Dissipative dynamics on large spin chains

Fabio Benatti

Department of Physics, University of Trieste, Italy

SISSA, February 4-5th, 2016

Outline I

Introduction

- 2
- **Quantum fluctuations**
- Quantum spin chains
- Quantum central limit
- 3 Dissipative Interlude
 - Dissipative entanglement generation
- Mesoscopic dissipative dynamics
 - Microscopic dissipative dynamics
 - Mesoscopic dynamics
 - Mesoscopic entanglement
- Open double spin chain
 - Microscopic dissipative dynamics
 - Mesoscopic entanglement

Introduction

- Infinite quantum spin chains: transition from micro to macro in the large N limit
- Microscopic description level: finitely localized spin observables
- Macroscopic description level: collective observables
 - mean field quantities, 1/N scaling
 - commutative behaviour
- At the interface between micro and macro: mesoscopic description level
 - quantum fluctuations, scaling $\frac{1}{\sqrt{N}}$
 - Bosonic behaviour
- Mesoscopic Entanglement: two clouds of 10¹¹ Caesium atoms entangled by light

Julsgaard, Kozhekin, Polzik, Lett. Nature **413** (2001) Narnhofer, Thirring, PRA **66** (2002)

Quantum spin chains Quantum central limit

Quantum spin chains

- Quantum spin chain: a one-dimensional lattice supporting a same finite-dimensional matrix algebra A^(j) = M_d(C)
- Local sub-algebras: $\mathcal{A}_{[q,p]} = \bigotimes_{j=p}^{q} \mathcal{A}^{(j)}$
- Quasi-local-algebra: $\mathcal{A} = \overline{\bigcup_{q \leq \rho} \mathcal{A}_{[q,\rho]}}^{norm}$
- Embedding of single-site spin operators x ∈ M_d(ℂ)

$$x^{(j)} = \mathbf{1}_{j-1]} \otimes x \otimes \mathbf{1}_{[j+1]}$$

• Asymptotic Abelianess: $\lim_{j\to\infty} \|[x^{(j)}, b]\| = 0$ for all $b \in \mathcal{A}_{[p,q]}$.

Quantum spin chains Quantum central limit

Clustering states

- Translation automorphism: $\tau : A \mapsto A$: $\tau(x^{(j)}) = x^{(j+1)}$.
- Translation-invariant states: positive, normalised linear functionals A ∋ a → ω(a) ∈ C

$$\omega(\mathbf{x}^{(j)}) = \omega(\mathbf{x}^{(j+1)}) = \omega(\mathbf{x}) = \operatorname{Tr}(\rho \, \mathbf{x})$$

e: on-site spin density matrix

• Clustering states: translation-invariant and such that

$$\lim_{n \to +\infty} \omega \Big(a^{\dagger} \tau^n(b) c \Big) = \omega(a^{\dagger} \, c) \, \omega(b) \quad \forall a, b, c \in \mathcal{A} \; .$$

Quantum spin chains Quantum central limit

Collective spin chain observables

- Local observables: microscopic description level
- Collective description level: proper scaling needed

Mean-field observables

• Averages of microscopic observables:

$$X_N = \frac{1}{N} \sum_{k=0}^{N-1} x^{(k)}$$

Quantum spin chains Quantum central limit

Averages: Macroscopic Commutative Algebras

• Averages commute: $[x^{(j)}, y^{(k)}] = \delta_{jk} z^{(j)}$,

$$\lim_{N} \left\| \begin{bmatrix} X_{N}, Y_{N} \end{bmatrix} \right\| \leq \lim_{N} \frac{1}{N^{2}} \left\| \sum_{k=0}^{N-1} \begin{bmatrix} x^{(k)}, y^{(k)} \end{bmatrix} \right\| = 0$$

and weakly converge to scalars: ω clustering implies

$$\lim_{N \to \infty} \omega \left(b^{\dagger} X_{N} c \right) = \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} \omega \left(b^{\dagger} x^{(k)} c \right)$$
$$= \lim_{N \to \infty} \omega \left(b^{\dagger} x^{(N-1)} c \right) = \omega (b^{\dagger} c) \omega(x) , \quad \forall b, c \in \mathcal{A}_{[p,q]}$$

Quantum spin chains Quantum central limit

Quantum fluctuations

D. Goderis et al., CMP **128** (1990) T. Matsui, Ann. Henri Poincaré **4** (2002)

A. Verbeure, Many-Body Boson Systems (Springer, 2011)

Local quantum fluctuations:

$$F_N(x) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \left(x^{(k)} - \omega(x) \right)$$

• Commutators of fluctuations are mean-field quantities:

$$\left[F_{N}(x), F_{N}(y)\right] = \frac{1}{N} \sum_{j,k=0}^{N-1} \left[x^{(j)}, y^{(k)}\right] = \frac{1}{N} \sum_{k=0}^{N-1} \left[x^{(k)}, y^{(k)}\right]$$

Quantum spin chains Quantum central limit

Large N Quantum Fluctuations

• Weak convergence of commutators of fluctuations to scalars:

$$w - \lim_{N \to +\infty} \left[F_N(x), F_N(y) \right] = \omega\left([x, y] \right)$$

