EXAMINATION 1

(1) Let \mathbf{A} be a linear operator from the vector space X into itself.

- Assume that X is finite dimensional. Using the decomposition of \mathbf{A} in Jordan blocks, prove that

$$
\operatorname{codim}\left(R_{\mathbf{A}}\right)-\operatorname{dim}\left(N_{\mathbf{A}}\right)=0
$$

Prove also that if $N=\operatorname{dim} X$, then

$$
\operatorname{dim}\left(N_{\mathbf{A}^{N}}\right)=\operatorname{dim}\left(N_{\mathbf{A}^{N+k}}\right) \quad \forall k \in \mathbb{N} .
$$

- Find an example of an infinite dimensional space X and an operator $\mathbf{A}: x \mapsto X$ such that

$$
\operatorname{codim}\left(R_{\mathbf{A}}\right)-\operatorname{dim}\left(N_{\mathbf{A}}\right) \neq 0
$$

and

$$
\operatorname{dim}\left(N_{\mathbf{A}^{n}}\right)>\operatorname{dim}\left(N_{\mathbf{A}^{m}}\right) \quad \forall n>m .
$$

(2) Consider the space

$$
X=\left\{u=\left(u_{1}, u_{2}, u_{3}, \ldots\right), \sharp\left\{n: u_{n} \neq 0\right\}<\infty\right\}
$$

i.e. the set of sequences which has a finite number of elements different form 0 , with the topology inherited from $\mathbb{R}^{\mathbb{N}}$.

- Find the bounded sets of X and prove that they are compact.
- Show that the countable family of seminorms

$$
p_{n}(u)=\left|u_{n}\right|
$$

generate the same topology: give an explicit invariant metric d on X.

- Show that

$$
X=\bigcup_{i \in \mathbb{N}} C_{i}
$$

with C_{i} closed and with empty interior. Deduce that d is not complete.

- Show directly with an example that d is not complete.
(3) Let X be the same vector space as before, but with the norm

$$
\|u\|=\sup _{n \in \mathbb{N}}\left|u_{n}\right|
$$

- Prove that the completion of X is

$$
c_{0}=\left\{u=\left(u_{1}, u_{2}, u_{3}, \ldots\right), \lim _{n \rightarrow \infty} u_{n}=0\right\}
$$

which is a Banach space.

- Let $\ell \in\left(c_{0}\right)^{*}$ be a linear continuous functional. Show that

$$
\|\ell\|_{\left(c_{0}\right)^{*}}=\sum_{n=1}^{\infty}\left|\ell_{n}\right|
$$

where $\ell_{n}=\ell e_{n}$, with

$$
\left(e_{n}\right)_{i}= \begin{cases}1 & i=n \\ 0 & i \neq n\end{cases}
$$

- Show that the vector base $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ is not a linear Hamel base.
(4) Let $B(S)$ be the set of uniformly bounded functions from a set S into \mathbb{R}. Consider a subspace Y and a functional $\ell: Y \mapsto \mathbb{R}$ such that

$$
y \geq 0 \text { on } S \quad \Longrightarrow \quad \ell y \geq 0
$$

- Show that if Y contains the function 1 (i.e. the function with constant value 1), then ℓ can be extended to a positive functional on all $B(S)$, i.e.

$$
x(t) \geq 0, t \in S \quad \Longrightarrow \quad \ell x \geq 0
$$

(Consider the function $p(x)=C \sup _{t \in S} x(t)$, with C has to be chosen.)

- Find an example where such an extension is not possible.
(5) Let X as in exercise (2) with the sup norm

$$
\|u\|=\sup _{n \in \mathbb{N}}\left|u_{n}\right|
$$

and consider the two sets

$$
A=\left\{u \in X: u_{2 n}=0, n \in \mathbb{N}\right\}, \quad B=\left\{u \in X: u_{2 n-1}=2^{n} u_{n}\right\} .
$$

- Show that A, B are closed, and that $A \cap B=\emptyset, X=A+B$.
- Prove that P_{A}, P_{B} defined by the equation

$$
x=P_{A} x+P_{B} x, \quad P_{A} x \in A, \quad P_{B} x \in B,
$$

are not continuous. Deduce that X is not complete.

- Consider the norm

$$
\|u\|_{1}=\sup _{n \in \mathbb{N}}\left\{2^{n}\left|u_{2 n}\right|+\left|u_{2 n-1}\right|\right\} .
$$

Prove with this norm P_{A}, P_{B} are continuous. As a consequence, show that are continuous also in the completion of X with $\|\cdot\|_{1}$.

