" is distributive, i.e. if $\mathbf{P}: X \mapsto U, \mathbf{Q}: Z \mapsto X$ are linear maps,

$$
\mathbf{N}(\mathbf{M}+\mathbf{P}) x=\mathbf{N M} x+\mathbf{N P} x, \quad(\mathbf{M}+\mathbf{P}) \mathbf{Q} x=\mathbf{M} \mathbf{Q} x+\mathbf{P Q} x
$$

If we have a third linear space Z ans a linear operator $\mathbf{P}: W \mapsto Z$, then by associativity of composition of maps

$$
(\mathbf{P N}) \mathbf{M} x=\mathbf{P}(\mathbf{N M}) x .
$$

A map $\mathbf{M}: X \mapsto U$ is invertible if it maps X one to one and onto U, its inverse is denoted by \mathbf{M}^{-1} and

$$
\mathbf{M}^{-1} \mathbf{M}=I \in L(X, X), \quad \mathbf{M M}^{-1}=I \in L(U, U)
$$

The nullspace $N_{\mathbf{M}}$ of \mathbf{M} is the set

$$
\begin{equation*}
N_{\mathbf{M}}=\{x \in X: \mathbf{M} x=0\} \tag{2.3}
\end{equation*}
$$

the range R_{M} is

$$
\begin{equation*}
R_{\mathbf{M}}=\{u \in U: \exists x \in X, \mathbf{M} x=u\} . \tag{2.4}
\end{equation*}
$$

Clearly both are linear subspaces, and $\mathbf{M}: X \mapsto U$ is invertible iff $N_{\mathbf{M}}=\{0\}, R_{\mathbf{M}}=U$. Moreover, $\mathbf{M}: X / N_{\mathbf{M}} \mapsto R_{\mathbf{M}}$ is one to one and onto.

Composition of invertible maps is invertible, but the opposite is false in general, see exercises.
We now consider maps of X into itself, i.e. $\mathbf{M} \in L(X, X)$. We can define in this case the j-th power \mathbf{M}^{j}, with null space $N_{j}=N_{\mathbf{M}^{j}}$. Clearly $N_{j} \subset N_{j+1}$, because if $\mathbf{M}^{j} x=0$ then

$$
\mathbf{M}^{j+1} x=\mathbf{M}\left(\mathbf{M}^{j} x\right)=\mathbf{M} 0=0
$$

Let Y be a linear subspace of X, and assume that Y is invariant for \mathbf{M},

$$
\mathbf{M} Y \subset Y
$$

Then the operator $\mathbf{L}: X / Y \mapsto X / Y$ defined by

$$
\mathbf{L}[x]=[\mathbf{M} x]
$$

is a linear operator. In fact, if $x_{1} \equiv x_{2}$, then $x_{2}=x_{1}+y, y \in Y$, and

$$
\mathbf{M} x_{1} \equiv \mathbf{M} x_{2}
$$

because Y is invariant. The linearity follows easily. Similar definitions can be naturally done in the case

$$
\begin{equation*}
\mathbf{L}: X / Y_{1} \mapsto X / Y_{2}, \quad \mathbf{L}[x]_{Y_{1}}=[\mathbf{M} x]_{Y_{2}}, \quad[x]_{Y_{i}} \in X / Y_{i} \tag{2.5}
\end{equation*}
$$

Y_{1}, Y_{2} linear subspace of X, Y_{1} invariant for \mathbf{M} and $Y_{1} \subset Y_{2}$.
In the following we will denote \mathbf{L} simply as \mathbf{M}. Similarly we denote with \mathbf{M} the restriction of \mathbf{M} from Y to Y.

Given a vector space X, we say that X has finite dimension if there is a finite number of elements x_{i}, $i=1, \ldots, n$, such that X is the linear span of $\left\{x_{1}, \ldots, x_{n}\right\}$:

$$
\begin{equation*}
X=\left\{\sum_{i} a_{i} x_{i}: a_{i} \in F, x_{i} \in X, i=1, \ldots, n\right\} \tag{2.6}
\end{equation*}
$$

In this case we define the dimension of $X, \operatorname{dim}(X)$, as the minimal number of elements needed so that (2.6) holds.

