EXAMINATION 4

(1) Let $K \subset H$ closed, convex and non empty, $P_K : H \mapsto H$ be the projection operator on K. • Show that $\forall z \in K$

$$(x - P_K x, z - P_K x) \le 0.$$

• Prove that if $y \in K$ and

$$(x-y, z-y) \le 0 \quad \forall z \in K,$$

then $y = P_K x$.

• Deduce that for all $x, w \in H$

$$||P_K x - P_K w|| \le ||x - w||.$$

• Fix $H = \ell^2$ and

$$K = \Big\{ u \in \ell^2, u_{2n-1} = 2^n u_{2n} \Big\}.$$

Prove that K is closed, convex, find K^{\perp} and write the projector P_K . Is P_K linear? • Show that for ℓ^p , $p \neq 2$, it can happen that $\|P_K x - P_K w\|_{\ell^p} > \|x - y\|_{\ell^p}$.

- (2) Consider the space ℓ^2 and the space

$$h^{1} = \left\{ u : \mathbb{N} \mapsto \mathbb{C} : \{ nu(n) \} \in \ell^{2} \right\},\$$

with the scalar products

$$(u,v)_{\ell^2} = \sum_n u_n \bar{v}_n, \quad (u,v)_{h^1} = \sum_n n^2 u_n \bar{v}_n.$$

- Show that h¹ is an Hilbert space, which can be embedded into l².
 Prove that h¹ ↔ ℓ², i.e. the embedding is compact.
- Let $v \in \ell^2$, and consider the linear functional on h^1 defined by

$$(u,v) = \sum_{n} u(n)\bar{v}(n).$$

Find the Riesz-Fréchet representation v_{h_1} of v in h^1 . Show that the above representation of linear functionals is meaningful if $u \in h^1$ and $\{v_n/n\}_n \in \ell^2$. Thus $(\ell^2)^*h^1$.

• Prove conversely that every $w \in h^1$ can be extended to a linear functional over ℓ^2 by

$$wu = \sum_{n} u(n)w(n),$$

i.e. $(h^1)^* \subset \ell^2$.

(3) Let H be a separable Hilbert space with base $\{e_n\}_{n \in \mathbb{N}}$. Let $\mathbf{M} : H \mapsto H$ be such that

$$\sum_{n} \|\mathbf{M}e_n\|^2 < \infty.$$

- Show that **M** is compact.
- Prove that the quantity

$$\|\mathbf{M}\|_{\mathrm{HS}} = \left(\sum_n \|Te_n\|^2\right)^{1/2}$$

- is independent on the choice of the base $\{e_n\}_{n \in \mathbb{N}}$.
- Show that the subspace of $\mathcal{L}(H)$

$$\mathcal{H} = \left\{ \mathbf{M} : H \mapsto H : \|\mathbf{M}\|_{\mathrm{HS}} < \infty \right\}$$

is a closed subspace w.r.t. $\|\cdot\|_{HS}$.

(4) Let $\mathbf{M} \in \mathcal{L}(X, Y)$, X, Y Banach, with finite index. We will denote this set by $\mathcal{F}(X, Y)$.

EXAMINATION 4

- Show that from the fact that $R_{\mathbf{M}}$ has finite codimension, then $R_{\mathbf{M}}$ is closed.
- Show that the pseudo inverse belongs to $\mathcal{L}(Y, X)$.
- $\bullet\,$ Assume that there is ${\bf L}$ such that

$$\mathbf{M} \circ \mathbf{L} - \mathbf{I}_Y \in \mathcal{K}(Y), \quad \mathbf{L} \circ \mathbf{M} - \mathbf{I}_X \in \mathcal{K}(X).$$

Prove that $\mathbf{M} \in \mathcal{F}(X, Y)$.

- Deduce that $\mathcal{F}(X, Y)$ is open w.r.t. the operator norm.
- Using the stability of the index, prove that Ind**M** is constant w.r.t. the operator norm, hence is constant on every connected component of $\mathcal{F}(X, Y)$.
- (5) Consider the linear operator

$$\mathbf{M}: C([0,1];\mathbb{C}) \mapsto C([0,1];\mathbb{C}), \quad \mathbf{M}(u)(t) = \int_0^t h(s)u(s)ds,$$

with $h \in C([0,1], \mathbb{C})$.

- Show that **M** is compact, and find its spectrum.
- Is $\mathbf{M}: L^2(0,1) \mapsto L^2(0,1)$ self adjoint?
- Assume that h(s) = 1. Find explicitly the solutions to

$$u - \mathbf{M}u = f$$

for
$$f \in C([0,1],\mathbb{C})$$
.