•
$$w - \lim_{N \to \infty} F_N(x)$$
 does not exist

- How can collective fluctuations be defined?
- Mesoscopic limit:

$$F(x) = m - \lim_{N \to +\infty} F_N(x)$$

[F(x), F(y)] = $\omega([x, y])$ Bosonic behaviour

Quantum spin chains Quantum central limit

Large N Quantum Fluctuations

Local Weyl-like operators:

$$F_N(x)\mapsto W_N(r)=\exp\left(i\,r\,F_N(x)
ight)\,,\qquad r\in\mathbb{R}$$

- Characteristic functions: $\omega(W_N(r))$
- Large *N* Weyl-like commutation relations:

$$\lim_{N \to \infty} \omega \left(e^{iF_N(x)} e^{iF_N(y)} \right) = \lim_{N \to \infty} \omega \left(e^{iF_N(x+y)} \right) \exp \left(-\frac{i}{2} \omega([x, y]) \right)$$

Quantum spin chains Quantum central limit

Large N

Quantum Fluctuations

• Baker-Campbell-Hausdorff: $e^{iF_N(x)}e^{iF_N(y)} = e^{G_N(x,y)}$,

$$G_{N}(x,y) \simeq i\left(F_{N}(x) + F_{N}(y)\right) - \frac{1}{2}\left[F_{N}(x), F_{N}(y)\right] + \frac{1}{12}\left(\left[F_{N}(x), \left[F_{N}(x), F_{N}(y)\right]\right] - \left[F_{N}(y), \left[F_{N}(x), F_{N}(y)\right]\right]\right)$$

• Contributions with more commutators vanish in norm:

$$\left[F_{N}(x), \left[F_{N}(x), F_{N}(y)\right]\right] = \frac{1}{N^{3/2}} \sum_{k=0}^{N-1} \left[x^{(k)}, \left[x^{(k)}, y^{(k)}\right]\right]$$

Quantum spin chains Quantum central limit

Quantum Central Limit Theorem

- Finite set of single site observables: $\chi = \{x_j\}_{i=1}^p \subset M_d(\mathbb{C})$
- Restricted class of clustering states:

$$\sum_{k=0}^{\infty} \left| \omega(\textbf{\textit{x}}_i \textbf{\textit{x}}_j^{(k)}) - \omega(\textbf{\textit{x}}_i) \omega(\textbf{\textit{x}}_j)
ight| < +\infty \quad orall \textbf{\textit{x}}_i, \textbf{\textit{x}}_j \in \mathcal{X}$$

• normal multivariate quantum fluctuations w.r.t ω if

$$\begin{split} \lim_{N \to \infty} \omega \left(F_N^2(x_j) \right) &= \lim_{N \to \infty} \frac{1}{N} \sum_{\ell,k=0}^{N-1} \left(\omega \left(x_j^{(\ell)} \, x_j^{(k)} \right) - \omega^2(x_j) \right) =: \Sigma_{jj}^{\omega} \\ \lim_{N \to \infty} \omega \left(e^{itF_N(x_j)} \right) &= \exp \left(-\frac{t^2}{2} \Sigma_{jj}^{\omega} \right) \qquad \forall t \in \mathbb{R} \; . \end{split}$$

Quantum spin chains Quantum central limit

Quantum Central Limit Theorem

• $(d \times d)$ Covariance matrix Σ^{ω} :

$$\Sigma_{ij}^{\omega} = \lim_{N \to \infty} \frac{1}{2} \omega \left(\left\{ F_N(x_i), F_N(x_j) \right\} \right)$$

• $(d \times d)$ Symplectic matrix σ^{ω} :

$$\sigma_{ij}^{\omega} = -i \lim_{N \to \infty} \omega \left(\left[F_N(x_i), F_N(x_j) \right] \right)$$

Quantum spin chains Quantum central limit

Quantum Central Limit Theorem

Local Weyl-like operators:

$$W_{\mathsf{N}}(r) = \exp\left(i\sum_{j=1}^{p} r_j F_{\mathsf{N}}(x_j)\right) , \qquad r = \{r_j\}_{j=1}^{p} \in \mathbb{R}^{p}$$

• Theorem

Goderis et al. Comm. Math. Phys. 128 (1990)

$$\lim_{N \to +\infty} \omega \left(W_{N}(r_{1}) W_{N}(r_{2}) \right) = \exp \left(-\frac{\left(r_{1} + r_{2}, \Sigma^{\omega} \left(r_{1} + r_{2} \right) \right)}{2} \right) \times \exp \left(-\frac{i}{2} \left(r_{1}, \sigma^{\omega} r_{2} \right) \right)$$

Quantum spin chains Quantum central limit

Mesoscopic Limit

• Weyl algebra \mathcal{W} of Weyl operators W(r)

$$W(r_1)W(r_2) = W(r_1 + r_2) \exp\left(-\frac{i}{2}(r_1, \sigma^{\omega}r_2)\right)$$

• Mesoscopic Gaussian state on \mathcal{W} :

$$\Omega(W(r)) = \exp\left(-\frac{1}{2}(r, \Sigma^{\omega} r)\right)$$

Quantum spin chains Quantum central limit

Quantum Central Limit

• Mesoscopic limit: $m - \lim_{N \to \infty} W_N(r) = W(r)$

 $\lim_{N\to\infty}\omega\left(W_{N}(r_{1}) W_{N}(r) W_{N}(r_{2})\right) = \Omega\left(W(r_{1}) W(r) W(r_{2})\right)$

