EXAMINATION 4

(1) Let $K \subset H$ closed, convex and non empty, $P_{K}: H \mapsto H$ be the projection operator on K.

- Show that $\forall z \in K$

$$
\left(x-P_{K} x, z-P_{K} x\right) \leq 0
$$

- Prove that if $y \in K$ and

$$
(x-y, z-y) \leq 0 \quad \forall z \in K
$$

then $y=P_{K} x$.

- Deduce that for all $x, w \in H$

$$
\left\|P_{K} x-P_{K} w\right\| \leq\|x-w\|
$$

- Fix $H=\ell^{2}$ and

$$
K=\left\{u \in \ell^{2}, u_{2 n-1}=2^{n} u_{2 n}\right\} .
$$

Prove that K is closed, convex, find K^{\perp} and write the projector P_{K}. Is P_{K} linear?

- Show that for $\ell^{p}, p \neq 2$, it can happen that $\left\|P_{K} x-P_{K} w\right\|_{\ell^{p}}>\|x-y\|_{\ell^{p}}$.
(2) Consider the space ℓ^{2} and the space

$$
h^{1}=\left\{u: \mathbb{N} \mapsto \mathbb{C}:\{n u(n)\} \in \ell^{2}\right\},
$$

with the scalar products

$$
(u, v)_{\ell^{2}}=\sum_{n} u_{n} \bar{v}_{n}, \quad(u, v)_{h^{1}}=\sum_{n} n^{2} u_{n} \bar{v}_{n}
$$

- Show that h^{1} is an Hilbert space, which can be embedded into ℓ^{2}.
- Prove that $h^{1} \hookrightarrow \hookrightarrow \ell^{2}$, i,e. the embedding is compact.
- Let $v \in \ell^{2}$, and consider the linear functional on h^{1} defined by

$$
(u, v)=\sum_{n} u(n) \bar{v}(n)
$$

Find the Riesz-Fréchet representation $v_{h_{1}}$ of v in h^{1}. Show that the above representation of linear functionals is meaningful if $u \in h^{1}$ and $\left\{v_{n} / n\right\}_{n} \in \ell^{2}$. Thus $\left(\ell^{2}\right)^{*} h^{1}$.

- Prove conversely that every $w \in h^{1}$ can be extended to a linear functional over ℓ^{2} by

$$
w u=\sum_{n} u(n) w(n),
$$

i.e. $\left(h^{1}\right)^{*} \subset \ell^{2}$.
(3) Let H be a separable Hilbert space with base $\left\{e_{n}\right\}_{n \in \mathbb{N}}$. Let $\mathbf{M}: H \mapsto H$ be such that

$$
\sum_{n}\left\|\mathbf{M} e_{n}\right\|^{2}<\infty
$$

- Show that \mathbf{M} is compact.
- Prove that the quantity

$$
\|\mathbf{M}\|_{\mathrm{HS}}=\left(\sum_{n}\left\|T e_{n}\right\|^{2}\right)^{1 / 2}
$$

is independent on the choice of the base $\left\{e_{n}\right\}_{n \in \mathbb{N}}$.

- Show that the subspace of $\mathcal{L}(H)$

$$
\mathcal{H}=\left\{\mathbf{M}: H \mapsto H:\|\mathbf{M}\|_{\mathrm{HS}}<\infty\right\}
$$

is a closed subspace w.r.t. $\|\cdot\|_{\text {HS }}$.
(4) Let $\mathbf{M} \in \mathcal{L}(X, Y), X, Y$ Banach, with finite index. We will denote this set by $\mathcal{F}(X, Y)$.

- Show that from the fact that R_{M} has finite codimension, then R_{M} is closed.
- Show that the pseudo inverse belongs to $\mathcal{L}(Y, X)$.
- Assume that there is \mathbf{L} such that

$$
\mathbf{M} \circ \mathbf{L}-\mathbf{I}_{Y} \in \mathcal{K}(Y), \quad \mathbf{L} \circ \mathbf{M}-\mathbf{I}_{X} \in \mathcal{K}(X) .
$$

Prove that $\mathbf{M} \in \mathcal{F}(X, Y)$.

- Deduce that $\mathcal{F}(X, Y)$ is open w.r.t. the operator norm.
- Using the stability of the index, prove that IndM is constant w.r.t. the operator norm, hence is constant on every connected component of $\mathcal{F}(X, Y)$.
(5) Consider the linear operator

$$
\mathbf{M}: C([0,1] ; \mathbb{C}) \mapsto C([0,1] ; \mathbb{C}), \quad \mathbf{M}(u)(t)=\int_{0}^{t} h(s) u(s) d s
$$

with $h \in C([0,1], \mathbb{C})$.

- Show that \mathbf{M} is compact, and find its spectrum.
- Is $\mathbf{M}: L^{2}(0,1) \mapsto L^{2}(0,1)$ self adjoint?
- Assume that $h(s)=1$. Find explicitly the solutions to

$$
u-\mathbf{M} u=f
$$

for $f \in C([0,1], \mathbb{C})$.