Proposition 2.3. We have

$$
\begin{equation*}
\operatorname{dim}\left(N_{j} / N_{j-1}\right) \geq \operatorname{dim}\left(N_{j+1} / N_{j}\right) \tag{2.7}
\end{equation*}
$$

Note the opposite inequality w.r.t. $N_{j} \subset N_{j+1}$.
Proof. In fact, if $[z] \in N_{j+1} / N_{j}$, then $z=x+N_{j}$, where $\mathbf{M}^{j+1} x=0$. Thus

$$
\mathbf{M} z=\mathbf{M} x+\mathbf{M} N_{j} \subset y+N_{j-1}
$$

where $\mathbf{M}^{j} y=0$. We have proved that $\mathbf{M} z \in N_{j} / N_{j-1}$.
We prove now that $\mathbf{M}: N_{j+1} / N_{j} \mapsto N_{j} / N_{j-1}$ is injective. In fact, if $\mathbf{M}\left(\left[z_{1}\right]-\left[z_{2}\right]\right)=0$ in N_{j} / N_{j-1}, with $\left[z_{1}\right],\left[z_{2}\right] \in N_{j+1} / N_{j}$, then $\mathbf{M}\left(z_{1}-z_{2}\right) \in N_{j-1}$, i.e. $z_{1}-z_{2} \in N_{j}$, or $\left[z_{1}\right]=\left[z_{2}\right]$. Thus \mathbf{M} maps N_{j+1} / N_{j} one to one into N_{j} / N_{j-1}.

In particular, if for some j it happens $N_{j}=N_{j+1}$, then $N_{j}=N_{k}$ for all $k \geq j$.
Proposition 2.4. If $\mathbf{M}: Y \mapsto Y$ and $\mathbf{M}: X / Y \mapsto X / Y$ are invertible, then $\mathbf{M}: X \mapsto X$ is invertible.
Proof. We first show that \mathbf{M} is injective. In fact, if $\mathbf{M} z=0$, then $\mathbf{M}[z]=0$, and from $\mathbf{M}: X / Y \mapsto X / Y$ invertible it follows that $z \in Y$, and from $\mathbf{M}: Y \mapsto Y$ invertible it follows $z=0$.

Next, to prove surjectivity, we look for $\mathbf{M} x_{0}=u_{0}$. We can solve the above equation modulo Y, i.e. there is $x_{1} \in X$ such that $\mathbf{M} x_{1}=u_{0}+z, z \in Y$. From the first condition there is $y \in Y$ such that $\mathbf{M} y=z$, so that $x_{0}=x_{1}-y$.

Note that in general if \mathbf{M} is invertible and Y is invariant, $\mathbf{M}: Y \mapsto Y, \mathbf{M}: X / Y \mapsto X / Y$ need not to be invertible, see exercises.

3. Index of a Linear map

A linear map is called degenerate if its range is finite dimensional,

$$
\begin{equation*}
\operatorname{dim}\left(R_{\mathbf{M}}\right)<\infty \tag{3.1}
\end{equation*}
$$

If $\mathbf{A}: X \mapsto U$ is degenerate, and $\mathbf{L}: Z \mapsto X, \mathbf{R}: U \mapsto V$ are linear maps, then

AL, RA

are degenerate. Moreover the set of degenerate maps from X to U is a linear subspace of $L(X, U)$. For the special case of maps from X into itself, the space of degenerate maps forms an ideal with respect to the composition of maps.

We say that $\mathbf{M}: X \mapsto U, \mathbf{L}: U \mapsto X$ are pseudoinverse iff

$$
\begin{equation*}
\mathbf{L M}=\mathbf{I}+\mathbf{G}, \quad \mathbf{M L}=\mathbf{I}+\mathbf{G} \tag{3.2}
\end{equation*}
$$

with \mathbf{G} degenerate (from X to X or $U \mapsto U$, respectively).