• Mesoscopic limit: $m - \lim_{N \to \infty} F_N(x_j) = F(x_j)$

 $\lim_{N \to \infty} \omega \left(W_{\mathsf{N}}(r_1) \, F_{\mathsf{N}}(x_j) \, W_{\mathsf{N}}(r_2) \right) = \lim_{N \to \infty} \partial_{r_j} \omega \left(W_{\mathsf{N}}(r_1) \, W_{\mathsf{N}}(r) \, W_{\mathsf{N}}(r_2) \right)$ $= \partial_{r_j} \Omega \left(W(r_1) \, W(r) \, W(r_2) \right) = \Omega \left(W(r_1) \, F(x_j) \, W(r_2) \right)$

• Weyl operators: $W(r) = \exp\left(i \sum_{j=1}^{p} r_j F(x_j)\right)$

Quantum spin chains Quantum central limit

Example: Double Spin Chain

• Double spin chain: single site *j* algebra $M_2(\mathbb{C}) \otimes M_2(\mathbb{C})$,

Factorized thermal state:

$$\boldsymbol{A} \mapsto \omega_{\beta}(\boldsymbol{A}) = \operatorname{Tr}_{[\boldsymbol{q},\boldsymbol{p}]} \left(\bigotimes_{\boldsymbol{k}=\boldsymbol{p}}^{\boldsymbol{q}} \rho_{\beta}^{(\boldsymbol{k})} \boldsymbol{A} \right) \ , \quad \rho_{\beta}^{(\boldsymbol{k})} := \frac{\mathrm{e}^{-\beta \boldsymbol{H}^{(\boldsymbol{k})}}}{\operatorname{Tr} \left(\mathrm{e}^{-\beta \boldsymbol{H}^{(\boldsymbol{k})}} \right)} \ ,$$

 $A \in \mathcal{A}_{[p,q]} \otimes \mathcal{A}_{[p,q]}$ and $H^{(k)} = \frac{\eta}{2} \left(\sigma_3^{(k)} \otimes \mathbf{1} + \mathbf{1} \otimes \sigma_3^{(k)} \right) \qquad \forall k \in \mathbb{Z}$

Quantum spin chains Quantum central limit

Double Spin Chain

• Set of microscopic observables $\mathcal{X} = \{x_j\}_{j=1}^8$:

$$\begin{aligned} \mathbf{X}_1 &= \sigma_1 \otimes \mathbf{1} \ , \ \mathbf{X}_2 = \sigma_2 \otimes \mathbf{1} \ , \ \mathbf{X}_3 = \mathbf{1} \otimes \sigma_1 \ , \ \mathbf{X}_4 = \mathbf{1} \otimes \sigma_2 \\ \mathbf{X}_5 &= \sigma_1 \otimes \sigma_3 \ , \ \mathbf{X}_6 = \sigma_2 \otimes \sigma_3 \ , \ \mathbf{X}_7 = \sigma_3 \otimes \sigma_1 \ , \ \mathbf{X}_8 = \sigma_3 \otimes \sigma_2 \end{aligned}$$

 Microscopic state: (infinite) tensor product of on-site thermal density matrices

$$\omega_{\beta}(x_j) = \operatorname{Tr}(\rho_{\beta} x_j) = 0 \qquad \forall j = 1, 2, \dots, 8$$

Local fluctuations

$$F_N(x_j) = \frac{1}{\sqrt{N}} \sum_{k=1}^{N-1} x_j^{(k)}$$

Quantum spin chains Quantum central limit

Double Spin Chain

• Symplectic matrix:

$$\omega_{\beta}\left(\left[F_{N}(x_{i}), F_{N}(x_{j})\right]\right) = \frac{1}{N} \sum_{k,\ell=0}^{N-1} \omega_{\beta}\left(\left[x_{i}^{(k)}, x_{j}^{(\ell)}\right]\right)$$
$$= \operatorname{Tr}\left(\rho_{\beta}\left[x_{i}, x_{j}\right]\right)$$

$$\sigma_{\beta} = 2\epsilon \begin{pmatrix} S & 0 & -\epsilon S & 0 \\ 0 & S & 0 & -\epsilon S \\ -\epsilon S & 0 & S & 0 \\ 0 & -\epsilon S & 0 & S \end{pmatrix}, \quad S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
$$\epsilon = \tanh \left(\frac{\beta \eta}{2}\right)$$

Quantum spin chains Quantum central limit

Double Spin Chain

• Covariance matrix:

$$\omega_{\beta} \left(F_{N}(x_{i})F_{N}(x_{j}) \right) = \frac{1}{N} \sum_{\ell,k=0}^{N-1} \omega_{\beta}(x_{i}^{(\ell)}x_{j}^{(k)}) = \operatorname{Tr} \left(\rho_{\beta} x_{i} x_{j} \right)$$
$$\Sigma_{\beta} = \begin{pmatrix} \mathbf{1} & \mathbf{0} & -\epsilon \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & -\epsilon \mathbf{1} \\ -\epsilon \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\epsilon \mathbf{1} & \mathbf{0} & \mathbf{1} \end{pmatrix}, \quad \mathbf{1} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$$

