EXAMINATION 5

(1) Let H be a separable Hilbert space, let $\{e_n\}_{n\in\mathbb{N}}$ an orthonormal and consider the space

$$X = \left\{ \sum_{i \text{ finite}} \alpha_i e_i, \alpha_i \in \mathbb{C} \right\} = \operatorname{span} \{ e_n, n \in \mathbb{N} \},$$

with the norm induced by H.

- Show that X is of first category in H, and find an explicit representation of X^* . Is X^* reflexive?
- Find a sequence $\{\ell_n\}_n \subset X^*$ converging to 0 in the weak* topology $\sigma(X^*, X)$ such that $\|\ell_n\|_{X^*} \to \infty$.
- Prove that if $\|\ell_n\|_{X^*} \leq C < \infty$ for all n, then $\ell_n \rightharpoonup \ell$ in $\sigma(X^*, X)$ implies that

$$\ell_n u \to \ell u, \quad \forall u \in H$$

(2) In the Banach space $C([0, 1], \mathbb{C})$ consider the operator

$$(\mathbf{M}u)(t) = \int_0^1 g(t,s)u(s)ds, \quad g(t,s) \in C^1(\mathbb{R}^2,\mathbb{C}).$$

- Show that **M** is compact.
- In the special case

$$g(t,s) = g(t)h(s),$$

compute the spectrum of **M**. Is $\lambda = 0$ an eigenvalue of **M**?

- Which conditions should g(t, x) satisfy if we require **M** to be self-adjoint on the Hilbert space $L^2((0, 1), \mathbb{C})$?
- (3) Consider the Banach space ℓ^{∞} .
 - Show that $\ell^{\infty} = (\ell^1)^*$.
 - Deduce the existence of extremal point of ℓ^{∞} and write explicitly all the extremal points.
 - Consider the set of extremal points

$$\ell^{\infty} \ni \{u_k\}_{k \in \mathbb{N}}, \quad u_k(n) = \begin{cases} 0 & n \neq k \\ 1 & n = k. \end{cases}$$

Show that $\overline{B_{\ell^{\infty}}(0,1)}$ is the weak* closure of $\{u_k\}_k$ in the topology $\sigma(\ell^{\infty},\ell^1)$, but not in the topology $\sigma(\ell^{\infty},(\ell^{\infty})^*)$.

(4) Consider the Banach space $C([0,1],\mathbb{C})$ and the operator

$$\mathbf{M}: C([0,1],\mathbb{C}) \mapsto C([0,1],\mathbb{C}), \quad (\mathbf{M}_{\bar{s}}u)(t) = u(t) - u(\bar{s}), \quad \bar{s} \in [0,1].$$

- Compute $N_{\mathbf{M}_{\bar{s}}}, R_{\mathbf{M}_{\bar{s}}}$.
- Find the index of $\mathbf{M}_{\bar{s}}$. Is $\mathbf{M}_{\bar{s}}$ compact?
- Find the conditions such that

$$\mathbf{M}_{\bar{s}}u = v$$

admits at least one solution, and in that case find all solutions.

(5) i) Let f_n be a sequence of $L^2(0,1)$ such that

$$f_n \rightharpoonup f$$
 and $||f_n||_2 \rightarrow ||f||_2$.

Show that $f_n \to f$ strongly in L^2 . *ii*) Construct a sequence $f_n \in L^1(0,1)$, $f_n \ge 0$, such that $f_n \rightharpoonup f$ in $\sigma(L^1, L^\infty)$, $||f_n||_1 \to ||f||_1$ but f_n does not converge in norm to f in L^1 .