Note that if \mathbf{M}, \mathbf{L} are pseudoinverse, then adding degenerate maps we obtain again pseudoinverse maps. In fact, if $\mathbf{A}: X \mapsto U$ is degenerate, then

$$
\mathbf{L}(\mathbf{M}+\mathbf{A})=\mathbf{I}+\mathbf{G}+\mathbf{L} \mathbf{A}=\mathbf{I}+\mathbf{G}^{\prime}
$$

with \mathbf{G}^{\prime} degenerate. Similarly for \mathbf{L}.
Moreover if \mathbf{M}, \mathbf{L} and \mathbf{A}, \mathbf{B} are couple of pseudoinverse maps, then the pseudinverse of $\mathbf{A M}$ is $\mathbf{L B}$: in fact

$$
\mathbf{L B A M}=\mathbf{L}(\mathbf{I}+\mathbf{G}) \mathbf{M}=\mathbf{L} \mathbf{M}+\mathbf{G}^{\prime}=\mathbf{I}+\mathbf{G}^{\prime \prime}
$$

We define the codimension of the linear subspace $R \subset U$ by

$$
\begin{equation*}
\operatorname{codim} R=\operatorname{dim}(U / R) \tag{3.3}
\end{equation*}
$$

Proposition 3.1. A linear map $\mathbf{M}: X \mapsto U$ has a pseudoinverse iff

$$
\begin{equation*}
\operatorname{dim} N_{\mathbf{M}}<\infty, \quad \operatorname{codim} R_{\mathbf{M}}<\infty \tag{3.4}
\end{equation*}
$$

Proof. For the "only if" part, let $\mathbf{L}: U \mapsto X$ be a pseudoinverse of X. If $x \in N_{\mathbf{M}}$, then

$$
\mathbf{L M} x=x+\mathbf{G} x=0
$$

i.e. $x \in R_{\mathbf{G}}$ which is finite dimensional. Similarly, if $y \in R_{\mathbf{M L}}=R_{\mathbf{I}+\mathbf{G}}$, then $y \in R_{\mathbf{M}}$, since $R_{\mathbf{L}} \subset X$. This implies that $R_{\mathbf{M}} \supset R_{\mathbf{I}+\mathbf{G}}$. It follows that

$$
\operatorname{codim} R_{\mathbf{M}} \leq \operatorname{codim} R_{\mathbf{I}+\mathbf{G}}
$$

Since for $x \in N_{\mathbf{G}}$, then $(\mathbf{I}+\mathbf{G}) x=x$, then $N_{\mathbf{G}} \subset R_{\mathbf{I}+\mathbf{G}}$, so that

$$
\operatorname{codim} R_{\mathbf{I}+\mathbf{G}} \leq \operatorname{codim} N_{\mathbf{G}}
$$

Since $\mathbf{G}: X / N_{\mathbf{G}} \mapsto R_{\mathbf{G}}$ is one to one, then $\operatorname{codim} N_{\mathbf{G}}=\operatorname{dim} R_{\mathbf{G}}$, in particular is finite dimensional. This concludes the "only if" part.

For the if part, we recall first Zorn's Lemma.
Let A be a partially ordered set, i.e. there is an order relation \leq, defined for some pairs of elements $a, b \in A$ which is

- transitive:

$$
a \leq b, b \leq c \quad \Longrightarrow \quad a \leq c
$$

- reflexive:

$$
a \leq a \quad \forall a \in A
$$

- antisymmetric:

$$
a \leq b, b \leq a \quad \Longrightarrow \quad a=b
$$

A subset B of A is totally ordered if for all $a, b \in B$ either $a \leq b$ or $b \leq a$. An element $u \in A$ is an upper bound of a subset $B \subset A$ if $b \leq u$ for all b in the subset B. A element m is maximal if every element a of the set A such that $a \leq m$ or $m \leq a$, satisfies $a \leq m$.
Lemma 3.2 (Zorn's Lemma). If every totally ordered subset of a partially ordered set has an upper bound, then the partially ordered set has a maximal element.

By Zorn's lemma for any subspace N of X there is a complementary (not unique!) subspace such that $X=N \oplus Y$, i.e. every $x \in X$ can be written as

$$
x=n+y, \quad n \in N, y \in Y
$$

In fact, let A be the set of subspaces Y of X such that $N \cap Y=\{0\}$, ordered by inclusion. The set A is clearly partially ordered, and if $\left\{Y_{\alpha}\right\}_{\alpha}$ is a totally ordered subset of A, then $\cup_{\alpha} Y_{\alpha}$ is an upper bound. Thus there is a maximal element Y.