Quantum spin chains Quantum central limit

Double Spin Chain

• Passage to creators and annihilators: $c = \sqrt{1 - \epsilon^2}$

F(x_{1,2}) and a₁, a[†]₁ first chain mesoscopic degrees of freedom
 F(x_{3,4}) and a₃, a[†]₃ second chain mesoscopic degrees of freedom

Quantum spin chains Quantum central limit

Double Spin Chain

From Weyl operators to displacement operators

$$W(r) = \exp\left(\sum_{j=1}^{4} \left(z_j a_j^{\dagger} - z_j^* a_j\right)\right) =: D(z)$$

 Mesoscopic state: thermal state at the inverse temperature β of the microscopic state

$$\Omega_{\beta}\left(W(r)\right) = \left(1 - e^{-\beta\eta}\right)^{4} \operatorname{Tr}\left(e^{-\beta\eta\sum_{j=1}^{4}a_{j}^{\dagger}a_{j}}D(z)\right)$$

Dissipative entanglement generation

Open Quantum Systems

R.Alicki, K.Lendi LNP 717 (2007)

- Open quantum system S in weak interaction with its environment
 Master equation:
 - $\partial_{t}\varrho_{t} = \mathbb{L}[\varrho_{t}] = -i[H, \varrho_{t}] + \mathbb{K}[\varrho_{t}]$ $\mathbb{K}[\varrho_{t}] = \sum_{ij} \mathcal{K}_{ij} \left(V_{i}\varrho_{t} V_{j}^{\dagger} \frac{1}{2} \left\{ V_{j}^{\dagger} V_{i}, \varrho_{t} \right\} \right), \qquad \mathcal{K} = [\mathcal{K}_{ij}] \ge 0$
- Solution: Completely Positive, Trace-Preserving maps $\gamma_t = e^{t\mathbb{L}}$

$$\varrho \mapsto \varrho_t = \mathrm{e}^{t\mathbb{L}}[\varrho] , \quad \mathrm{Tr}\varrho_t = \mathbf{1}$$

• One-parameter semigroup:

$$\gamma_{\boldsymbol{s}} \circ \gamma_t = \gamma_t \circ \gamma_{\boldsymbol{s}} = \gamma_{\boldsymbol{s}+t} \quad \forall \; \boldsymbol{s}, t \ge \boldsymbol{0}$$

Dissipative entanglement generation

Dissipative effects

• Dissipation:
$$\mathbb{D}[\varrho_t] = -\frac{1}{2} \sum_{ij} K_{ij} \Big\{ V_j^{\dagger} V_i, \varrho_t \Big\}$$

• Statistical Mixing:
$$\mathbb{M}[\varrho_t] = \sum_{ij} K_{ij} V_i \varrho_t V_j^{\dagger}$$

• Pure states get transformed into mixtures: decoherence

Dissipative entanglement generation

Bipartite Entanglement

• Entangled superpositions of two spin vector states

$$\begin{split} |\Psi_{12}\rangle &= \frac{1}{\sqrt{2}} \left(|\uparrow \otimes \downarrow\rangle + |\downarrow \otimes \uparrow\rangle\right) \\ |\Psi_{12}\rangle \langle \Psi_{12}| &= \frac{1}{2} \left(|\uparrow\rangle \langle \uparrow |\otimes |\downarrow\rangle \langle \downarrow |+ |\downarrow\rangle \langle \downarrow |\otimes |\uparrow\rangle \langle \uparrow |\\ &+ |\uparrow\rangle \langle \downarrow |\otimes |\downarrow\rangle \langle \uparrow |+ |\uparrow\rangle \langle \downarrow |\otimes |\downarrow\rangle \langle \uparrow |\right) \end{split}$$

Entanglement usually destroyed by a dissipative dynamics:

$$|\Psi_{12}\rangle\langle\Psi_{12}|\longmapsto\frac{1}{2}\;(|\uparrow\rangle\langle\uparrow|\otimes|\downarrow\rangle\langle\downarrow|+|\downarrow\rangle\langle\downarrow|\otimes\uparrow\rangle\langle\uparrow|)$$

Dissipative entanglement generation

Two-spin Entanglement

• Separable states:

$$ho_{sep} = \sum_{j} \lambda_j \,
ho_j^{(1)} \otimes
ho_j^{(2)} \,, \qquad \sum_{j} \lambda_j = 1 \,, \; \lambda_j \ge 0$$

• Positive under Partial Transposition:

$$\mathrm{id}\otimes\mathbb{T}[\rho_{sep}]=\sum_{j}\lambda_{j}\,\rho_{j}^{(1)}\otimes\mathbb{T}[\rho_{j}^{(2)}]\geq0$$

• Before partial transposition:

$$\begin{split} |\Psi_{12}\rangle\langle\Psi_{12}| &= \frac{1}{2}\Big(|\uparrow\rangle\langle\uparrow|\otimes|\downarrow\rangle\langle\downarrow|+|\downarrow\rangle\langle\downarrow|\otimes|\uparrow\rangle\langle\uparrow| \\ +|\uparrow\rangle\langle\downarrow|\otimes|\downarrow\rangle\langle\uparrow|+|\uparrow\rangle\langle\downarrow|\otimes|\downarrow\rangle\langle\uparrow|\Big) &= \frac{1}{2}\begin{pmatrix}0 & 0 & 0 & 0\\0 & 1 & 1 & 0\\0 & 1 & 1 & 0\\0 & 0 & 0 & 0\end{pmatrix} \end{split}$$

