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On the perceptual structure of face space
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Abstract

We are able to recognize very many different faces of individuals we know, apparently using a complex and
ill-understood set of identifying features; it seems natural to assume that faces are perceived as spanning the
equivalent of a high-dimensional vector space. I explore ways to probe the structure of perceptual face space without
making a priori hypotheses about either the space itself or the mechanisms of perception and recognition, and using
solely neuronal responses recorded in the monkey, and metrics derived from their mutual similarities. Within this
approach, the dimensionality of face space remains an elusive concept, but the metric content and ultrametric
content of the face sets used can be quantified and compared with those of other perceptual sets.
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1. How do we recognize faces?

Recognizing faces is clearly a most important
ability and one with high survival value, for hu-
mans and for other social species, and it is not
surprising that a great deal of work has been
devoted to dissecting the underlying processes,
from the points of view of experimental psy-
chology, neuropsychology and visual neurophysi-
ology (see e.g. the papers collected in the Phil.
Trans. R. Soc. Lond. B 335, 1992). As an informa-
tion processing task, face recognition is paradig-
matic of the sort of tasks at which natural nervous
systems are vastly superior to artificial intelli-
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gence systems, especially when considering the
many sources of variability in visual inputs (from
illumination to translation, scaling and rotation of
the face, down to specific aspects such as haircut
or removal of spectacles) with respect to which
everyday recognition is relatively invariant. It is
widely accepted that faces can be described as
complex combinations of features, and Rolls
(1992) has suggested in particular that individual
cells along the primate ventral visual system might
be seen as feature analyzers, tuned to low-dimen-
sional combinations of simpler features from the
preceding area, in a stepwise escalation in com-
plexity that would culminate in specialized popu-
lations (Hasselmo et al., 1989) for face identifica-
tion, the decoding of face expression, and so on.

Which are, then, the features in terms of which
neurons at a given processing stage encode faces?
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Yamane et al. (1988) have considered a set of
tens of metric descriptors, including, e.g. the dis-
tance between the eyes or the width of the mouth,
following a strict geometrical logic similar to that
which has inspired O’Keefe (1996) and collabora-
tors to find, among rat hippocampal place cells,
neurons that code for the distance between the
animal and the walls, along Cartesian coordi-
nates. If several of these descriptors were non-re-
dundant, one would expect the responses of a
sufficiently large population of cells from the
same cortical area to span a correspondingly
high-dimensional space, when the animal (a
monkey) is presented with face stimuli varying in
terms of the descriptors. In contrast, Young and
Yamane (1992), following Hasselmo et al. (1989),
have applied multidimensional scaling to the re-
sponses of tens of cells from the anterior infer-
otemporal cortex and the anterior superior tem-
poral polysensory area of two monkeys, and have
found that 70-75% of the variance in the respon-
ses is along two dimensions alone.

A self-organizing network, in which neurons
acquire their response selectivity as a result of an
ongoing unsupervised learning process, can be
expected to display single cell response profiles
that in general do not match any simple geometri-
cal analysis, but rather map what appear to be
random regions in any given coordinate frame.
Yet, the dimensionality spanned by the responses
would remain a valid index of the richness of the
stimulus set, as perceived by the population of
cells being recorded. Faces would seem, to our
intuition, to constitute a potentially rather rich
set. Sirovich and Kirby (1987) have applied princi-
pal component analysis to a large database of
human face pixel images, and found a Karhunen-
Loeve dimension (the number of eigenvalues at
least 1% of the largest) of 21; the ten largest
components accounted for 82% of the variance.
Although they emphasize how considering princi-
pal components lowers the effective dimensional-
ity of the set, 10 or 20 is still a large number
compared to 1 or 2, particularly since the database
used included only Caucasian males with no facial
hair nor spectacles (the first principal component
within this rather homogeneous set, which alone
accounted for nearly 40% of the variance, was

well correlated with the presence or not of hair
hanging on the forehead).

The operations required of the networks in-
volved in face recognition depend strongly on the
perceived structure of face space and its effective
dimensionality (perceived implies discarding extra
aspects that may be there physically, but are
irrelevant to perception). Just imagine the two
extreme cases in which n faces, being in generic
positions in a very high-dimensional space, span a
simplex of dimension d=n—1; and in which
they, instead, span a single dimension, and very
high resolution ¢~ 1/n is required along this
dimension to discriminate between individuals.
Infinite variations of intermediate cases are of
course possible, for example a set of faces might
be chosen at the vertices of a d-dimensional
hypercube, d = log,(n), and then d-binary neu-
rons would conveniently identify each face by the
presence or absence of any combination of fea-
tures. It is therefore important to try and supple-
ment the above analyses of physical face space
with studies of how this space is represented in
the brain.

