EXAMINATION 7

(1) Let X be an infinite dimensional Banach space and consider the duality application:

$$X \ni u \mapsto \Big\{ \ell \in X^* : \|\ell\|_{X^*} = 1, \ell u = \|u\| \Big\}.$$

• Construct two sequences $\{u_n\}_{n\in\mathbb{N}}\subset X, \{\ell_n\}_{n\in\mathbb{N}}\subset X^*$ such that

$$\ell_n u_m = \begin{cases} 1 & n = m \\ 0 & n \neq m \end{cases} \quad \mathbf{e} \quad \|u_n\|_X = 1 \ \forall n \in \mathbb{N}.$$

• Let $\{\alpha_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$ be a sequence of complex numbers, and consider the operator

$$\mathbf{M}: X \mapsto X, \quad \mathbf{M}u = \sum_{n=1}^{\infty} \alpha_n(\ell_n u) u_n.$$

Give conditions on $\{\alpha_n\}_n$ so that **M** is well defined.

- Is M compact? Compute its spectrum.
- Prove that if $X = \ell^1$, $u_n = e_{n+1}$, $\ell_n = e_1 + e_{n+1}$, with

$$e_n: \mathbb{N} \mapsto \mathbb{C}, \quad e_n(i) = \begin{cases} 1 & i = n \\ 0 & i \neq n \end{cases}$$

then the assumption $|\alpha_n| \leq C < \infty$ does not imply that **M** is well defined.

- Give a necessary and sufficient condition on $\{\alpha_n\}_n$ if X = H Hilbert.
- (2) Let A be a compact set in \mathbb{C} and

$$K_A = \Big\{ u \in \ell^p, p = 1, \infty : u(t) \in A \Big\}.$$

- Prove that K_A is weakly closed in ℓ^1 and weakly* closed in ℓ^{∞} .
- Write the projection operator for ℓ^1 . Give an example for which there is not a unique projection for $u \in \ell^{\infty}$.
- Consider the subspace of ℓ^1

$$K = \bigg\{ u \in \ell^1 : \sum_n u(n) = 0 \bigg\}.$$

Show that K is not empty, closed and convex, but the projection of an element $u \notin K$ on K is not unique.

- (3) Consider $L^{\infty}((0,1),\mathbb{C})$ with the sup norm.
 - Show that $C([0,1],\mathbb{C})$ is a closed subspace of L^{∞} .
 - Show that if $u \in L^{\infty}$ satisfies

$$\int_{0}^{1} u(t)f(t) = 0 \quad \forall f \in L^{1}((0,1), \mathbb{C}),$$

then $u \equiv 0$.

• Let Z be a closed linear complement of C([0,1]) in L^{∞} . Show that

$$L^{\infty}/Z = C([0,1]), \quad (L^{\infty}/Z)^* = \left\{ \ell \in (L^{\infty})^* : \ell z = 0 \ \forall z \in Z \right\},$$

and deduce that $Z = \{0\}$.

(4) Consider the space $C((-1,1),\mathbb{C})$ of continuous functions in (-1,1) with the family of seminorms

$$p_n(u) = \max_{|x| \le 1 - 1/n} |u(x)| = ||u||_{C(|x| \le 1 - 1/n)}$$

• Show that C((-1,1)) is a Fréchet space.

EXAMINATION 7

• Let C^* be the dual space of C((-1, 1)). Show that

$$P_n(\ell) = \sup\Big\{\ell u : p_n(u) \le 1\Big\}$$

- makes C^* a Fréchet space. The topology generated by P_n is the *strong topology*. Find a sequence ℓ_n weakly* convergent, but not strongly convergent.
- (5) Consider the space of bounded Radon measures on \mathbb{R} , considered as the dual space of

$$C_0(\mathbb{R};\mathbb{C}) = \left\{ u \text{ continue}, \lim_{|x| \to \infty} u(x) = 0 \right\}$$

• Construct a sequence μ_n with norm 1 but weakly^{*} convergent to 0. Describe the set

$$\left\{\mu(\mathbb{R}), \mu = \lim_{n \to \infty} \mu_n \text{ weakly}^*\right\}.$$

- Show that is the support of all μ_n , μ_n positive measures with norm 1, is contained in a compact set, then every weak* limit has norm 1.
- (6) Consider the Banach space $C([0,1],\mathbb{C})$ with the sup norm, and two sequences of functions

$$\{g_1,\ldots,g_n\}, \{h_1,\ldots,h_n\},\$$

Moreover define the operator

$$(\mathbf{M}u)(t) = \sum_{i=1}^{n} g_i(t) \int_0^1 u(s)h_i(s)ds.$$

- Show that **M** is compact.
- Compute eigenvalues and eigenvectors.
- Give conditions such that

$$u - \mathbf{M}u = v$$

has a solution.