• After partial transposition:

$$\begin{split} \mathrm{id} \otimes \mathbb{T}\left[|\Psi_{12}\rangle\langle\Psi_{12}|\right] &= \frac{1}{2}\left(|\uparrow\rangle\langle\uparrow|\otimes|\downarrow\rangle\langle\downarrow|+|\downarrow\rangle\langle\downarrow|\otimes|\uparrow\rangle\langle\uparrow|\\ +|\uparrow\rangle\langle\downarrow|\otimes|\uparrow\rangle\langle\downarrow|+|\uparrow\rangle\langle\downarrow|\otimes|\uparrow\rangle\langle\downarrow|\right) = \frac{1}{2}\begin{pmatrix}0 & 0 & 0 & 1\\0 & 1 & 0 & 0\\0 & 0 & 1 & 0\\1 & 0 & 0 & 0\end{pmatrix} \end{split}$$

Dissipative entanglement generation

Partial Transposition: Entanglement Witness

Horodecki's, PLA 223, 1996

Two-spin states are entangled IFF NOT PPT

Dissipative entanglement generation

Dissipative entanglement generation

F.B., R. Floreanini, M.Piani PRL 91 (2003)

• NO spin-spin interactions: $[H, \rho_t] = 0$, ONLY statistical mixing:

$$\mathbb{M}[\varrho_t] = \sum_{\mu,\nu=1}^{3} D_{\mu\nu} \left(\sigma_{\mu} \otimes \mathbf{1} \, \varrho_t \, \sigma_{\nu} \otimes \mathbf{1} + \mathbf{1} \otimes \sigma_{\mu} \, \varrho_t \, \mathbf{1} \otimes \sigma_{\nu} \right. \\ \left. + \sigma_{\mu} \otimes \mathbf{1} \, \varrho_t \, \mathbf{1} \otimes \sigma_{\nu} + \mathbf{1} \otimes \sigma_{\mu} \, \varrho_t \, \sigma_{\nu} \otimes \mathbf{1} \right)$$

• Kossakowski matrix: $K = \begin{pmatrix} D & D \\ D & D \end{pmatrix}$, $D = [D_{\mu\nu}]$,

$$D = egin{pmatrix} 1 & -i\epsilon & 0 \ i\epsilon & 1 & 0 \ 0 & 0 & \gamma \end{pmatrix} \ , \quad 0 \leq \epsilon \leq 1 \ , \quad \gamma \geq 0$$

Microscopic dissipative dynamics Mesoscopic dynamics Mesoscopic entanglement

Microscopic dissipative time-evolution

• Local generator: $\partial_t X(t) = \mathbb{L}_N[X(t)]$, $\mathbb{L}_N[X] = \mathbb{H}_N[X] + \mathbb{K}_N[X]$

$$\mathbb{H}_{N}[X] = i \Big[\sum_{k=0}^{N-1} h^{(k)}, X \Big], \quad h^{(k)} = h = h^{\dagger}$$
$$\mathbb{K}_{N}[X] = \sum_{k,\ell=0}^{N-1} J_{k\ell} \sum_{\mu,\nu=1}^{p} D_{\mu\nu} \Big(v_{\mu}^{(k)} X (v_{\nu}^{\dagger})^{(\ell)} - \frac{1}{2} \Big\{ v_{\mu}^{(k)} (v_{\nu}^{\dagger})^{(\ell)} \big\}, X \Big\} \Big)$$

• Translation invariant, fast decaying mixing coefficients:

$$J_{k\ell} = J(|k-\ell|) \;,\; J(0) =: J_0 > 0 \;;\; \lim_{N o +\infty} rac{1}{N} \sum_{k,\ell=0}^{N-1} |J_{k\ell}| \; < \; +\infty \;.$$

• Local dynamics: $\Phi_t^N = e^{t\mathbb{L}_N}$ completely positive if $K = J \otimes D \ge 0$

Microscopic dissipative dynamics Mesoscopic dynamics Mesoscopic entanglement

Which mesoscopic dynamics on the Weyl algebra emerges in the large *N* limit?

Does there exist the mesoscopic limit of the dynamics:

$$\Phi_t := \boldsymbol{m} - \lim_{N \to \infty} \Phi_t^N \qquad ?$$

What one ought to show

$$\lim_{N \to +\infty} \omega_{\beta} \left(W_{N}(r_{1}) \Phi_{t}^{N}[W_{N}(r_{2})] W_{N}(r_{2}) \right) = \Omega_{\beta} \left(W(r_{1}) \Phi_{t}[W(r_{2})] W(r_{2}) \right)$$

Microscopic dissipative dynamics Mesoscopic dynamics Mesoscopic entanglement

Working conditions

- Time-invariant microscopic state: ω ∘ Φ^N_t = ω, otherwise time-dependent mesoscopic commutation relations
- Linear span of χ mapped left invariant by \mathbb{L}_N :

$$\begin{split} \mathbb{L}_{N}[x_{j}^{(k)}] &= \mathbb{H}_{N}[x_{j}^{(k)}] + \mathbb{D}_{N}[x_{j}^{(k)}] = \sum_{\ell=1}^{p} \left(\mathcal{H}_{j\ell} + \mathcal{D}_{j\ell}\right) \, x_{\ell}^{(k)} \\ x_{j}^{(k)} \mapsto \mathbb{L}_{N}[x_{j}^{(k)}] &= \sum_{\ell=1}^{p} \mathcal{L}_{j\ell} \, x_{\ell}^{(k)} \,, \qquad \mathcal{L} = \mathcal{H} + \mathcal{D} \end{split}$$