Several difficulties are apparent already at this
stage. First, it is difficult to extract a meaningful
measure of effective dimensionality from princi-
pal component analyses (or multi-dimensional
scaling), as typically the importance of successive
dimensions (as measured, e.g. by the correspond-
ing eigenvalues of the covariance matrix) de-
creases exponentially, and it is quite arbitrary
where to set the significance level. A second
difficulty, which arises when considering realistic
datasets with multiple examples of each face, and
is exacerbated when such analyses are applied to
neuronal responses to faces, is in the rather large
variability of such responses, even when exactly
the same face stimulus is presented repeatedly.
Moreover responses to some faces may be much
more variable than to others, and in some direc-
tions more than in others. To discuss the metric
of face space, and in particular its effective di-
mension, which are relevant to neuronal process-
ing, one must take this variability into account,
and cannot rely solely on mean responses to each
stimulus to define a canonical metric. Third, and
most important, analyses that rely ab initio on
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Euclidean spaces, and reduce essentially to per-
forming appropriate rotations of the coordinate
frame, will never be able to say anything about
possible non-Euclidean aspects of the stimulus
set as perceived by the brain.

I consider here alternative ways to study the
structure of neuronal face space, which aim at
quantifying aspects beyond dimensionality, which
take into account the real variability, and which
do not make any a priori hypothesis as to whether
the space is Euclidean. As will be clear below,
this is still a preliminary formulation, to be im-
proved in some drawbacks such as the introduc-
tion of a not mathematically valid notion of dis-
tance, and to be applied more extensively to other
datasets.

2. Decoding the responses of face cells

Decoding the spike trains emitted by a popula-
tion of neurons, when one (s) of a set of stimuli is
presented, means applying an algorithm that esti-
mates, given the current spike trains 7, and those
previously recorded in response to each stimulus,
the likelihoods for each (s’) of the possible sti-
muli to be the current one, L(s'|7). The stimulus
s’ = s, for which this likelihood is maximal can be
said to be the stimulus predicted on the basis of
the response. In general s, will not coincide with
the true s and the accuracy in the decoding can
be gauged by the percent correct decoding (or the
corresponding fraction f ), or alternatively by
the mutual information in the joint probability
table Q(s,s,),

0CGs, s,)

P(s)Q(s,)" W

Ly= Y Qs s,)log,

5, €8

This quantity measures the information in the
predictions based on Maximum Likelihood, and
as such it does not only reflect, like percent
correct, the number of times the decoding is
exact, but also, beyond percent correct, the dis-
tribution of wrong decodings. A further quantity
is the mutual information

_ , P(s,s')
1,= SE:ESP(LS )Ing—_P(s)P(s’) )

obtained from the probability P(s’|s) of confusing
s with s’, which is given by averaging L(s'IF})
over the responses to s. This second information
measure reflects, unlike the first, also the degree
of certainty with which each single trial has been
decoded, and it thus sheds light on a further
aspect of the quality attained in decoding. Both
information quantities suffer from limited sam-
pling distortions (Treves and Panzeri, 1995; Panz-
eri and Treves, 1996) but the second much less
than the first, in the sense that, with the limited
sampling correction procedures we have devel-
oped, I, can be estimated accurately even with
few trials per stimulus, while /,; requires more
trials.

Decoding algorithms can be optimised to ex-
tract as much information as possible, or can be
modelled on the decoding likely to be imple-
mented by real neurons downstream of the
recorded populations. Information and percent
correct values in the decoding of face cells re-
sponses from the primate temporal visual cortex
are reported by Rolls et al. (1996). There we show
that simple, neuronally plausible decoding algo-
rithms, based on dot product operations, perform
virtually like optimal decoding algorithms in terms
of I,,, and are only 20-30% inferior in terms of
I,. This is because the simple dot product algo-
rithms are poorer at quantifying likelihoods, even
if they order them correctly and identify correctly
the most likely stimulus that can be predicted for
each trial. We emphasize measures that depend
on P(s,s’), the most complete characterization of
what can be extracted from the responses, and
hence in the following I insist more on I, derived
with optimal decoding algorithms, and on similar-
ity measures among stimuli that again depend on
P(s,s").