Assume now that there is an $x \notin N+Y$. Then $Y^{\prime}=Y+\operatorname{span}\{x\}$ is again in $A, Y \subsetneq Y^{\prime}$, contradicting that Y is maximal. Thus for every $x=n+y$, and since $Y \cap N=\{0\}$, the decomposition is unique.

We can thus define the projection of x onto N by $\mathbf{P} x=n$. Note that if N has finite codimension then $\operatorname{dim} Y=\operatorname{codim} N$. In fact, the map

$$
X / Y \ni[x]=[n+y]=[n] \mapsto n \in N
$$

is surjective and injective.

Decompose now

$$
X=N_{\mathbf{M}} \oplus Y, \quad U=R_{\mathbf{M}} \oplus V
$$

From the fact that $\mathbf{M}: X / N_{\mathbf{M}} \mapsto R_{\mathbf{M}}$ one to one and onto, then $\mathbf{M}: Y \mapsto R_{\mathbf{M}}$ is invertible: one in fact can again use the identification

$$
X / N_{\mathbf{N}} \ni[x]=[y] \mapsto y \in Y
$$

so that

$$
z \in R_{\mathbf{M}} \Longrightarrow \exists![x] \in X / N_{\mathbf{M}}: \mathbf{M}[x]=z \Longrightarrow \exists!y \in Y: \mathbf{M} y=z
$$

Denote its inverse by \mathbf{M}^{-1}. Define now $\mathbf{K}=\mathbf{M}^{-1} \mathbf{P}_{R_{\mathbf{M}}}$. Clearly

$$
\mathbf{K M}=\left\{\begin{array}{ll}
\mathbf{I} & \text { on } Y \\
0 & \text { on } N_{\mathbf{M}}
\end{array}=\mathbf{I}-\mathbf{P}_{N_{\mathbf{M}}}, \quad \mathbf{M K}=\left\{\begin{array}{ll}
\mathbf{I} & \text { on } R_{\mathbf{M}} \\
0 & \text { on } V
\end{array}=\mathbf{I}-\mathbf{P}_{V} .\right.\right.
$$

By constructions the projections have finite dimensional range.
We now introduce the index of a linear map with pseudoinverse:

$$
\begin{equation*}
\operatorname{ind} \mathbf{M}=\operatorname{dim} N_{\mathbf{M}}-\operatorname{codim} R_{\mathbf{M}} \tag{3.5}
\end{equation*}
$$

Theorem 3.3 (Stability of the index). If $\mathbf{M}: X \mapsto U, \mathbf{L}: U \mapsto W$ are linear maps with pseudoinverse, then

$$
\begin{equation*}
\operatorname{ind} \mathbf{L} \mathbf{M}=\operatorname{ind} \mathbf{L}+\operatorname{ind} \mathbf{M} \tag{3.6}
\end{equation*}
$$

Proof. By considering the linear spaces $X / N_{\mathbf{M}}, R_{\mathbf{L}}$, we reduce to prove that

$$
\operatorname{ind} \mathbf{L} \mathbf{M}=\operatorname{dim} N_{\mathbf{L}}-\operatorname{codim} R_{\mathbf{M}}
$$

with \mathbf{M} one to one and \mathbf{L} onto.
Decompose $U=R_{\mathbf{M}}+Y, \mathbb{R}_{\mathbf{M}} \cap Y=\{0\}$ such that

$$
\begin{equation*}
N_{\mathbf{L}}=\left(N_{\mathbf{L}} \cap R_{\mathbf{M}}\right)+\left(N_{\mathbf{L}} \cap Y\right) \tag{3.7}
\end{equation*}
$$

This can be done using again Zorn's Lemma, or just by finite dimensional arguments. In fact, we consider $N_{\mathbf{L}} \cap R_{\mathbf{M}} \subset N_{\mathbf{L}}$. Then, we decompose first (we are in finite dimension)

$$
N_{\mathbf{L}}=\left(N_{\mathbf{L}} \cap R_{\mathbf{M}}\right)+\tilde{Y}, \quad R_{\mathbf{M}} \cap \tilde{Y}=\{0\} .
$$

Then we find a maximal subspace Y containing \tilde{Y} and such that $R_{\mathbf{M}} \cap Y=\{0\}$. As in the proof of Proposition 3.1 one concludes that $U=R_{\mathbf{M}}+Y$, and (3.7) holds.