Microscopic dissipative dynamics Mesoscopic dynamics Mesoscopic entanglement

Theorem

F.B., F. Carollo, R. Floreanini, PLA 378 (2014) F.B., F. Carollo, R. Floreanini, Ann.Phys. (Berlin) 527 (2015)

The emergent mesoscopic dynamics is dissipative and Gaussian

$$W(r) \mapsto W_t(r) := \Phi_t[W(r)] = e^{f_t(t)} W(r_t)$$

$$r_t = e^{t \mathcal{L}^{tr}} r , \quad f_r(t) = -\frac{1}{2} (r, \mathcal{Y}_t r) , \quad \mathcal{Y}_t = \Sigma_\beta - e^{t\mathcal{L}} \Sigma_\beta e^{t\mathcal{L}^{tr}}$$

Microscopic dissipative dynamics Mesoscopic dynamics Mesoscopic entanglement

Mesoscopic generator

Gaussian mesoscopic generator: $\Phi_t = \exp(t\mathbb{L})$

$$\begin{split} \mathbb{L}[W_t(r)] &= \frac{i}{2} \sum_{i,j=1}^{p} H_2^{ij} \Big[F(x_i) F(x_j) , W_t(r) \Big] \\ &+ \sum_{i,j=1}^{p} D_{ij} \left(F(x_i) W_t(r) F(x_j) - \frac{1}{2} \Big\{ F(x_i) F(x_j) , W_t(r) \Big\} \right) \\ &H_2 &= -i(\sigma^{\omega})^{-1} \left(\mathcal{L} C - C \mathcal{L}^{tr} \right) (\sigma^{\omega})^{-1} = H_2^{\dagger} \\ &D &= (\sigma^{\omega})^{-1} \left(\mathcal{L} C + C \mathcal{L}^{tr} \right) (\sigma^{\omega})^{-1} \ge 0 \\ &C &= \begin{bmatrix} C_{ij} \end{bmatrix} , \quad C_{ij} = \lim_{N \to \infty} \omega_{\beta} \Big(F_N(x_i) F_N(x_j) \Big) \end{split}$$

Microscopic dissipative dynamics Mesoscopic dynamics Mesoscopic entanglement

Algebraic setting and sketch of proof

- Quantum spin chain: quasi-local algebra \mathcal{A}
- Microscopic state: translation-invariant, clustering KMS state ω_{β}
- Selected microscopic observables: self-adjoint set of on-site observables χ
- Microscopic dissipative dynamics: semigroup of local completely positive, unital maps $\Phi_t^N = \exp(t\mathbb{L}_N)$ such that $\omega_\beta = \omega_\beta \circ \Phi_t^N$
- Locality condition: linear span of χ left invariant by \mathbb{L}_N .

Microscopic dissipative dynamics Mesoscopic dynamics Mesoscopic entanglement

Sketch of proof

• Step 1: one can substitute $\Phi_t[W(r)]$ with

$$W_N^t(r) = \mathrm{e}^{f_r(t)} W_N(r_t) = \mathrm{e}^{f_r(t)} \mathrm{e}^{i(r_t, F_N)}$$

• Step 2: one studies

$$\begin{aligned} W_N^t(r) &- \Phi_t^N[W_N(r)] &= \int_0^t \mathrm{d}s \, \frac{\mathrm{d}}{\mathrm{d}s} \left(\Phi_{t-s}^N \Big[W_N^s(r) \Big] \right) \\ &= \int_0^t \mathrm{d}s \, \Phi_{t-s}^N \Big[\frac{\mathrm{d}}{\mathrm{d}s} \, W_N^s(r) - \mathbb{L}_N[W_N^s(r)] \Big] \end{aligned}$$

Microscopic dissipative dynamics Mesoscopic dynamics Mesoscopic entanglement

Comparison of terms scaling as $1/\sqrt{N}$ and 1/N in

• Time derivative:

$$\frac{\mathrm{d}}{\mathrm{d}t}W_N^t(r)\simeq \left(\frac{\mathrm{d}f_r(t)}{\mathrm{d}t}+i(\dot{r}_t,\,F_N)-\frac{1}{2}\left[\left(r_t,F_N\right),\,(\dot{r}_t,F_N)\right]\right)W_N^t(r)$$

• Action of the generator:

$$\begin{split} \mathbb{L}_{N}[W_{N}(r)] &\simeq i \mathbb{L}_{N}\left[(r, F_{N})\right] W_{N}(r) \\ &- \frac{1}{2}\left[(r, F_{N}), \mathbb{L}_{N}\left[(r, F_{N})\right]\right] W_{N}(r) \\ &+ \frac{1}{2}\left(\mathbb{L}_{N}\left[(r, F_{N})\right](r, F_{N}) + (r, F_{N}) \mathbb{L}_{N}\left[(r, F_{N})\right] \\ &- \mathbb{L}_{N}\left[(r, F_{N})^{2}\right]\right) W_{N}(r) \end{split}$$