feors Iy and I, all depend on the number of
cells in the population, as recording the responses
of more cells obviously allows better decoding.
We have reported the important result (Rolls et
al, 1996) that the information decoded from face
cells appears to grow linearly with the number of
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cells in the population, until it begins to saturate
at the maximum allowed, which is just the entropy
of the stimulus set, H= — 3 P(s) log, P(s). This
result implies that the different cells in the sam-
ple tend to code for different aspects of the
stimulus set, so that each contributes an additive
term to the information provided by the popula-
tion. This result appears to hold also for the data
recorded in a number of other experiments, in-
cluding primate hippocampal cells coding for
space (Rolls et al, 1995), primate orbitofrontal
cells coding for odours (Rolls, Treves and Critch-
ley, in preparation), rat hippocampal cells coding
for spatial position (Wilson and McNaughton,
1993; Treves et al., 1996), and rat somatosensory
cells coding for nociceptive stimuli (Panzeri et al.,
1995).

The issue I want to consider here is not, how-
ever, how the accuracy in the decoding depends
on the number of cells in the population, but
rather how it provides insight on the perceived
structure of the stimulus set.

One way to approach this issue is to contrast
the values obtained, e.g. with optimal decoding
algorithms, for the three quantities mentioned
above, which, again, capture increasingly detailed
aspects of decoding performance. An example of
this analysis has been provided in Rolls et al.
(1996), where a graph shows the values of 1,
plotted against the values of f., obtained with
the same number of cells in the population. With
S =20 stimuli in the set, presented with equal
frequency (ten trials for each stimulus were used
in this dataset), f_,, range from 0.05 (= 1/20) to
1.0, and I, (or 1,,,) from 0.0 to 4.32 (= log, (20)).
Datapoints cannot span these entire ranges inde-
pendently, however, as there are mutual con-
straints between f.,, and I, I, The lowest
information values compatible with a given f_,
are those attained when equal probabilities (or
equal frequencies of being selected as most likely
in the case of I,,) result for all wrong stimuli. In
this case one finds

Imin = logzs +fcorlog2fcor
+@ _fcor)logZ(l —fcur)
-(1-f,Nog,(§—-1). 3

Conversely, maximum information for a given f,
is when stimuli are perceived as being categorized
into classes of size 1/f,,., and on each trial the
class is identified correctly, but the individual
stimulus within the class is decoded on a purely
random basis. It is easy to see that then

Imax = 10g2S + longcor' (4)

Interpreting the probability of wrong decodings as
a monotonically decreasing function of some un-
derlying distance (e.g. as discussed below), the
first situation can be taken to correspond to the
limit in which the stimuli form an equilateral
simplex, or equivalently the stimulus set is drawn
from a space of extremely high dimensionality. In
the Euclidean d — o limit, points drawn at ran-
dom from a finite, e.g. hyperspherical region tend
to be all at the same distance from each other,
and from the point of view of the metric of the
set this is referred to as the trivial limit. The
second situation can be taken to correspond to
the ultrametric limit, instead, in which all stimuli
at distance less than a critical value from each
other form clusters such that all distances between
members of different classes are above the criti-
cal value. This is a non-Euclidean structure (al-
though it could be embedded in a Euclidean
space of sufficiently large dimension), and it is a
first example of the possible emergence of non-
Euclidean aspects from a quantitative analysis
that does not rely on a priori assumptions.

Intermediate situations between the two ex-
tremes are easy to imagine and can be
parametrized in a number of different ways. A
convenient parameter that simply quantifies the
relative amount of information in excess of the
minimum, without having to assume any specific
distribution of wrong decodings, is

A = I_Imin (5)

m p—
Imax Imin

which range from 0 to 1 and can be interpreted as
measuring the metric content of the perceived
set. What is quantified by A,, can be called the
metric content not in the sense that it requires
the introduction of a real metric, but simply be-
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Fig. 1. Information vs. percent correct in decoding the respon-
ses of populations of up to 14 cells to 20 face stimuli. Data
points are for different population sizes for /,,,(+) and 1,(X),
and are in the region between a non-metric lower bound (full
curve, Eq. (3)) and a fully categorised upper bound (long
dashes, Eq. (4)). The intermediate curve (short dashes) is for
metric content A, = 0.5.

cause it gives the degree to which relationships of
being close or different (distant), among stimuli,
are relevant to their perception. For A,, = 0 such
relationships are irrelevant, to the point that if
the correct stimulus is missed in the decoding of
the response, all others have equal probabilities.
For A, =1 close stimuli are so similar as to be
fully confused with the correct one in the decod-
ing, whereas other stimuli are never mistaken for
the correct stimulus.