Since \mathbf{L} is surjective, then the only points which are not mapped by \mathbf{L} are the points in Y, or

$$
W=(\mathbf{L} Y)+R_{\mathbf{L M}}
$$

The number of different points in Y which are mapped by \mathbf{L} are exactly $Y /\left(Y \cap N_{\mathbf{L}}\right)$.
Since \mathbf{M} is injective, then $N_{\mathbf{L M}}$ are the points of X which are mapped by \mathbf{M} into $N_{\mathbf{L}}$, i.e. $N_{\mathbf{L}} \cap R_{\mathbf{M}}$.
We conclude

$$
\begin{aligned}
\operatorname{dim} N_{\mathbf{L M}}-\operatorname{codim} R_{\mathbf{L M}} & =\operatorname{dim}\left(N_{\mathbf{L}} \cap R_{\mathbf{M}}\right)-\operatorname{dim}\left(Y /\left(Y \cap N_{\mathbf{L}}\right)\right) \\
& =\operatorname{dim}\left(N_{\mathbf{L}} \cap R_{\mathbf{M}}\right)-\operatorname{codim}\left(R_{\mathbf{M}}\right)+\operatorname{dim}\left(Y \cap N_{\mathbf{L}}\right) \\
& =\operatorname{dim}\left(N_{\mathbf{L}}\right)-\operatorname{codim}\left(R_{\mathbf{M}}\right) .
\end{aligned}
$$

4. Exercises

(1) On the one dimensional vector space \mathbb{C}, consider the convex set $C=\{z=t, t \in[0,1]\}$ and the point $\bar{z}=i / 2$. Clearly there are not linear map $\mathbf{M}(z)=\alpha z$ such that $\sup _{C}|\mathbf{M}(z)| \leq|\mathbf{M}(\bar{z})|$. Show that instead this happens when \mathbb{C} is considered with the linear structure of the real vector space \mathbb{R}^{2}.
(2) Prove by means that the axioms on linear spaces that:

- every intersection and union of balanced sets is balanced;
- every intersection of convex sets is convex;
- A is convex iff $s A+t A=(s+t) A$ for all $s, t>0$.
(3) Consider the linear space

$$
X=\left\{x=\left(a_{1}, a_{2}, \ldots\right), a_{i} \in \mathbb{R}\right\} .
$$

Define the linear maps \mathbf{R}, \mathbf{L} (right and left shift respectively) as

$$
\mathbf{R}\left(a_{1}, a_{2}, \ldots\right)=\left(0, a_{1}, a_{2}, \ldots\right), \quad \mathbf{L}\left(a_{1}, a_{2}, \ldots\right)=\left(a_{2}, a_{3}, \ldots\right)
$$

- Prove that $\mathbf{L R}$ is invertible, but $\mathbf{R L}$ not.
- Show that are pseudoinverse of each other.
- Compute the null spaces, ranges and index and verify the index theorem.
(4) Prove that if $\mathbf{L}_{1}, \mathbf{L}_{2}$ are pseudinverse of \mathbf{M}, then $\mathbf{L}_{1}-\mathbf{L}_{2}$ is degenerate.
(5) Consider X as the space of bounded function on \mathbb{R}, and let $\mathbf{S} x(t)=x(t-1)$ (right shift of 1). Let Y be the subspace of functions which vanishes on $x<0$.
- Prove that Y is invariant, but \mathbf{S} is not invertible on either Y or X / Y.
- Compute the null space on X / Y.
(6) In the vector space $C([0,1], \mathbb{R})$ find the extremal subsets of

$$
B=\{u \in C([0,1], \mathbb{R}):|u(x)| \leq 1\}
$$

(7) Let $\mathbf{M} \in L(X, Y)$ be a linear map. Show that

$$
\operatorname{dim}\left(X / N_{\mathbf{M}}\right)=\operatorname{dim} R_{\mathbf{M}}
$$

In particular, if $Y=\mathbb{R}$ or \mathbb{C}, then $\operatorname{dim}\left(X / N_{\mathbf{M}}\right)=1$.