Microscopic dissipative dynamics Mesoscopic dynamics Mesoscopic entanglement

Gaussianity preserved by Φ_t

• Gaussian states are identified by theor covariance matrix:

$$\Omega(W(r)) = \exp\left(-\frac{1}{2}(r, \Sigma r)\right)$$

• Creation and annihilation operator formalism:

$$\begin{split} \Omega(D(z)) &= & \exp\left(-\frac{1}{2}\left((z^*,z),\Sigma(z,z^*)\right)\right) \\ \Sigma &= & \frac{1}{2}\left[\Omega\left(\left\{A_i,A_j^{\dagger}\right\}\right)\right], \qquad A = \left(\{a_j\}_j,\{a_j^{\dagger}\}\right)^{tr} \end{split}$$

Positivity condition:

$$\Sigma + \frac{\Sigma_3}{2} \ge 0 \ , \quad \Sigma_3 = \begin{pmatrix} \sigma_3 & 0 & 0 & 0 \\ 0 & \sigma_3 & 0 & 0 \\ 0 & 0 & \sigma_3 & 0 \\ 0 & 0 & 0 & \sigma_3 \end{pmatrix} \ , \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Microscopic dissipative dynamics Mesoscopic dynamics Mesoscopic entanglement

Entanglement of two-mode Gaussian states

Simon criterion: Partial transposition identifies entanglement R. Simon, PRL 84 (2000)

- two modes: $\{a_1, a_1^{\dagger}\}, \{a_3, a_3^{\dagger}\}$
- Similarly to partial tansposition: $a_3^{\#}$ fixed

 $a_1\mapsto a_1^\dagger \ , \quad a_1\mapsto a_1^\dagger \ , \quad a_1^\dagger a_1\mapsto a_1^\dagger a_1$

- Induced transformation of the covariance matrix: $\Sigma \mapsto \widetilde{\Sigma}$
- Simon criterion: 2-mode Gaussian states Ω separable IFF

$$\widetilde{\Sigma} + \frac{\Sigma_3}{2} \ge 0$$

Microscopic dissipative dynamics Mesoscopic entanglement

Open double spin chains: microscopic dynamics

• Local dissipative dynamics:

$$\partial_t X_t = \mathbb{L}_N[X_t], \qquad X_t \in \mathcal{A}_{[0,N-1]}$$

• Generator:
$$\mathbb{L}_N[X_t] = i \sum_{k=0}^{N-1} \left[H^{(k)}, X_t \right] + \sum_{k=0}^{N-1} \mathbb{D}_N^{(k)}[X_t]$$

- Hamiltonian term: $H^{(k)} = \sigma_3^{(k)} \otimes \mathbf{1}^{(k)} + \mathbf{1}^{(k)} \otimes \sigma_3^{(k)}$
- Dissipative term:

$$\mathbb{D}_{N}^{(k)}[X_{t}] = J_{0} \sum_{\mu,\nu=1}^{6} D_{\mu\nu} \left(v_{\mu}^{(k)} X_{t} v_{\nu}^{(k)} - \frac{1}{2} \left\{ v_{\mu}^{(k)} v_{\nu}^{(k)}, X_{t} \right\} \right)$$

• Kraus operators: $v_{1,2,3} = \sigma_{1,2,3} \otimes \mathbf{1}, v_{4,5,6} = \mathbf{1} \otimes \sigma_{1,2,3}$

Microscopic dissipative dynamics Mesoscopic entanglement

• Statistically mixing term: $w_{\mu} = \sigma_{\mu} \otimes \mathbf{1} + \mathbf{1} \otimes \sigma_{\mu}$

$$\mathbb{M}_{N}^{(k)}[X] = w_{1}^{(k)} X w_{1}^{(k)} + w_{2}^{(k)} X w_{2}^{(k)} + \gamma w_{3}^{(k)} X w_{3}^{(k)} - i\epsilon w_{1}^{(k)} X w_{2}^{(k)} + i\epsilon w_{2}^{(k)} X w_{1}^{(k)}$$

• Schrödinger picture: local states ϱ_N , dual generator \mathbb{L}_N^T :

$$\operatorname{Tr}\left(\varrho_{N}\mathbb{L}_{N}[X]\right)=\operatorname{Tr}\left(\mathbb{L}_{N}^{T}[\varrho_{N}]X\right)$$

• Local invariant state: ρ_N^β such that $\mathbb{L}_N^T[\rho_N^\beta] = 0$,

$$\varrho_{N}^{\beta} = \bigotimes_{k=0}^{N-1} \frac{\mathrm{e}^{-\eta\beta \mathbf{w}_{3}^{(k)}/2}}{4\cosh^{2}(\frac{\eta\beta}{2})}$$

Microscopic dissipative dynamics Mesoscopic entanglement

Lindblad generator: annihilation and creation operators

• Action of
$$\mathbb{L} = \mathbb{H} + \mathbb{D}$$
 on $D(z) = \exp(\sum_{j=1}^{4} z_j a_j^{\dagger} - z_j^* a_j)$

$$\mathbb{H}[D(z)] = i\omega \left[\sum_{j=1}^{4} a_{j}^{\dagger}a_{j}, D(z)\right]$$
$$\mathbb{D}[D(z)] = \sum_{i,j=1}^{8} K_{\beta}^{ij} \left(V_{i}^{\dagger}D(z) V_{j} - \frac{1}{2} \left\{V_{i}^{\dagger} V_{j}, D(z)\right\}\right)$$

where

$$V = (a_1, a_2, a_1^{\dagger}, a_2^{\dagger}, a_3, a_4, a_3^{\dagger}, a_4^{\dagger})^{t_1}$$