Fig. 1 reports a similar graph to that of Rolls et
al. (1996) (the data is the same but the slightly
different decoding algorithms produce minor dif-
ferences in the experimental values).

One can see that metric content is not an
invariant characterization of the responses, valid
for all percent correct values (which vary in rela-
tion to the number of cells considered). Neverthe-
less, I, is at or above the curve for A, = 0.5, and
it appears to tend to slightly higher values when
more cells allow for more accurate decoding. /,
would seem to indicate very low metric content
for small populations, while it tends to reach 7,
for larger populations. In fact one can show that

this behaviour for low percent correct (in particu-
lar, an initially quadratic dependence of 1, on
foor = f°) derives purely from using a decoding
algorithm that, when the information in the re-
sponses is low, assigns nearly equal probabilities
to all stimuli (this does not happen when con-
sidering only maximum likelihoods, as even small
differences in probability can result in a nonran-
dom ordering of likelihoods, and hence in higher
values for 7).

Although the fact that 7,, which is the more
telling and safer-to-measure quantity, indicates a
strongly-varying metric content, may take away
significance from this index, there is something
which appears very significant that can be ex-
tracted from this particular plot. It is the fact that
data from other experiments, in which not faces
but spatial correlates were considered as ‘stimuli’
(spatial position in the rat, spatial view in the
monkey), appear to lie, in this plot, considerably
below the face data, for any percent correct value.
This is true, in particular, when considering sets
with an equal number (20) of elements as the face
set. Therefore, metric content may well vary with
feor (strongly in the case of 7,, mildly in that of
I,.,), but it is likely to be significant in characteriz-
ing the representation of different correlates in
the brain, and the preliminary analyses we have
carried out indicate much more metric content
for face representations than for space represen-
tations (results for space hippocampal data from
the rat and the monkey will be reported else-
where).

3. From confusion to similarity to a quasi-distance

A quantification of the metric content does not
require, as we have seen, the introduction of a
metric, but on the other hand it hints at another
aspect in the structure of the set of face stimuli,
that itself does require a metric. This is because
full metricity (A,, = 1) could in particular be at-
tained by ultrametric structures, although not
necessarily (it could also be the result of the set
being embedded in a standard Euclidean space,
with the probability of decoding a ©-function
differing from zero only in a region around each
element of the set). Quantifying not metricity but
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ultrametricity requires considering distances
between triplets of points and hence the introduc-
tion of a distance among stimuli of the set.

I want to use a notion of distance among sti-
muli that is based on the degree of similarity of
the responses and takes into account their vari-
ability, but does not assume a Euclidean structure
for the underlying stimulus space. These require-
ments can be satisfied by first considering a
symmetrized function of the probability P(s’|s) of
confusing s with s’, which effectively quantifies
their similarity: P(s’|s)P(sls’); and then normal-
izing it into a quasi-distance

P(s'|s)P(sls")

PGI PGS ©)

D(s,s') = —log

The measure D(s,s’) is only a quasi-distance be-
cause D(s,s)=0 and D(s,s’)=D(s',s), but the
triangular inequality is not necessarily satisfied.
To satisfy it, D(s,s') + D(s’,s") > D(s,s"), the
probabilities of confusion must verify

P(s"|s)P(s|s")P(s’'|s")P(s']|s")
> P(s"|s")P(s'|s)P(s|s')P(s'|s") )

which is indeed an inequality that has an attrac-
tive logical interpretation (confusing s with s”
occurs at least as often as predicted by the fre-
quency with which both are confused with s’), but
which is not assured to hold.

