EXAMINATION 6

(1) On the complete metric space (X, d) consider the set of maps

$$\mathbf{T}_{\lambda}: X \mapsto X, \quad d(\mathbf{T}_{\lambda}(x), \mathbf{T}_{\lambda}(y)) \le \lambda d(x, y),$$

with $\lambda \in [0, 1)$. Denote with x_{λ} the fixed point of \mathbf{T}_{λ} .

- Show that if $\lambda \mapsto \mathbf{T}_{\lambda}(x)$ is pointwise continuous, then $\lambda \mapsto x_{\lambda}$ is continuous.
- Give an example for which $\lambda \to 1$ but x_{λ} does not converge.
- Show that the set of contractions is not open in the uniform topology

$$D(\mathbf{T}, \mathbf{S}) = \sup_{x \in X} d(\mathbf{T}(x), \mathbf{S}(x))$$

In the case X Banach, suggest a suitable topology such that the set of contractions is open and prove it.

(2) Consider the space of simple integrable functions

$$X = \left\{ u : [0,1] \mapsto \mathbb{C} : \ u = \sum_{i} \alpha_i \chi \{ x : a_i < x < b_i \}, \ \alpha_i \in \mathbb{C}, \ a_i, b_i \in \mathbb{Q} \cap [0,1] \right\},$$

with the norm

$$||u||_{L^1} = \int_0^1 |u(t)| dt.$$

- Which is the closure of X? Is it separable?
- Prove that $\sigma(X^*, X)$ is metrizable and write an explicit metric.
- Construct a family of linear functionals which are pointwise bounded over X but not uniformly bounded.
- (3) In the Hilbert space $L^2((-1,1),\mathbb{C})$ consider the set

$$K = \left\{ u \in L^2 : |u(t)| \le 1 \text{ a.e.} \right\}.$$

- Study if K is convex, closed, compact and absorbing.
- Show that

$$(\mathbf{P}_{K}u)(t) = \begin{cases} u(t)/|u(t)| & |u(t)| > 1\\ u(t) & |u(t)| \le 1 \end{cases}$$

is the projection operator over K.

• Prove that if $K \subset E$, with E closed subspace of H Hilbert, then

$$\mathbf{P}_K = \mathbf{P}_K \circ \mathbf{P}_E.$$

• Write the projection operator **P** over $K \cap E$, where $E = \{u : u(t) = u(-t) \text{ a.e.}\}$.

(4) Let $A \subset \mathbb{C}$ be a compact set, and consider the subset of L^p , $p \in [1, \infty)$,

$$K_A = \left\{ u \in L^p((0,1), \mathbb{C}) : u(t) \in A \text{ a.e.} \right\}.$$

- Show that K_A is strongly closed in L^p .
- Prove that if A is convex, then K_A is weakly closed L^p .
- K_A satisfies the assumptions of Krein Milman theorem? Write its extremal points.
- (5) Let $a_i \in \mathbb{R}$ be a sequence of real numbers, and $1 < q < p < \infty$. Assume that

$$au = \{a_1u_1, a_2u_2, \dots\} \in \ell^q \quad \forall u = \{u_1, u_2, \dots\} \in \ell^p.$$

Show that $a \in \ell^r$ with r = pq/(p-q). What happens for $p = +\infty$? (6) Consider the sequence of functions

$$\iota_n(x) = \chi_{(n,n+1)}(x) \in L^1(\mathbf{R})$$

Show that there are no converging subsequences $u_{n_k}(x)$ for the topology $\sigma(L^1, L^\infty)$.