Microscopic dissipative dynamics Mesoscopic entanglement

Kossakowski matrix

$$\begin{split} \mathcal{K}_{\beta} &= \frac{2}{\epsilon} \begin{pmatrix} (1+\epsilon) \mathcal{A}_{\beta} & 0 & (1+\epsilon) \mathcal{B}_{\beta} & 0 \\ 0 & (1-\epsilon) \mathcal{A}_{\beta} & 0 & (1-\epsilon) \mathcal{B}_{\beta} \\ (1+\epsilon) \mathcal{B}_{\beta} & 0 & (1+\epsilon) \mathcal{A}_{\beta} & 0 \\ 0 & (1-\epsilon) \mathcal{B}_{\beta} & 0 & (1-\epsilon) \mathcal{A}_{\beta} \end{pmatrix} \\ \mathcal{A}_{\beta} &= \begin{pmatrix} 1+\gamma & 0 \\ 0 & 3+\gamma \end{pmatrix}, \quad \mathcal{B}_{\beta} = \begin{pmatrix} \epsilon^{2} & -\epsilon c \\ -\epsilon c & 1+c^{2} \end{pmatrix}, \end{split}$$

$$\epsilon = \tanh(\eta \beta/2), c = \sqrt{1 - \epsilon^2}$$

Mixes mesoscopic degrees of freedom a[#]₁, a[#]₃ belonging to different chains:

$$V = (a_1, a_2, a_1^{\dagger}, a_2^{\dagger}, a_3, a_4, a_3^{\dagger}, a_4^{\dagger})^{tr}$$

Microscopic dissipative dynamics Mesoscopic entanglement

Entangled mesosocopic modes from different chains

- Chain 1: a_1, a_1^{\dagger} Chain 2: a_3, a_3^{\dagger}
- $\Omega_{\beta}^{(1,3)}$ restricted to $a_1, a_1^{\dagger}, a_3, a_3^{\dagger}$: Gaussian and separable

$$\begin{aligned} \mathcal{R}_{\beta}^{(13)} &= \left(1 - e^{-\beta\eta}\right)^2 e^{-\beta\eta a_1^{\dagger} a_1} e^{-\beta\eta a_3^{\dagger} a_2} \\ \Sigma_{\beta}^{(13)} &= \frac{1}{e^{\beta\eta} - 1} \begin{pmatrix} e^{\beta\eta} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & e^{\beta\eta} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \end{aligned}$$

• Time-invariant and thus separable at all times: $\Omega_{\beta}^{(13)} \circ \Phi_t = \Omega_{\beta}^{(13)}$

Microscopic dissipative dynamics Mesoscopic entanglement

Squeezing: time-changing state, separable at t = 0

• Squeezed state:

$$\begin{aligned} \rho_r^\beta &= S_1(r) S_3(r) R_\beta^{(13)} S_3^\dagger(r) S_1^\dagger(r) \\ S_i^\dagger(r) a_i^\dagger S_j(r) &= \cosh(r) a_j^\dagger + \sinh(r) a_j \end{aligned}$$

• Squeezed state: Gaussian, Not Φ_t-invariant

$$\nu_r^{\beta}(t)\left(D_{13}(z)\right) = \operatorname{Tr}\left(\rho_r^{\beta} \Phi_t\left[D_{13}(z)\right]\right) = \operatorname{Tr}\left(\rho_r^{\beta}(t) D_{13}(z)\right)$$

- $\nu_r^{\beta}(t)$: time-changing, Gaussian 2-mode state
- Check of Simon criterion on its covariance matrix $\Sigma_r^{\beta}(t)$

Microscopic dissipative dynamics Mesoscopic entanglement

Entanglement quantification for continuous variables

A. Isar, Open Sys. Inf. Dynamics 18 (2011)

- Send $a_i^{\dagger} \mapsto a_i^{}$, $a_i^{\dagger} \mapsto a_i^{}$, $a_i^{\dagger} a_i \mapsto a_i^{\dagger} a_i^{}$
- Induced transformation of the covariance matrix:

 $\Sigma^\beta_r(t)\mapsto \widetilde{\Sigma}^\beta_r(t)$

• Simon criterion: $\nu_r^{\beta}(t)$ separable IFF

$$\widetilde{\Sigma}_r^{eta}(t) + rac{\Sigma_3}{2} \geq 0$$

- Smallest symplectic eigenvalue of $\widetilde{\Sigma}_r^{\beta}(t)$: $g(\widetilde{\Sigma}_r^{\beta}(t))$
- Logarithmic negativity: entanglement quantifier

$$\boldsymbol{E}(t) = \max\left\{0, -\frac{1}{2}\log_2(4\boldsymbol{g}(\widetilde{\boldsymbol{\Sigma}}_r^{\beta}(t)))\right\}$$

Microscopic dissipative dynamics Mesoscopic entanglement

Figure : E(t): r = 1, $\gamma = 1$, varying *T*.

Microscopic dissipative dynamics Mesoscopic entanglement

Figure : E(t): r = 1, $\gamma = 0$, varying T