For any given set of points, any notion of
quasi-distance among them that does not satisfy
the triangular inequality can be made to satisfy it
by trivializing the measure, ie. raising it to a
sufficiently small power 1 /d*:D — D'/ %*_ For our
particular dataset of responses to face stimuli,
however, it appears that the violation of the in-
equality is not that serious to warrant the brutish
method of trivialization. This is clear from Fig. 2,
in which different points correspond to different
triplets from the S(S — 1XS — 2)/6 possible ones
(discarding those in which either P(s|s')=0 or
D(s,s’) < 0for some pair s # s'). In this particu-
lar plot, which shows the ratios of the minimum
and intermediate distances among those in the
triplet to the maximal one (D,,,), triplets that
satisfy the triangular inequality are above the line

Responses to faces
1 SN S S E R

D_min/D_max

0
0.50.5660.60.650.70.750.80.850.90.95 1
D_med/D_max

Fig. 2. Distribution of quasidistances among triplets of faces,
as extracted from neuronal recordings by Rolls and Tovee, in
the way specified in the text.

D in/Dpx=1 — D,.4/D,., While trivialization
of the metric would push all triplets towards the
trivial limit D,;,/D,../ = Duyea/Puax =1 In a
fully ultrametric structure all triplets would satisfy
the equality D, .4 = D,,,,, that is all points would
lie on the vertical line at the right.

For a useful comparison, one can compare with
the distribution of triplets for points drawn at
random from Euclidean spaces of dimension d.
Since such distribution depends somewhat on the
exact way in which the points are selected, this is
specified here as first selecting two points really
at random (with any measure of choice), and then
selecting the third with a flat measure among all
points whose distances from the first two are less
or equal than the distance between the first two
(D,,y)- One can easily calculate the probability

max

distribution of triplets on the graph as

P(Bl =Dmin/Dmax’
82 =Dmed/D

max

) 8,8,y473, (8)

with d>2 and y>=(82+ 87 +827)/2—- 1+
8¢ + 83)/4 (for d =1 all points are on the line
8, =1— 8,). Two examples are given in Fig. 3. As
d — o all triplets converge to the trivial limit.
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Fig. 3. Distribution of distances among triplets of points drawn
at random from Euclidean spaces of dimension 2 (above) and
5 (below), as specified in the text.

Two main quantities can be extracted from
each given distribution (<...>) of triplets. The
first is a measure of the dimensionality of the
underlying space, given, e.g. by d*~ —1/log <
(82 +82)/2— (82 logé, + 8%log 8,)> . For any
given set of points, trivializing the metric implies
d — », and since it is a priori arbitrary to what
extent to trivialize, the effective dimensionality of

the set remains ill-defined in this approach, that
does not force constraints on the structure of the
set. A second quantity, instead, can be defined to
measure the ultrametric content of the set, i.e.
the overall closeness of the triplets to the fully
ultrametric limit

Aum = <log 5, +log 3, [ )

This quantity is invariant under trivialization of
the metric and range from 0 (if all triplets are
such that the two furthest points are at the same
distance from the third — the negation of ultra-
metricity) to 1 (for a fully ultrametric set). The
invariance under trivialization is reflected in the
fact A,,, is nearly constant in Euclidean spaces of
increasing dimension: for d = 1,2,3,4,5,6,..., it
takes the values (with the above method for se-
lecting triplets) 0.60, 0.54, 0.52, 0.51, 0.50, 0.50,.. .,
0.5. For the face set it takes the value A,,, = 0.53.
Thus the ultrametric content of the face set, as
perceived by the cells analysed, is equivalent to
that of an Euclidean space, from which points are
drawn at random with the above procedure, of
dimension d = 2.5 (also the value d calculated for
the face set matches the value corresponding to
an Euclidean set with d=2.5, but trivialization
would take d — o« while leaving A,,, = 0.53).

4. Conclusion

I have formulated ways in which to probe the
structure of perceptual representations, as they
are manifested in neuronal responses recorded in
a region of the brain, when stimuli drawn from a
given set are presented to the animal. Application
of these methods to the responses of face cells in
the primate temporal visual cortex does not lead
to firm quantitative conclusions at this stage, but
it does indicate reliable relations in the results,
with those emerging from applying the same anal-
ysis to other representations (i.e. stronger metric
content than for space representations) and to
known metric structures (i.e. an ultrametric con-
tent similar to that of a set drawn from an Eu-
clidean space of dimension 2-3). This suggest the
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potential relevance of applying these analyses to
the systematic study of sensory representations in
the brain.
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